Rethwilm A, Lindemann D. Foamy viruses. In: Knipe DM, Howley P, editors. Fields Virology 2013.
Bodem J. Regulation of foamy viral transcription and RNA export. Adv Virus Res. 2011;81:1.
CAS
PubMed
Google Scholar
Axel R. Molecular biology of foamy viruses. Med Microbiol Immunol. 2010;199(3):197–207.
Google Scholar
Lochelt M, Muranyi W, Flugel RM. Human foamy virus genome possesses an internal, Bel-1-dependent and functional promoter. Proc Natl Acad Sci USA. 1993;90(15):7317–21.
CAS
PubMed
PubMed Central
Google Scholar
Bodem J, Lochelt M, Delius H, et al. Detection of subgenomic cDNAs and mapping of feline foamy virus mRNAs reveals complex patterns of transcription. Virology. 1998;244(2):417–26.
CAS
PubMed
Google Scholar
Bodem J, Kang Y, Flugel RM. Comparative functional characterization of the feline foamy virus transactivator reveals its species specificity. Virology. 2004;318:32–6.
CAS
PubMed
Google Scholar
He FL, Blair WS, Fukushima J, et al. The human foamy virus Bel-1 transcription factor is a sequence-specific DNA binding protein. J Virol. 1996;70(6):3902–8.
CAS
PubMed
PubMed Central
Google Scholar
Kang Y, Blair WS, Cullen BR. Identification and functional characterization of a high-affinity Bel-1 DNA binding site located in the human foamy virus internal promoter. J Virol. 1998;72(1):504–11.
CAS
PubMed
PubMed Central
Google Scholar
Meiering CD, Linial ML. Reactivation of a complex retrovirus is controlled by a molecular switch and is inhibited by a viral protein. Proc Natl Acad Sci USA. 2002;99(23):15130–5.
CAS
PubMed
PubMed Central
Google Scholar
Yuan P, Dong L, Cheng Q, et al. Prototype foamy virus elicits complete autophagy involving the ER stress-related UPR pathway. Retrovirology. 2017;14(1):16.
PubMed
PubMed Central
Google Scholar
Dong L, Cheng Q, Wang Z, et al. Human Pirh2 is a novel inhibitor of prototype foamy virus replication. Viruses. 2015;7(4):1668–84.
CAS
PubMed
PubMed Central
Google Scholar
Yin J, Zheng Y, Yuan P, et al. Novel host protein TBC1D16, a GTPase activating protein of Rab 5c, inhibits prototype foamy virus replication. Front Immunol. 2021;12:658660.
PubMed
PubMed Central
Google Scholar
Friedman JR, Fredericks WJ, Jensen DE, et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996;10(16):2067–78.
CAS
PubMed
Google Scholar
Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 2017;42(4):297.
CAS
PubMed
Google Scholar
Iyengar S, Farnham PJ. KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem. 2011;286(30):26267.
CAS
PubMed
PubMed Central
Google Scholar
Miles DC, de Vries NA, Gisler S, et al. TRIM28 is an epigenetic barrier to induced pluripotent stem cell reprogramming. Stem Cells. 2017;35:147–57.
CAS
PubMed
Google Scholar
Peter M, Oleg G, Le DB, et al. Transcriptional repression by RING finger protein TIF1β that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 1996;24(24):4859.
Google Scholar
Schultz DC. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002;16(8):919–32.
CAS
PubMed
PubMed Central
Google Scholar
Sripathy SP, Stevens J, Schultz DC. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol. 2006;26(22):8623–38.
CAS
PubMed
PubMed Central
Google Scholar
Groner AC, Meylan S, Ciuffi A, et al. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. Plos Genet. 2010;6(3):e1000869.
PubMed
PubMed Central
Google Scholar
Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007;131:46–57.
CAS
PubMed
Google Scholar
Wolf D, Hug K, Goff SP. TRIM28 mediates primer binding site-targeted silencing of Lys 1,2 tRNA-utilizing retroviruses in embryonic cells. Proc Natl Acad Sci USA. 2008;105:12521–6.
CAS
PubMed
PubMed Central
Google Scholar
Rowe HM, Jakobsson J, Mesnard D, et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature. 2010;463:237–40.
CAS
PubMed
Google Scholar
Fasching L, Kapopoulou A, Sachdeva R, et al. TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells. Cell Rep. 2015;10:20–8.
CAS
PubMed
Google Scholar
Allouch A, Di Primio C, Alpi E, et al. The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe. 2011;9:484–95.
CAS
PubMed
Google Scholar
Nishitsuji H, Abe M, Sawada R, Takaku H. ZBRK1 represses HIV-1 LTR-mediated transcription. FEBS Lett. 2012;586:3562–8.
CAS
PubMed
Google Scholar
Nishitsuji H, Sawada L, Sugiyama R, Takaku H. ZNF10 inhibits HIV-1 LTR activity through interaction with NF-kappaB and Sp1 binding motifs. FEBS Lett. 2015;589:2019–25.
CAS
PubMed
Google Scholar
Barde I, Laurenti E, Verp S, et al. Regulation of episomal gene expression by KRAB/KAP1-mediated histone modifications. J Virol. 2009;83:5574–80.
CAS
PubMed
PubMed Central
Google Scholar
Tai HY, Sun KH, Kung SH, et al. A quantitative assay for measuring human foamy virus using an established indicator cell line. J Virol Methods. 2001;94(1–2):155–62.
CAS
PubMed
Google Scholar
Zurnic I, Hütter S, Rzeha U, et al. Interactions of prototype foamy virus capsids with host cell polo-like kinases are important for efficient viral DNA integration. Plos Pathogens. 2016;12(8):e1005860.
PubMed
PubMed Central
Google Scholar
Maurer B, Bannert H, Darai G, et al. Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. J Virol. 1988;62(5):1590.
CAS
PubMed
PubMed Central
Google Scholar
Das PM, Ramachandran K, Vanwert J, et al. Chromatin immunoprecipitation assay. Biotechniques. 2004;37:961–9.
CAS
PubMed
Google Scholar
Meiering CD, Rubio C, May C, et al. Cell-type-specific regulation of the two foamy virus promoters. J Virol. 2001;75(14):6547–57.
CAS
PubMed
PubMed Central
Google Scholar
Meiering CD, Linial ML. Reactivation of a complex retrovirus is controlled by a molecular switch and is inhibited by a viral protein. Proc Natl Acad Sci USA. 2002;99(23):15130–5.
CAS
PubMed
PubMed Central
Google Scholar
Lchelt M, et al. The human foamy virus internal promoter is required for efficient gene expression and infectivity. Virology. 1995;206(1):601–10.
Google Scholar
Jin JO, Lee GD, Sang HN, et al. Sequential ubiquitination of p53 by TRIM28, RLIM, and MDM2 in lung tumorigenesis. Cell Death Differ. 2020;28(6):1790–803.
PubMed
Google Scholar
Shu HN, Itahana Y, Alagu J, et al. TRIM28 is an E3 ligase for ARF-mediated NPM1/B23 SUMOylation that represses centrosome amplification. Mol Cell Biol. 2015;35(16):2851.
Google Scholar
Pineda CT, Potts PR. Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by ubiquitinating and degrading AMPK in cancer. Autophagy. 2015;11:844–6.
CAS
PubMed
PubMed Central
Google Scholar
Yang B, O’Herrin SM, Wu J, et al. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Can Res. 2007;67(20):9954–62.
CAS
Google Scholar
Wolf D, Goff SP. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 2009;458:1201–4.
CAS
PubMed
PubMed Central
Google Scholar
Simona K, Alona K, Ran T. Genome-wide CRISPR knockout screen identifies ZNF304 as a silencer of HIV transcription that promotes viral latency. PLoS Pathogens. 2020;16(9):e1008834.
Google Scholar
Regad T, Saib A, Lallemand-Breitenbach V, et al. PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO J. 2014;20(13):3495–505.
Google Scholar
Hu X, Yang W, Liu R, et al. N-Myc interactor inhibits prototype foamy virus by sequestering viral Tas protein in the cytoplasm. J Virol. 2014;88:7036–44.
PubMed
PubMed Central
Google Scholar
Kane M, Mele V, Liberatore RA, et al. Inhibition of Spumavirus gene expression by PHF11. PloS Pathogens. 2020;16(7):e1008644.
CAS
PubMed
PubMed Central
Google Scholar
Peng H, Begg GE, Schultz DC, et al. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol. 2000;295(5):1139–62.
CAS
PubMed
Google Scholar
Peng H, Begg GE, Harper SL, et al. Biochemical analysis of the Kruppel-associated box (KRAB) transcriptional repression domain. J Biol Chem. 2000;275:18000–10.
CAS
PubMed
Google Scholar
Ozato K, Shin DM, Chang TH, et al. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol. 2008;8(11):849–60.
CAS
PubMed
PubMed Central
Google Scholar
Amina A, Maxime B, Fadoua D, et al. Inhibition of HIV-1 gene transcription by KAP1 in myeloid lineage. Sci Rep. 2021;11:2692.
Google Scholar
Kamitani S, Togi S, Ikeda O, et al. Krüppel-associated box-associated protein 1 negatively regulates TNF-α-induced NF-κB transcriptional activity by influencing the interactions among STAT3, p300, and NF-κB/p65. J Immunol. 2011;187(5):2476–83.
CAS
PubMed
Google Scholar
Bannert H, Muranyi W, Ogryzko VV, et al. Coactivators p300 and PCAF physically and functionally interact with the foamy viral trans-activator. BMC Mol Biol. 2004;5:16.
PubMed
PubMed Central
Google Scholar
Lai IL, Wang SY, Yao YL, Yang WM. Transcriptional and subcellular regulation of the TRIP-Br family. Gene. 2007;388:102–9.
CAS
PubMed
Google Scholar
Qiu Y, Zhu G, Dong L, et al. Prokaryotic expression and polyclonal antibody production of transactivator Tas for potential application in detection of human foamy virus infection. Afr J Microbiol Res. 2012;6(7):1178.
CAS
Google Scholar
Keller A, Partin KM, Löchelt M, et al. Characterization of the transcriptional transactivator of human foamy retrovirus. J Virol. 1991;65:2589–94.
CAS
PubMed
PubMed Central
Google Scholar
Müllers E, Stirnnagel K, Kaulfuss S, et al. Prototype foamy virus gag nuclear localization: a novel pathway among retroviruses. J Virol. 2011;85:9276–85.
PubMed
PubMed Central
Google Scholar
Svensson L, Hjalmarsson A, Everitt E. TCID50 determination by an immuno dot blot assay as exemplified in a study of storage conditions of infectious pancreatic necrosis virus. J Virol Methods. 1999;80:17–24.
CAS
PubMed
Google Scholar
Wu M, Wang PF, Lee JS, et al. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human set1/COMPASS. Mol Cell Biol. 2008;28(24):7337–44.
CAS
PubMed
PubMed Central
Google Scholar