Goncalves BC, Lopes Barbosa MG, Silva Olak AP, Belebecha Terezo N, Nishi L, Watanabe MA, Marinello P, Zendrini Rechenchoski D, Dejato Rocha SP, Faccin-Galhardi LC. Antiviral therapies: advances and perspectives. Fundam Clin Pharmacol. 2021;35:305–20.
Article
CAS
PubMed
Google Scholar
Pardi N, Weissman D. Development of vaccines and antivirals for combating viral pandemics. Nat Biomed Eng. 2020;4:1128–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melican K, Aubey F, Dumenil G. Humanized mouse model to study bacterial infections targeting the microvasculature. J Vis Exp. 2014. https://doi.org/10.3791/51134.
Article
PubMed
PubMed Central
Google Scholar
Wege AK, Florian C, Ernst W, Zimara N, Schleicher U, Hanses F, Schmid M, Ritter U. Leishmania major infection in humanized mice induces systemic infection and provokes a nonprotective human immune response. PLoS Negl Trop Dis. 2012;6:e1741.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tezuka K, Xun R, Tei M, Ueno T, Tanaka M, Takenouchi N, Fujisawa J. An animal model of adult T-cell leukemia: humanized mice with HTLV-1-specific immunity. Blood. 2014;123:346–55.
Article
CAS
PubMed
Google Scholar
Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol. 2012;86:7637–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frias-Staheli N, Dorner M, Marukian S, Billerbeck E, Labitt RN, Rice CM, Ploss A. Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing. J Virol. 2014;88:2205–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fujiwara S, Imadome K, Takei M. Modeling EBV infection and pathogenesis in new-generation humanized mice. Exp Mol Med. 2015;47:e135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang LX, Kang G, Kumar P, Lu W, Li Y, Zhou Y, Li Q, Wood C. Humanized-BLT mouse model of Kaposi’s sarcoma-associated herpesvirus infection. Proc Natl Acad Sci USA. 2014;111:3146–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwant-Mitchell A, Ashkar AA, Rosenthal KL. Mucosal innate and adaptive immune responses against herpes simplex virus type 2 in a humanized mouse model. J Virol. 2009;83:10664–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hakki M, Goldman DC, Streblow DN, Hamlin KL, Krekylwich CN, Fleming WH, Nelson JA. HCMV infection of humanized mice after transplantation of G-CSF-mobilized peripheral blood stem cells from HCMV-seropositive donors. Biol Blood Marrow Transplant. 2014;20:132–5.
Article
CAS
PubMed
Google Scholar
Tan CS, Broge TA Jr, Seung E, Vrbanac V, Viscidi R, Gordon J, Tager AM, Koralnik IJ. Detection of JC virus-specific immune responses in a novel humanized mouse model. PLoS ONE. 2013;8:e64313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondo Y, Windrem MS, Zou L, Chandler-Militello D, Schanz SJ, Auvergne RM, Betstadt SJ, Harrington AR, Johnson M, Kazarov A, et al. Human glial chimeric mice reveal astrocytic dependence of JC virus infection. J Clin Invest. 2014;124:5323–36.
Article
PubMed
PubMed Central
Google Scholar
Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S, Manz MG, Flavell RA, Galan JE. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe. 2010;8:369–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Chen Q, Zheng D, Yin L, Chionh YH, Wong LH, Tan SQ, Tan TC, Chan JK, Alonso S, et al. Induction of functional human macrophages from bone marrow promonocytes by M-CSF in humanized mice. J Immunol. 2013;191:3192–9.
Article
CAS
PubMed
Google Scholar
Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, Shultz LD. Humanized mouse models of clinical disease. Annu Rev Pathol. 2017;12:187–215.
Article
CAS
PubMed
Google Scholar
Marsden MD, Zack JA. Humanized Mouse Models for Human Immunodeficiency Virus Infection. Annu Rev Virol. 2017;4:393–412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korner RW, Majjouti M, Alcazar MAA, Mahabir E. Of mice and men: The coronavirus MHV and mouse models as a translational approach to understand SARS-CoV-2. Viruses. 2020;12:880.
Article
PubMed Central
CAS
Google Scholar
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent updates on mouse models for human immunodeficiency, influenza, and dengue viral infections. Viruses. 2019;11:252.
Article
CAS
PubMed Central
Google Scholar
Morrison TE, Diamond MS. Animal models of zika virus infection, pathogenesis, and immunity. J Virol. 2017. https://doi.org/10.1128/JVI.00009-17.
Article
PubMed
PubMed Central
Google Scholar
Zarebska-Michaluk D, Flisiak R, Flisiak-Jackiewicz M. Management of hepatitis B and hepatitis C coinfection: an expert review. Expert Rev Anti Infect Ther. 2020;18:1033–44.
Article
CAS
PubMed
Google Scholar
Minkah NK, Schafer C, Kappe SHI. Humanized mouse models for the study of human malaria parasite biology, pathogenesis, and immunity. Front Immunol. 2018;9:807.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tyagi RK, Tandel N, Deshpande R, Engelman RW, Patel SD, Tyagi P. Humanized mice are instrumental to the study of plasmodium falciparum infection. Front Immunol. 2018;9:2550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335:256–9.
Article
CAS
PubMed
Google Scholar
Valbuena G, Halliday H, Borisevich V, Goez Y, Rockx B. A human lung xenograft mouse model of Nipah virus infection. PLoS Pathog. 2014;10:e1004063.
Article
PubMed
PubMed Central
Google Scholar
Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood. 2005;106:1565–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkar S, Heise MT. Mouse models as resources for studying infectious diseases. Clin Ther. 2019;41:1912–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masopust D, Sivula CP, Jameson SC. Of mice, dirty mice, and men: using mice to understand human immunology. J Immunol. 2017;199:383–8.
Article
CAS
PubMed
Google Scholar
Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12:786–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7:118–30.
Article
CAS
PubMed
Google Scholar
Taube S, Kolawole AO, Hohne M, Wilkinson JE, Handley SA, Perry JW, Thackray LB, Akkina R, Wobus CE. A mouse model for human norovirus. MBio. 2013. https://doi.org/10.1128/mBio.00450-13.
Article
PubMed
PubMed Central
Google Scholar
Garrison AR, Smith DR, Golden JW. Animal models for crimean-congo hemorrhagic fever human disease. Viruses. 2019;11:590.
Article
CAS
PubMed Central
Google Scholar
Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, Schwarz MC, Sanchez-Seco MP, Evans MJ, Best SM, Garcia-Sastre A. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe. 2016;19:882–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peck KM, Cockrell AS, Yount BL, Scobey T, Baric RS, Heise MT. Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection. J Virol. 2015;89:4696–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cockrell AS, Yount BL, Scobey T, Jensen K, Douglas M, Beall A, Tang XC, Marasco WA, Heise MT, Baric RS. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat Microbiol. 2016;2:16226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rall GF, Manchester M, Daniels LR, Callahan EM, Belman AR, Oldstone MB. A transgenic mouse model for measles virus infection of the brain. Proc Natl Acad Sci U S A. 1997;94:4659–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li K, Wohlford-Lenane CL, Channappanavar R, Park JE, Earnest JT, Bair TB, Bates AM, Brogden KA, Flaherty HA, Gallagher T, et al. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl Acad Sci U S A. 2017;114:E3119–28.
CAS
PubMed
PubMed Central
Google Scholar
Gaska JM, Balev M, Ding Q, Heller B, Ploss A. Differences across cyclophilin A orthologs contribute to the host range restriction of hepatitis C virus. Elife. 2019;8:e44436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seydel KB, Li E, Swanson PE, Stanley SL Jr. Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis. Infect Immun. 1997;65:1631–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zschaler J, Schlorke D, Arnhold J. Differences in innate immune response between man and mouse. Crit Rev Immunol. 2014;34:433–54.
PubMed
Google Scholar
Theocharides AP, Rongvaux A, Fritsch K, Flavell RA, Manz MG. Humanized hemato-lymphoid system mice. Haematologica. 2016;101:5–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108:487–92.
Article
CAS
PubMed
Google Scholar
Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12:1316–22.
Article
CAS
PubMed
Google Scholar
Ai M, Curran MA. Immune checkpoint combinations from mouse to man. Cancer Immunol Immunother. 2015;64:885–92.
Article
CAS
PubMed
Google Scholar
Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, Ito R, Ito M, Minegishi M, Minegishi N, et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009;21:843–58.
Article
CAS
PubMed
Google Scholar
Akkina R, Allam A, Balazs AB, Blankson JN, Burnett JC, Casares S, Garcia JV, Hasenkrug KJ, Kashanchi F, Kitchen SG, et al. Improvements and limitations of humanized mouse models for HIV research: NIH/NIAID “Meet the Experts” 2015 Workshop Summary. AIDS Res Hum Retroviruses. 2016;32:109–19.
Article
PubMed
PubMed Central
Google Scholar
Bosma GC, Gibson DM, Custer RP, Bosma MJ. Reconstitution of scid mice by injection of varying numbers of normal fetal liver cells into scid neonates. Curr Top Microbiol Immunol. 1989;152:151–9.
CAS
PubMed
Google Scholar
Bosma MJ. The scid mutation: occurrence and effect. Curr Top Microbiol Immunol. 1989;152:3–9.
CAS
PubMed
Google Scholar
Macchiarini F, Manz MG, Palucka AK, Shultz LD. Humanized mice: are we there yet? J Exp Med. 2005;202:1307–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Victor Garcia J. Humanized mice for HIV and AIDS research. Curr Opin Virol. 2016;19:56–64.
Article
CAS
PubMed
Google Scholar
Gorantla S, Sneller H, Walters L, Sharp JG, Pirruccello SJ, West JT, Wood C, Dewhurst S, Gendelman HE, Poluektova L. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol. 2007;81:2700–12.
Article
CAS
PubMed
Google Scholar
Gorantla S, Gendelman HE, Poluektova LY. Can humanized mice reflect the complex pathobiology of HIV-associated neurocognitive disorders? J Neuroimmune Pharmacol. 2012;7:352–62.
Article
PubMed
PubMed Central
Google Scholar
Deruaz M, Luster AD. BLT humanized mice as model to study HIV vaginal transmission. J Infect Dis. 2013;208(Suppl 2):S131-136.
Article
PubMed
PubMed Central
Google Scholar
Karpel ME, Boutwell CL, Allen TM. BLT humanized mice as a small animal model of HIV infection. Curr Opin Virol. 2015;13:75–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deruaz M, Tager AM. Humanized mouse models of latent HIV infection. Curr Opin Virol. 2017;25:97–104.
Article
CAS
PubMed
Google Scholar
Llewellyn GN, Seclen E, Wietgrefe S, Liu S, Chateau M, Pei H, Perkey K, Marsden MD, Hinkley SJ, Paschon DE, et al. Humanized mouse model of HIV-1 latency with enrichment of latent virus in PD-1(+) and TIGIT(+) CD4 T Cells. J Virol. 2019;93(10):e02086-18.
Article
PubMed
PubMed Central
Google Scholar
Su H, Cheng Y, Sravanam S, Mathews S, Gorantla S, Poluektova LY, Dash PK, Gendelman HE. Immune activations and viral tissue compartmentalization during progressive HIV-1 infection of humanized mice. Front Immunol. 2019;10:340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su H, Sravanam S, Gorantla S, Kaminski R, Khalili K, Poluektova L, Gendelman HE, Dash PK. Amplification of replication competent hiv-1 by adoptive transfer of human cells from infected humanized mice. Front Cell Infect Microbiol. 2020;10:38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arainga M, Edagwa B, Mosley RL, Poluektova LY, Gorantla S, Gendelman HE. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy. Retrovirology. 2017;14:17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Honeycutt JB, Thayer WO, Baker CE, Ribeiro RM, Lada SM, Cao Y, Cleary RA, Hudgens MG, Richman DD, Garcia JV. HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy. Nat Med. 2017;23:638–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goncalves BC, Lopes Barbosa MG, Silva Olak AP, Belebecha Terezo N, Nishi L, Watanabe MA, Marinello P, Zendrini Rechenchoski D, Dejato Rocha SP, Faccin-Galhardi LC. Antiviral therapies: advances and perspectives. Fundam Clin Pharmacol. 2020;35:305.
Article
PubMed
CAS
Google Scholar
Adalja A, Inglesby T. Broad-spectrum antiviral agents: A crucial pandemic tool. Expert Rev Anti Infect Ther. 2019;17:467–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edagwa BJ, Gendelman HE. Antimicrobials: Broad-spectrum antivirals. Nat Mater. 2018;17:114–6.
Article
CAS
PubMed
Google Scholar
Bollinger RC, Thio CL, Sulkowski MS, McKenzie-White J, Thomas DL, Flexner C. Addressing the global burden of hepatitis B virus while developing long-acting injectables for the prevention and treatment of HIV. Lancet HIV. 2020;7:e443–8.
Article
PubMed
Google Scholar
Cobb DA, Smith NA, Edagwa BJ, McMillan JM. Long-acting approaches for delivery of antiretroviral drugs for prevention and treatment of HIV: a review of recent research. Expert Opin Drug Deliv. 2020;17:1227–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gruell H, Klein F. Progress in HIV-1 antibody research using humanized mice. Curr Opin HIV AIDS. 2017;12:285–93.
Article
CAS
PubMed
Google Scholar
Denton PW, Garcia JV. Novel humanized murine models for HIV research. Curr HIV/AIDS Rep. 2009;6:13–9.
Article
PubMed
PubMed Central
Google Scholar
Stoddart CA, Galkina SA, Joshi P, Kosikova G, Moreno ME, Rivera JM, Sloan B, Reeve AB, Sarafianos SG, Murphey-Corb M, Parniak MA. Oral administration of the nucleoside EFdA (4’-ethynyl-2-fluoro-2’-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. Antimicrob Agents Chemother. 2015;59:4190–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovarova M, Swanson MD, Sanchez RI, Baker CE, Steve J, Spagnuolo RA, Howell BJ, Hazuda DJ, Garcia JV. A long-acting formulation of the integrase inhibitor raltegravir protects humanized BLT mice from repeated high-dose vaginal HIV challenges. J Antimicrob Chemother. 2016;71:1586–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy U, McMillan J, Alnouti Y, Gautum N, Smith N, Balkundi S, Dash P, Gorantla S, Martinez-Skinner A, Meza J, et al. Pharmacodynamic and antiretroviral activities of combination nanoformulated antiretrovirals in HIV-1-infected human peripheral blood lymphocyte-reconstituted mice. J Infect Dis. 2012;206:1577–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dash PK, Gendelman HE, Roy U, Balkundi S, Alnouti Y, Mosley RL, Gelbard HA, McMillan J, Gorantla S, Poluektova LY. Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. AIDS. 2012;26:2135–44.
Article
CAS
PubMed
Google Scholar
Puligujja P, Arainga M, Dash P, Palandri D, Mosley RL, Gorantla S, Poluektova L, McMillan J, Gendelman HE. Pharmacodynamics of folic acid receptor targeted antiretroviral nanotherapy in HIV-1-infected humanized mice. Antiviral Res. 2015;120:85–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puligujja P, Balkundi SS, Kendrick LM, Baldridge HM, Hilaire JR, Bade AN, Dash PK, Zhang G, Poluektova LY, Gorantla S, et al. Pharmacodynamics of long-acting folic acid-receptor targeted ritonavir-boosted atazanavir nanoformulations. Biomaterials. 2015;41:141–50.
Article
CAS
PubMed
Google Scholar
Zhou T, Su H, Dash P, Lin Z, Dyavar Shetty BL, Kocher T, Szlachetka A, Lamberty B, Fox HS, Poluektova L, et al. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials. 2018;151:53–65.
Article
CAS
PubMed
Google Scholar
Sillman B, Bade AN, Dash PK, Bhargavan B, Kocher T, Mathews S, Su H, Kanmogne GD, Poluektova LY, Gorantla S, et al. Creation of a long-acting nanoformulated dolutegravir. Nat Commun. 2018;9:443.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kulkarni TA, Bade AN, Sillman B, Shetty BLD, Wojtkiewicz MS, Gautam N, Hilaire JR, Sravanam S, Szlachetka A, Lamberty BG, et al. A year-long extended release nanoformulated cabotegravir prodrug. Nat Mater. 2020;19:910–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pardi N, Secreto AJ, Shan X, Debonera F, Glover J, Yi Y, Muramatsu H, Ni H, Mui BL, Tam YK, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630.
Article
PubMed
PubMed Central
Google Scholar
Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, Fauci AS. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986;233:1089–93.
Article
CAS
PubMed
Google Scholar
Sillman B, Woldstad C, McMillan J, Gendelman HE. Neuropathogenesis of human immunodeficiency virus infection. Handb Clin Neurol. 2018;152:21–40.
Article
PubMed
Google Scholar
Gannon P, Khan MZ, Kolson DL. Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol. 2011;24:275–83.
Article
PubMed
PubMed Central
Google Scholar
Kranick SM, Nath A. Neurologic complications of HIV-1 infection and its treatment in the era of antiretroviral therapy. Continuum (Minneap Minn). 2012;18:1319–37.
Google Scholar
Autran B, Descours B, Bacchus C. Immune control of HIV-1 reservoirs. Curr Opin HIV AIDS. 2013;8:204–10.
Article
CAS
PubMed
Google Scholar
Fenwick C, Joo V, Jacquier P, Noto A, Banga R, Perreau M, Pantaleo G. T-cell exhaustion in HIV infection. Immunol Rev. 2019;292:149–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong ME, Jaworowski A, Hearps AC. The HIV Reservoir in Monocytes and Macrophages. Front Immunol. 2019;10:1435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyor WR, Power C, Gendelman HE, Markham RB. A model of human immunodeficiency virus encephalitis in scid mice. Proc Natl Acad Sci U S A. 1993;90:8658–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Persidsky Y, Gendelman HE. Murine models for human immunodeficiency virus type 1-associated dementia: the development of new treatment testing paradigms. J Neurovirol. 2002;8(Suppl 2):49–52.
Article
CAS
PubMed
Google Scholar
Gorantla S, Poluektova L, Gendelman HE. Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci. 2012;35:197–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Potula R, Poluektova L, Knipe B, Chrastil J, Heilman D, Dou H, Takikawa O, Munn DH, Gendelman HE, Persidsky Y. Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood. 2005;106:2382–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E, Epstein AA, Gelbard HA, Boska MD, Poluektova LY. Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci. 2011;31:3148–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, Gendelman HE, Poluektova L. Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol. 2010;177:2938–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boska MD, Dash PK, Knibbe J, Epstein AA, Akhter SP, Fields N, High R, Makarov E, Bonasera S, Gelbard HA, et al. Associations between brain microstructures, metabolites, and cognitive deficits during chronic HIV-1 infection of humanized mice. Mol Neurodegener. 2014;9:58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Casas R, Muthusamy S, Wakim PG, Sinharay S, Lentz MR, Reid WC, Hammoud DA. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat. Neuroimage Clin. 2018;17:659–66.
Article
PubMed
Google Scholar
McLaurin KA, Booze RM, Mactutus CF. Evolution of the HIV-1 transgenic rat: utility in assessing the progression of HIV-1-associated neurocognitive disorders. J Neurovirol. 2018;24:229–45.
Article
CAS
PubMed
Google Scholar
Reid WC, Ibrahim WG, Kim SJ, Denaro F, Casas R, Lee DE, Maric D, Hammoud DA. Characterization of neuropathology in the HIV-1 transgenic rat at different ages. J Neuroimmunol. 2016;292:116–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maung R, Hoefer MM, Sanchez AB, Sejbuk NE, Medders KE, Desai MK, Catalan IC, Dowling CC, de Rozieres CM, Garden GA, et al. CCR5 knockout prevents neuronal injury and behavioral impairment induced in a transgenic mouse model by a CXCR4-using HIV-1 glycoprotein 120. J Immunol. 2014;193:1895–910.
Article
CAS
PubMed
Google Scholar
Repunte-Canonigo V, Lefebvre C, George O, Kawamura T, Morales M, Koob GF, Califano A, Masliah E, Sanna PP. Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats. Mol Neurodegener. 2014;9:26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paris JJ, Singh HD, Ganno ML, Jackson P, McLaughlin JP. Anxiety-like behavior of mice produced by conditional central expression of the HIV-1 regulatory protein. Tat Psychopharmacology (Berl). 2014;231:2349–60.
Article
CAS
Google Scholar
Gu CJ, Borjabad A, Hadas E, Kelschenbach J, Kim BH, Chao W, Arancio O, Suh J, Polsky B, McMillan J, et al. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog. 2018;14:e1007061.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kelschenbach J, He H, Kim BH, Borjabad A, Gu CJ, Chao W, Do M, Sharer LR, Zhang H, Arancio O, et al. Efficient expression of HIV in immunocompetent mouse brain reveals a novel nonneurotoxic viral function in hippocampal synaptodendritic injury and memory impairment. MBio. 2019;10(4):e00591-19.
Article
PubMed
PubMed Central
Google Scholar
Li H, McLaurin KA, Mactutus CF, Booze RM. A rat model of EcoHIV brain infection. J Vis Exp. 2021. https://doi.org/10.3791/62137.
Article
PubMed
Google Scholar
Honeycutt JB, Liao B, Nixon CC, Cleary RA, Thayer WO, Birath SL, Swanson MD, Sheridan P, Zakharova O, Prince F, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862–76.
Article
PubMed
PubMed Central
Google Scholar
Honeycutt JB, Sheridan PA, Matsushima GK, Garcia JV. Humanized mouse models for HIV-1 infection of the CNS. J Neurovirol. 2015;21:301–9.
Article
CAS
PubMed
Google Scholar
Cenker JJ, Stultz RD, McDonald D. Brain microglial cells are highly susceptible to HIV-1 infection and spread. AIDS Res Hum Retroviruses. 2017;33:1155–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial cells: the main HIV-1 reservoir in the brain. Front Cell Infect Microbiol. 2019;9:362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Gorantla S, Gendelman HE, Poluektova LY. Systemic HIV-1 infection produces a unique glial footprint in humanized mouse brains. Dis Model Mech. 2017;10:1489–502.
CAS
PubMed
PubMed Central
Google Scholar
Mathews S, Branch Woods A, Katano I, Makarov E, Thomas MB, Gendelman HE, Poluektova LY, Ito M, Gorantla S. Human Interleukin-34 facilitates microglia-like cell differentiation and persistent HIV-1 infection in humanized mice. Mol Neurodegener. 2019;14:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seneviratne HK, Hamlin AN, Heck CJS, Bumpus NN. Spatial Distribution profiles of emtricitabine, tenofovir, efavirenz, and rilpivirine in murine tissues following in vivo dosing correlate with their safety profiles in humans. ACS Pharmacol Transl Sci. 2020;3:655–65.
Article
CAS
PubMed
Google Scholar
De Benedetto I, Trunfio M, Guastamacchia G, Bonora S, Calcagno A. A review of the potential mechanisms of neuronal toxicity associated with antiretroviral drugs. J Neurovirol. 2020;26:642–51.
Article
PubMed
Google Scholar
Ryan SK, Gonzalez MV, Garifallou JP, Bennett FC, Williams KS, Sotuyo NP, Mironets E, Cook K, Hakonarson H, Anderson SA, Jordan-Sciutto KL. Neuroinflammation and EIF2 signaling persist despite antiretroviral treatment in an hiPSC Tri-culture model of HIV infection. Stem Cell Reports. 2020;14:703–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheney L, Guzik H, Macaluso FP, Macian F, Cuervo AM, Berman JW. HIV Nef and antiretroviral therapy have an inhibitory effect on autophagy in human astrocytes that may contribute to HIV-associated neurocognitive disorders. Cells. 2020. https://doi.org/10.3390/cells9061426.
Article
PubMed
PubMed Central
Google Scholar
Jordan-Sciutto KL. Effects of antiretroviral therapy in the central nervous system: beyond viral suppression. J Neuroimmune Pharmacol. 2021;16:71–3.
Article
PubMed
PubMed Central
Google Scholar
Giunta B, Ehrhart J, Obregon DF, Lam L, Le L, Jin J, Fernandez F, Tan J, Shytle RD. Antiretroviral medications disrupt microglial phagocytosis of beta-amyloid and increase its production by neurons: implications for HIV-associated neurocognitive disorders. Mol Brain. 2011;4:23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fields JA, Spencer B, Swinton M, Qvale EM, Marquine MJ, Alexeeva A, Gough S, Soontornniyomkij B, Valera E, Masliah E, et al. Alterations in brain TREM2 and Amyloid-beta levels are associated with neurocognitive impairment in HIV-infected persons on antiretroviral therapy. J Neurochem. 2018;147:784–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hategan A, Masliah E, Nath A. HIV and Alzheimer’s disease: complex interactions of HIV-Tat with amyloid beta peptide and Tau protein. J Neurovirol. 2019;25:648–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Smith N, Makarov E, Sun Y, Gebhart CL, Ganesan M, Osna NA, Gendelman HE, Edagwa BJ, Poluektova LY. A long-acting 3TC ProTide nanoformulation suppresses HBV replication in humanized mice. Nanomedicine. 2020;28:102185.
Article
CAS
PubMed
Google Scholar
McMillan JM, Cobb DA, Lin Z, Banoub MG, Dagur RS, Branch Woods AA, Wang W, Makarov E, Kocher T, Joshi PS, et al. Antiretroviral drug metabolism in humanized PXR-CAR-CYP3A-NOG Mice. J Pharmacol Exp Ther. 2018;365:272–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dagur RS, Wang W, Cheng Y, Makarov E, Ganesan M, Suemizu H, Gebhart CL, Gorantla S, Osna N, Poluektova LY. Human hepatocyte depletion in the presence of HIV-1 infection in dual reconstituted humanized mice. Biol Open. 2018;7(2):bio029785.
Gnanadhas DP, Dash PK, Sillman B, Bade AN, Lin Z, Palandri DL, Gautam N, Alnouti Y, Gelbard HA, McMillan J, et al. Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs. J Clin Invest. 2017;127:857–73.
Article
PubMed
PubMed Central
Google Scholar
Llewellyn GN, Alvarez-Carbonell D, Chateau M, Karn J, Cannon PM. HIV-1 infection of microglial cells in a reconstituted humanized mouse model and identification of compounds that selectively reverse HIV latency. J Neurovirol. 2018;24:192–203.
Article
CAS
PubMed
Google Scholar
Indolfi G, Easterbrook P, Dusheiko G, Siberry G, Chang MH, Thorne C, Bulterys M, Chan PL, El-Sayed MH, Giaquinto C, et al. Hepatitis B virus infection in children and adolescents. Lancet Gastroenterol Hepatol. 2019;4:466–76.
Article
PubMed
Google Scholar
Bosh KA, Coyle JR, Hansen V, Kim EM, Speers S, Comer M, Maddox LM, Khuwaja S, Zhou W, Jatta A, et al. HIV and viral hepatitis coinfection analysis using surveillance data from 15 US states and two cities. Epidemiol Infect. 2018;146:920–30.
Article
CAS
PubMed
Google Scholar
Sema Baltazar C, Kellogg TA, Boothe M, Loarec A, de Abreu E, Condula M, Fazito E, Raymond HF, Temmerman M, Luchters S. Prevalence of HIV, viral hepatitis B/C and tuberculosis and treatment outcomes among people who use drugs: Results from the implementation of the first drop-in-center in Mozambique. Int J Drug Policy. 2021;90:103095.
Article
PubMed
Google Scholar
Tang A, Hallouch O, Chernyak V, Kamaya A, Sirlin CB. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol (NY). 2018;43:13–25.
Article
Google Scholar
Allweiss L, Strick-Marchand H. In-vitro and in-vivo models for hepatitis B cure research. Curr Opin HIV AIDS. 2020;15:173–9.
Article
PubMed
Google Scholar
Dandri M, Burda MR, Torok E, Pollok JM, Iwanska A, Sommer G, Rogiers X, Rogler CE, Gupta S, Will H, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology. 2001;33:981–8.
Article
CAS
PubMed
Google Scholar
Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, Rinfret A, Addison WR, Fischer KP, Churchill TA, Lakey JR, et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med. 2001;7:927–33.
Article
CAS
PubMed
Google Scholar
Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, Kay MA, Finegold M, Grompe M. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol. 2007;25:903–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M, Wakui M, Ito M, Suematsu M, Peltz G, Nakamura M, Suemizu H. The reconstituted “humanized liver” in TK-NOG mice is mature and functional. Biochem Biophys Res Commun. 2011;405:405–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tateno C, Kojima Y. Characterization and applications of chimeric mice with humanized livers for preclinical drug development. Lab Anim Res. 2020;36:2.
Article
PubMed
PubMed Central
Google Scholar
Billich A. Entecavir (Bristol-Myers Squibb). Curr Opin Investig Drugs. 2001;2:617–21.
CAS
PubMed
Google Scholar
Murakami E, Tsuge M, Hiraga N, Kan H, Uchida T, Masaki K, Nakahara T, Ono A, Miki D, Kawaoka T, et al. Effect of tenofovir disoproxil fumarate on drug-resistant HBV clones. J Infect. 2016;72:91–102.
Article
PubMed
Google Scholar
Tsuge M, Uchida T, Hiraga N, Kan H, Makokha GN, Abe-Chayama H, Miki D, Imamura M, Ochi H, Hayes CN, et al. Development of a novel site-specific pegylated interferon beta for antiviral therapy of chronic hepatitis B virus. Antimicrob Agents Chemother. 2017;61(6):e00183-17.
Article
PubMed
PubMed Central
Google Scholar
Allweiss L, Giersch K, Pirosu A, Volz T, Muench RC, Beran RK, Urban S, Javanbakht H, Fletcher SP, Lutgehetmann M, Dandri M. Therapeutic shutdown of HBV transcripts promotes reappearance of the SMC5/6 complex and silencing of the viral genome in vivo. Gut. 2021. https://doi.org/10.1136/gutjnl-2020-322571.
Article
PubMed
Google Scholar
Uchida T, Imamura M, Hayes CN, Hiraga N, Kan H, Tsuge M, Abe-Chayama H, Zhang Y, Makokha GN, Aikata H, et al. Persistent loss of hepatitis B virus markers in serum without cellular immunity by combination of peginterferon and entecavir therapy in humanized mice. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.00725-17.
Article
PubMed
PubMed Central
Google Scholar
Tateno C, Kawase Y, Tobita Y, Hamamura S, Ohshita H, Yokomichi H, Sanada H, Kakuni M, Shiota A, Kojima Y, et al. Generation of novel chimeric mice with humanized livers by using hemizygous cDNA-uPA/SCID mice. PLoS ONE. 2015;10:0142145.
Article
CAS
Google Scholar
Ye X, Tateno C, Thi EP, Kakuni M, Snead NM, Ishida Y, Barnard TR, Sofia MJ, Shimada T, Lee ACH. Hepatitis B virus therapeutic agent ARB-1740 has inhibitory effect on hepatitis delta virus in a new dually-infected humanized mouse model. ACS Infect Dis. 2019;5:738–49.
Article
CAS
PubMed
Google Scholar
Sato Y, Matsui H, Yamamoto N, Sato R, Munakata T, Kohara M, Harashima H. Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J Control Release. 2017;266:216–25.
Article
CAS
PubMed
Google Scholar
Kang JA, Kim S, Park M, Park HJ, Kim JH, Park S, Hwang JR, Kim YC, Jun Kim Y, Cho Y, et al. Ciclopirox inhibits hepatitis B Virus secretion by blocking capsid assembly. Nat Commun. 2019;10:2184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Amblard F, Boucle S, Bassit L, Cox B, Sari O, Tao S, Chen Z, Ozturk T, Verma K, Russell O, et al. Novel Hepatitis B virus capsid assembly modulator induces potent antiviral responses in vitro and in humanized mice. Antimicrob Agents Chemother. 2020. https://doi.org/10.1128/AAC.01701-19.
Article
PubMed
PubMed Central
Google Scholar
Klumpp K, Shimada T, Allweiss L, Volz T, Lutgehetmann M, Hartman G, Flores OA, Lam AM, Dandri M. Efficacy of NVR 3–778, alone and in combination with pegylated interferon, vs entecavir In uPA/SCID mice With humanized livers and HBV infection. Gastroenterology. 2018;154:652-662 e658.
Article
CAS
PubMed
Google Scholar
Stone D, Long KR, Loprieno MA, De Silva Feelixge HS, Kenkel EJ, Liley RM, Rapp S, Roychoudhury P, Nguyen T, Stensland L, et al. CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice. Mol Ther Methods Clin Dev. 2021;20:258–75.
Article
CAS
PubMed
Google Scholar
Kayesh MEH, Amako Y, Hashem MA, Murakami S, Ogawa S, Yamamoto N, Hifumi T, Miyoshi N, Sugiyama M, Tanaka Y, et al. Development of an in vivo delivery system for CRISPR/Cas9-mediated targeting of hepatitis B virus cccDNA. Virus Res. 2020;290:198191.
Article
CAS
PubMed
Google Scholar
Wisskirchen K, Kah J, Malo A, Asen T, Volz T, Allweiss L, Wettengel JM, Lutgehetmann M, Urban S, Bauer T, et al. T cell receptor grafting allows virological control of Hepatitis B virus infection. J Clin Invest. 2019;129:2932–45.
Article
PubMed
PubMed Central
Google Scholar
Maravelia P, Frelin L, Ni Y, Caro Perez N, Ahlen G, Jagya N, Verch G, Verhoye L, Pater L, Johansson M, et al. Blocking entry of hepatitis B and D viruses to hepatocytes as a novel immunotherapy for treating chronic infections. J Infect Dis. 2021;223:128–38.
Article
CAS
PubMed
Google Scholar
Strich JR, Chertow DS. CRISPR-Cas Biology and Its Application to Infectious Diseases. J Clin Microbiol. 2019. https://doi.org/10.1128/JCM.01307-18.
Article
PubMed
PubMed Central
Google Scholar
Cai L, Fisher AL, Huang H, Xie Z. CRISPR-mediated genome editing and human diseases. Genes Dis. 2016;3:244–51.
Article
PubMed
PubMed Central
Google Scholar
Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2016;63:355–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW, Kim JS. Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 2015;17:213–20.
Article
CAS
PubMed
Google Scholar
Zhu F, Nair RR, Fisher EMC, Cunningham TJ. Humanising the mouse genome piece by piece. Nat Commun. 1845;2019:10.
Google Scholar
Onos KD, Sukoff Rizzo SJ, Howell GR, Sasner M. Toward more predictive genetic mouse models of Alzheimer’s disease. Brain Res Bull. 2016;122:1–11.
Article
CAS
PubMed
Google Scholar
Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM, Chen C, Mancuso P, Sariyer R, Ferrante P, et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun. 2019;10:2753.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao Q, Chen S, Wang Q, Liu Z, Liu S, Deng H, Hou W, Wu D, Xiong Y, Li J, Guo D. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4(+) T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4(+) T cell enrichment in humanized mice. Retrovirology. 2019;16:15.
Article
PubMed
PubMed Central
Google Scholar
Morgan DG, Mielke MM. Knowledge gaps in Alzheimer's disease immune biomarker research. Alzheimers Dement. 2021. https://doi.org/10.1002/alz.12342.
Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, Gendelman HE. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener. 2020;15:32.
Article
PubMed
PubMed Central
Google Scholar
Massoud F, Gauthier S. Update on the pharmacological treatment of Alzheimer’s disease. Curr Neuropharmacol. 2010;8:69–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17:661–3.
Article
CAS
PubMed
Google Scholar
Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar, Scheiwe C, Nessler S, Kunz P, van Loo G, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388–392.
Fyfe I. Mouse brains, human microglia. Nat Rev Neurol. 2019;15:558–9.
Article
PubMed
Google Scholar
Espuny-Camacho I, Arranz AM, Fiers M, Snellinx A, Ando K, Munck S, Bonnefont J, Lambot L, Corthout N, Omodho L, et al. Hallmarks of alzheimer’s disease in stem-cell-derived human neurons transplanted into mouse brain. Neuron. 2017;93:1066-1081e1068.
Article
CAS
PubMed
Google Scholar
Hasselmann J, Coburn MA, England W, Figueroa Velez DX, Kiani Shabestari S, Tu CH, McQuade A, Kolahdouzan M, Echeverria K, Claes C, et al. Development of a Chimeric Model to Study and Manipulate Human Microglia In Vivo. Neuron. 2019;103:1016-1033 e1010.
Article
CAS
PubMed
PubMed Central
Google Scholar
BjornsonHooper ZB, Fragiadakis GK, Spitzer MH, Madhireddy D, McIlwain D, Nolan GP. A comprehensive atlas of immunological differences between humans, mice and non-human primates. BioRxiv. 2019. https://doi.org/10.1101/574160.
Article
Google Scholar
Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–8.
Article
CAS
PubMed
Google Scholar
Lin JG, Chen CJ, Yang HB, Chen YH, Hung SY. Electroacupuncture promotes recovery of motor function and reduces dopaminergic neuron degeneration in rodent models of Parkinson’s disease. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18091846.
Article
PubMed
PubMed Central
Google Scholar
Scarffe LA, Stevens DA, Dawson VL, Dawson TM. Parkin and PINK1: much more than mitophagy. Trends Neurosci. 2014;37:315–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4:1318–20.
Article
CAS
PubMed
Google Scholar
Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A. 2000;97:571–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, Cecchi C, Vendruscolo M, Chiti F, Cremades N, et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science. 2017;358:1440–3.
Article
CAS
PubMed
Google Scholar
Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol. 2013;9:13–24.
Article
CAS
PubMed
Google Scholar
Manocha GD, Floden AM, Puig KL, Nagamoto-Combs K, Scherzer CR, Combs CK. Defining the contribution of neuroinflammation to Parkinson’s disease in humanized immune system mice. Mol Neurodegener. 2017;12:17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu J, Albers MW, Wandless TJ, Luan S, Alberg DG, Belshaw PJ, Cohen P, MacKintosh C, Klee CB, Schreiber SL. Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry. 1992;31:3896–901.
Article
CAS
PubMed
Google Scholar
Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991;66:807–15.
Article
CAS
PubMed
Google Scholar
Gerard M, Deleersnijder A, Daniëls V, Schreurs S, Munck S, Reumers V, Pottel H, Engelborghs Y, Van den Haute C, Taymans JM, et al. Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson’s disease-like pathology. J Neurosci. 2010;30:2454–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deleersnijder A, Van Rompuy AS, Desender L, Pottel H, Buée L, Debyser Z, Baekelandt V, Gerard M. Comparative analysis of different peptidyl-prolyl isomerases reveals FK506-binding protein 12 as the most potent enhancer of alpha-synuclein aggregation. J Biol Chem. 2011;286:26687–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitamura Y, Itano Y, Kubo T, Nomura Y. Suppressive effect of FK-506, a novel immunosuppressant, against MPTP-induced dopamine depletion in the striatum of young C57BL/6 mice. J Neuroimmunol. 1994;50:221–4.
Article
CAS
PubMed
Google Scholar
Cardoso SW, Torres TS, Santini-Oliveira M, Marins LM, Veloso VG, Grinsztejn B. Aging with HIV: a practical review. Braz J Infect Dis. 2013;17:464–79.
Article
PubMed
Google Scholar
Wing EJ. HIV and aging. Int J Infect Dis. 2016;53:61–8.
Article
PubMed
Google Scholar
Nookala AR, Mitra J, Chaudhari NS, Hegde ML, Kumar A. An overview of human immunodeficiency virus type 1-associated common neurological complications: Does aging pose a challenge? J Alzheimers Dis. 2017;60:S169-s193.
Article
PubMed
PubMed Central
Google Scholar
Elicer IM, Byrd D, Clark US, Morgello S, Robinson-Papp J. Motor function declines over time in human immunodeficiency virus and is associated with cerebrovascular disease, while HIV-associated neurocognitive disorder remains stable. J Neurovirol. 2018;24:514–22.
Article
PubMed Central
Google Scholar
Muller-Oehring EM, Fama R, Levine TF, Hardcastle C, Goodcase R, Martin T, Prabhakar V, Bronte-Stewart HM, Poston KL, Sullivan EV, Schulte T. Cognitive and motor deficits in older adults with HIV infection: Comparison with normal ageing and Parkinson’s disease. J Neuropsychol. 2020;5:253-273.
Article
PubMed
PubMed Central
Google Scholar
Olson KE, Bade AN, Schutt CR, Dong J, Shandler SJ, Boska MD, Mosley RL, Gendelman HE, Liu Y. Manganese-enhanced magnetic resonance imaging for detection of vasoactive intestinal peptide receptor 2 agonist therapy in a model of Parkinson’s disease. Neurotherapeutics. 2016;13:635–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun. 2014;54:33–50.
Article
CAS
PubMed
Google Scholar
Devoy A, Bunton-Stasyshyn RK, Tybulewicz VL, Smith AJ, Fisher EM. Genomically humanized mice: technologies and promises. Nat Rev Genet. 2011;13:14–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prasad EM, Hung S-Y. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel) 2020;9(10):1007.
Bagga P, Chugani AN, Patel AB. Neuroprotective effects of caffeine in MPTP model of Parkinson’s disease: A (13)C NMR study. Neurochem Int. 2016;92:25–34.
Article
CAS
PubMed
Google Scholar
Zhang W, He H, Song H, Zhao J, Li T, Wu L, Zhang X, Chen J. Neuroprotective effects of salidroside in the MPTP mouse model of parkinson’s disease: involvement of the PI3K/Akt/GSK3beta pathway. Parkinsons Dis. 2016;2016:9450137.
PubMed
PubMed Central
Google Scholar
Hutter-Saunders JA, Gendelman HE, Mosley RL. Murine motor and behavior functional evaluations for acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. J Neuroimmune Pharmacol. 2012;7:279–88.
Article
PubMed
Google Scholar