Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, Chomont N, Chun TW, Churchill M, Mascio MD, Katlama C, et al: Towards an HIV cure: a global scientific strategy. Nat Rev Immunol. 2012, 12: 607-614.
CAS
PubMed
Google Scholar
Dahl V, Josefsson L, Palmer S: HIV reservoirs, latency, and reactivation: prospects for eradication. Antiviral Res. 2010, 85: 286-294.
CAS
PubMed
Google Scholar
Colin L, Van Lint C: Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology. 2009, 6: 111-
PubMed Central
PubMed
Google Scholar
Bisgrove D, Lewinski M, Bushman F, Verdin E: Molecular mechanisms of HIV-1 proviral latency. Expert Rev Anti Infect Ther. 2005, 3: 805-814.
CAS
PubMed
Google Scholar
Marcello A: Latency: the hidden HIV-1 challenge. Retrovirology. 2006, 3: 7-
PubMed Central
PubMed
Google Scholar
Pierson TC, Kieffer TL, Ruff CT, Buck C, Gange SJ, Siliciano RF: Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. J Virol. 2002, 76: 4138-4144.
PubMed Central
CAS
PubMed
Google Scholar
Strebel K, Luban J, Jeang KT: Human cellular restriction factors that target HIV-1 replication. BMC Med. 2009, 7: 48-
PubMed Central
PubMed
Google Scholar
Durand CM, Blankson JN, Siliciano RF: Developing strategies for HIV-1 eradication. Trends Immunol. 2012, 33: 554-562.
PubMed Central
CAS
PubMed
Google Scholar
Pang S, Koyanagi Y, Miles S, Wiley C, Vinters HV, Chen IS: High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature. 1990, 343: 85-89.
CAS
PubMed
Google Scholar
Kelly J, Beddall MH, Yu D, Iyer SR, Marsh JW, Wu Y: Human macrophages support persistent transcription from unintegrated HIV-1 DNA. Virology. 2008, 372: 300-312.
PubMed Central
CAS
PubMed
Google Scholar
Sharkey M, Triques K, Kuritzkes DR, Stevenson M: In vivo evidence for instability of episomal human immunodeficiency virus type 1 cDNA. J Virol. 2005, 79: 5203-5210.
PubMed Central
CAS
PubMed
Google Scholar
Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, Boucher G, Boulassel MR, Ghattas G, Brenchley JM, et al: HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009, 15: 893-900.
PubMed Central
CAS
PubMed
Google Scholar
Redel L, Le Douce V, Cherrier T, Marban C, Janossy A, Aunis D, Van Lint C, Rohr O, Schwartz C: HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. J Leukoc Biol. 2010, 87: 575-588.
CAS
PubMed
Google Scholar
Trono D, Van Lint C, Rouzioux C, Verdin E, Barre-Sinoussi F, Chun TW, Chomont N: HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science. 2011, 329: 174-180.
Google Scholar
Marcello A, Dhir S, Dieudonne M: Nuclear positional control of HIV transcription in 4D. Nucleus. 2010, 1: 8-11.
PubMed Central
PubMed
Google Scholar
Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, Duan L, Choi AL, Girling V, Ho T, Li P, et al: Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J Infect Dis. 2010, 202: 1553-1561.
PubMed Central
PubMed
Google Scholar
Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, Gatell JM, Domingo P, Paredes R, Sharkey M, et al: HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med. 2010, 16: 460-465.
PubMed
Google Scholar
Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A, Milo R, Baltimore D: Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature. 2011, 477: 95-98.
CAS
PubMed
Google Scholar
Dinoso JB, Kim SY, Wiegand AM, Palmer SE, Gange SJ, Cranmer L, O'Shea A, Callender M, Spivak A, Brennan T, et al: Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 2009, 106: 9403-9408.
PubMed Central
CAS
PubMed
Google Scholar
Gandhi RT, Zheng L, Bosch RJ, Chan ES, Margolis DM, Read S, Kallungal B, Palmer S, Medvik K, Lederman MM, et al: The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med. 2010, 7: e1000321-
PubMed Central
PubMed
Google Scholar
Yukl SA, Shergill AK, McQuaid K, Gianella S, Lampiris H, Hare CB, Pandori M, Sinclair E, Gunthard HF, Fischer M, et al: Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS. 2010, 24: 2451-2460.
PubMed Central
CAS
PubMed
Google Scholar
Bailey JR, Sedaghat AR, Kieffer T, Brennan T, Lee PK, Wind-Rotolo M, Haggerty CM, Kamireddi AR, Liu Y, Lee J, et al: Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J Virol. 2006, 80: 6441-6457.
PubMed Central
CAS
PubMed
Google Scholar
Evering TH, Mehandru S, Racz P, Tenner-Racz K, Poles MA, Figueroa A, Mohri H, Markowitz M: Absence of HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination antiviral therapy initiated during primary infection. PLoS Pathog. 2012, 8: e1002506-
PubMed Central
CAS
PubMed
Google Scholar
Frenkel LM, Wang Y, Learn GH, McKernan JL, Ellis GM, Mohan KM, Holte SE, De Vange SM, Pawluk DM, Melvin AJ, et al: Multiple viral genetic analyses detect low-level human immunodeficiency virus type 1 replication during effective highly active antiretroviral therapy. J Virol. 2003, 77: 5721-5730.
PubMed Central
CAS
PubMed
Google Scholar
Kieffer TL, Finucane MM, Nettles RE, Quinn TC, Broman KW, Ray SC, Persaud D, Siliciano RF: Genotypic analysis of HIV-1 drug resistance at the limit of detection: virus production without evolution in treated adults with undetectable HIV loads. J Infect Dis. 2004, 189: 1452-1465.
CAS
PubMed
Google Scholar
Eisele E, Siliciano RF: Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012, 37: 377-388.
PubMed Central
CAS
PubMed
Google Scholar
Tyagi M, Bukrinsky M: Human Immunodeficiency Virus (HIV) latency: the major hurdle in HIV eradication. Mol Med. 2012, 18: 1096-1108.
PubMed Central
CAS
PubMed
Google Scholar
Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, et al: Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997, 387: 183-188.
CAS
PubMed
Google Scholar
Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF: In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med. 1995, 1: 1284-1290.
CAS
PubMed
Google Scholar
Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR: CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood. 2007, 110: 4161-4164.
CAS
PubMed
Google Scholar
Yoder A, Yu D, Dong L, Iyer SR, Xu X, Kelly J, Liu J, Wang W, Vorster PJ, Agulto L, et al: HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell. 2008, 134: 782-792.
PubMed Central
CAS
PubMed
Google Scholar
Cameron PU, Saleh S, Sallmann G, Solomon A, Wightman F, Evans VA, Boucher G, Haddad EK, Sekaly RP, Harman AN, et al: Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci U S A. 2010, 107: 16934-16939.
PubMed Central
CAS
PubMed
Google Scholar
Smith MZ, Wightman F, Lewin SR: HIV reservoirs and strategies for eradication. Curr HIV/AIDS Rep. 2012, 9: 5-15.
PubMed
Google Scholar
Swiggard WJ, Baytop C, Yu JJ, Dai J, Li C, Schretzenmair R, Theodosopoulos T, O'Doherty U: Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli. J Virol. 2005, 79: 14179-14188.
PubMed Central
CAS
PubMed
Google Scholar
Lassen KG, Hebbeler AM, Bhattacharyya D, Lobritz MA, Greene WC: A flexible model of HIV-1 latency permitting evaluation of many primary CD4 T-cell reservoirs. PLoS One. 2012, 7: e30176-
PubMed Central
CAS
PubMed
Google Scholar
Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS: HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990, 61: 213-222.
CAS
PubMed
Google Scholar
Bukrinsky MI, Stanwick TL, Dempsey MP, Stevenson M: Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science. 1991, 254: 423-427.
CAS
PubMed
Google Scholar
Zhou Y, Zhang H, Siliciano JD, Siliciano RF: Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol. 2005, 79: 2199-2210.
PubMed Central
CAS
PubMed
Google Scholar
Meyerhans A, Vartanian JP, Hultgren C, Plikat U, Karlsson A, Wang L, Eriksson S, Wain-Hobson S: Restriction and enhancement of human immunodeficiency virus type 1 replication by modulation of intracellular deoxynucleoside triphosphate pools. J Virol. 1994, 68: 535-540.
PubMed Central
CAS
PubMed
Google Scholar
Pierson T, McArthur J, Siliciano RF: Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol. 2000, 18: 665-708.
CAS
PubMed
Google Scholar
Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF: Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003, 9: 727-728.
CAS
PubMed
Google Scholar
Siliciano RF, Greene WC: HIV latency. Cold Spring Harb Perspect Med. 2011, 1: a007096-
PubMed Central
PubMed
Google Scholar
Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, et al: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997, 278: 1295-1300.
CAS
PubMed
Google Scholar
Boulassel MR, Chomont N, Pai NP, Gilmore N, Sekaly RP, Routy JP: CD4 T cell nadir independently predicts the magnitude of the HIV reservoir after prolonged suppressive antiretroviral therapy. J Clin Virol. 2012, 53: 29-32.
CAS
PubMed
Google Scholar
Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a novel source of residual viremia in patients on antiretroviral therapy. J Virol. 2009, 83: 8470-8481.
PubMed Central
CAS
PubMed
Google Scholar
Sahu GK, Paar D, Frost SD, Smith MM, Weaver S, Cloyd MW: Low-level plasma HIVs in patients on prolonged suppressive highly active antiretroviral therapy are produced mostly by cells other than CD4 T-cells. J Med Virol. 2009, 81: 9-15.
PubMed Central
PubMed
Google Scholar
Anderson JA, Archin NM, Ince W, Parker D, Wiegand A, Coffin JM, Kuruc J, Eron J, Swanstrom R, Margolis DM: Clonal sequences recovered from plasma from patients with residual HIV-1 viremia and on intensified antiretroviral therapy are identical to replicating viral RNAs recovered from circulating resting CD4+ T cells. J Virol. 2011, 85: 5220-5223.
PubMed Central
CAS
PubMed
Google Scholar
Wightman F, Solomon A, Khoury G, Green JA, Gray L, Gorry PR, Ho YS, Saksena NK, Hoy J, Crowe SM, et al: Both CD31(+) and CD31(−) naive CD4(+) T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J Infect Dis. 2010, 202: 1738-1748.
PubMed
Google Scholar
Yuan J, Crittenden RB: Bender TP: c-Myb promotes the survival of CD4 + CD8+ double-positive thymocytes through upregulation of Bcl-xL. J Immunol. 2010, 184: 2793-2804.
PubMed Central
CAS
PubMed
Google Scholar
Brooks DG, Kitchen SG, Kitchen CM, Scripture-Adams DD, Zack JA: Generation of HIV latency during thymopoiesis. Nat Med. 2001, 7: 459-464.
CAS
PubMed
Google Scholar
Fabre-Mersseman V, Dutrieux J, Louise A, Rozlan S, Lamine A, Parker R, Rancez M, Nunes-Cabaco H, Sousa AE, Lambotte O, Cheynier R: CD4(+) recent thymic emigrants are infected by HIV in vivo, implication for pathogenesis. AIDS. 2011, 25: 1153-1162.
PubMed
Google Scholar
Hatano H, Hayes TL, Dahl V, Sinclair E, Lee TH, Hoh R, Lampiris H, Hunt PW, Palmer S, McCune JM, et al: A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response. J Infect Dis. 2011, 203: 960-968.
PubMed Central
CAS
PubMed
Google Scholar
Carter CC, Onafuwa-Nuga A, McNamara LA, Riddell J, Bixby D, Savona MR, Collins KL: HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med. 2010, 16: 446-451.
PubMed Central
CAS
PubMed
Google Scholar
Carter CC, McNamara LA, Onafuwa-Nuga A, Shackleton M, Riddell J, Bixby D, Savona MR, Morrison SJ, Collins KL: HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent hematopoietic stem and progenitor cells. Cell Host Microbe. 2011, 9: 223-234.
PubMed Central
CAS
PubMed
Google Scholar
Durand CM, Ghiaur G, Siliciano JD, Rabi SA, Eisele EE, Salgado M, Shan L, Lai JF, Zhang H, Margolick J, et al: HIV-1 DNA is detected in bone marrow populations containing CD4+ T cells but is not found in purified CD34+ hematopoietic progenitor cells in most patients on antiretroviral therapy. J Infect Dis. 2012, 205: 1014-1018.
PubMed Central
CAS
PubMed
Google Scholar
Josefsson L, Eriksson S, Sinclair E, Ho T, Killian M, Epling L, Shao W, Lewis B, Bacchetti P, Loeb L, et al: Hematopoietic precursor cells isolated from patients on long-term suppressive HIV therapy did not contain HIV-1 DNA. J Infect Dis. 2012, 206: 28-34.
PubMed Central
CAS
PubMed
Google Scholar
Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB: Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A. 1986, 83: 7089-7093.
PubMed Central
CAS
PubMed
Google Scholar
Churchill MJ, Gorry PR, Cowley D, Lal L, Sonza S, Purcell DF, Thompson KA, Gabuzda D, McArthur JC, Pardo CA, Wesselingh SL: Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol. 2006, 12: 146-152.
PubMed
Google Scholar
Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, Gorry PR: Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol. 2009, 66: 253-258.
PubMed
Google Scholar
Gras G, Kaul M: Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology. 2010, 7: 30-
PubMed Central
PubMed
Google Scholar
Schnell G, Price RW, Swanstrom R, Spudich S: Compartmentalization and clonal amplification of HIV-1 variants in the cerebrospinal fluid during primary infection. J Virol. 2010, 84: 2395-2407.
PubMed Central
CAS
PubMed
Google Scholar
Yilmaz A, Verhofstede C, D'Avolio A, Watson V, Hagberg L, Fuchs D, Svennerholm B, Gisslen M: Treatment intensification has no effect on the HIV-1 central nervous system infection in patients on suppressive antiretroviral therapy. J Acquir Immune Defic Syndr. 2010, 55: 590-596.
CAS
PubMed
Google Scholar
Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, Kottilil S, Moir S, Mican JM, Mullins JI, et al: Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis. 2008, 197: 714-720.
CAS
PubMed
Google Scholar
Lerner P, Guadalupe M, Donovan R, Hung J, Flamm J, Prindiville T, Sankaran-Walters S, Syvanen M, Wong JK, George MD, Dandekar S: The gut mucosal viral reservoir in HIV-infected patients is not the major source of rebound plasma viremia following interruption of highly active antiretroviral therapy. J Virol. 2011, 85: 4772-4782.
PubMed Central
CAS
PubMed
Google Scholar
Sallusto F, Geginat J, Lanzavecchia A: Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004, 22: 745-763.
CAS
PubMed
Google Scholar
Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM, Margolis DM, Karn J: Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J Virol. 2011, 85: 9078-9089.
PubMed Central
CAS
PubMed
Google Scholar
Pearson R, Kim YK, Hokello J, Lassen K, Friedman J, Tyagi M, Karn J: Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J Virol. 2008, 82: 12291-12303.
PubMed Central
CAS
PubMed
Google Scholar
Bernhard W, Barreto K, Saunders A, Dahabieh MS, Johnson P, Sadowski I: The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response. FEBS Lett. 2011, 585: 3549-3554.
CAS
PubMed
Google Scholar
Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS: Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci U S A. 1989, 86: 2365-2368.
PubMed Central
CAS
PubMed
Google Scholar
Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS: Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science. 1987, 238: 800-802.
CAS
PubMed
Google Scholar
Folks TM, Justement J, Kinter A, Schnittman S, Orenstein J, Poli G, Fauci AS: Characterization of a promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12-myristate acetate. J Immunol. 1988, 140: 1117-1122.
CAS
PubMed
Google Scholar
Emiliani S, Fischle W, Ott M, Van Lint C, Amella CA, Verdin E: Mutations in the tat gene are responsible for human immunodeficiency virus type 1 postintegration latency in the U1 cell line. J Virol. 1998, 72: 1666-1670.
PubMed Central
CAS
PubMed
Google Scholar
Emiliani S, Van Lint C, Fischle W, Paras P, Ott M, Brady J, Verdin E: A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency. Proc Natl Acad Sci U S A. 1996, 93: 6377-6381.
PubMed Central
CAS
PubMed
Google Scholar
Verhoef K, Marzio G, Hillen W, Bujard H, Berkhout B: Strict control of human immunodeficiency virus type 1 replication by a genetic switch: Tet for Tat. J Virol. 2001, 75: 979-987.
PubMed Central
CAS
PubMed
Google Scholar
Jeeninga RE, Westerhout EM, van Gerven ML, Berkhout B: HIV-1 latency in actively dividing human T cell lines. Retrovirology. 2008, 5: 37-
PubMed Central
PubMed
Google Scholar
Jordan A, Bisgrove D, Verdin E: HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 2003, 22: 1868-1877.
PubMed Central
CAS
PubMed
Google Scholar
Wires ES, Alvarez D, Dobrowolski C, Wang Y, Morales M, Karn J, Harvey BK: Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells. J Neurovirol. 2012, 18: 400-410.
PubMed Central
CAS
PubMed
Google Scholar
Janabi N, Peudenier S, Heron B, Ng KH, Tardieu M: Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neurosci Lett. 1995, 195: 105-108.
CAS
PubMed
Google Scholar
Pace MJ, Agosto L, Graf EH, O'Doherty U: HIV reservoirs and latency models. Virology. 2011, 411: 344-354.
PubMed Central
CAS
PubMed
Google Scholar
Hakre S, Chavez L, Shirakawa K, Verdin E: HIV latency: experimental systems and molecular models. FEMS Microbiol Rev. 2012, 36: 706-716.
PubMed Central
CAS
PubMed
Google Scholar
Chun TW, Engel D, Mizell SB, Ehler LA, Fauci AS: Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med. 1998, 188: 83-91.
PubMed Central
CAS
PubMed
Google Scholar
Brooks DG, Arlen PA, Gao L, Kitchen CM, Zack JA: Identification of T cell-signaling pathways that stimulate latent HIV in primary cells. Proc Natl Acad Sci U S A. 2003, 100: 12955-12960.
PubMed Central
CAS
PubMed
Google Scholar
Wang FX, Xu Y, Sullivan J, Souder E, Argyris EG, Acheampong EA, Fisher J, Sierra M, Thomson MM, Najera R, et al: IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest. 2005, 115: 128-137.
PubMed Central
CAS
PubMed
Google Scholar
Sahu GK, Lee K, Ji J, Braciale V, Baron S, Cloyd MW: A novel in vitro system to generate and study latently HIV-infected long-lived normal CD4+ T-lymphocytes. Virology. 2006, 355: 127-137.
CAS
PubMed
Google Scholar
Yang HC, Xing S, Shan L, O'Connell K, Dinoso J, Shen A, Zhou Y, Shrum CK, Han Y, Liu JO, et al: Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest. 2009, 119: 3473-3486.
PubMed Central
CAS
PubMed
Google Scholar
Tyagi M, Pearson RJ, Karn J: Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol. 2010, 84: 6425-6437.
PubMed Central
CAS
PubMed
Google Scholar
Marini A, Harper JM, Romerio F: An in vitro system to model the establishment and reactivation of HIV-1 latency. J Immunol. 2008, 181: 7713-7720.
CAS
PubMed
Google Scholar
Scripture-Adams DD, Brooks DG, Korin YD, Zack JA: Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype. J Virol. 2002, 76: 13077-13082.
PubMed Central
CAS
PubMed
Google Scholar
Bosque A, Famiglietti M, Weyrich AS, Goulston C, Planelles V: Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog. 2011, 7: e1002288-
PubMed Central
CAS
PubMed
Google Scholar
Bosque A, Planelles V: Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood. 2009, 113: 58-65.
PubMed Central
CAS
PubMed
Google Scholar
Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F: Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat Immunol. 2003, 4: 78-86.
CAS
PubMed
Google Scholar
Yang HC, Shen L, Siliciano RF, Pomerantz JL: Isolation of a cellular factor that can reactivate latent HIV-1 without T cell activation. Proc Natl Acad Sci U S A. 2009, 106: 6321-6326.
PubMed Central
CAS
PubMed
Google Scholar
Wang W, Guo J, Yu D, Vorster PJ, Chen W, Wu Y: A dichotomy in cortical actin and chemotactic actin activity between human memory and naive T cells contributes to their differential susceptibility to HIV-1 infection. J Biol Chem. 2012, 287: 35455-35469.
PubMed Central
CAS
PubMed
Google Scholar
McNamara LA, Ganesh JA, Collins KL: Latent HIV-1 infection occurs in multiple subsets of hematopoietic progenitor cells and is reversed by NF-kappaB activation. J Virol. 2012, 86: 9337-9350.
PubMed Central
CAS
PubMed
Google Scholar
Archin NM, Keedy KS, Espeseth A, Dang H, Hazuda DJ, Margolis DM: Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors. AIDS. 2009, 23: 1799-1806.
CAS
PubMed
Google Scholar
Siliciano JD, Siliciano RF: Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol Biol. 2005, 304: 3-15.
PubMed
Google Scholar
Reuse S, Calao M, Kabeya K, Guiguen A, Gatot JS, Quivy V, Vanhulle C, Lamine A, Vaira D, Demonte D, et al: Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One. 2009, 4: e6093-
PubMed Central
PubMed
Google Scholar
Bouchat S, Gatot JS, Kabeya K, Cardona C, Colin L, Herbein G, de Wit S, Clumeck N, Lambotte O, Rouzioux C, et al: Histone methyltransferase inhibitors induce HIV-1 recovery in resting CD4+ T cells from HIV-1+ HAART-treated patients. AIDS. 2012, 26: 1473-82.
CAS
PubMed
Google Scholar
Denton PW, Garcia JV: Novel humanized murine models for HIV research. Curr HIV/AIDS Rep. 2009, 6: 13-19.
PubMed Central
PubMed
Google Scholar
Rabin L, Hincenbergs M, Moreno MB, Warren S, Linquist V, Datema R, Charpiot B, Seifert J, Kaneshima H, McCune JM: Use of standardized SCID-hu Thy/Liv mouse model for preclinical efficacy testing of anti-human immunodeficiency virus type 1 compounds. Antimicrob Agents Chemother. 1996, 40: 755-762.
PubMed Central
CAS
PubMed
Google Scholar
Kaneshima H, Namikawa R, McCune JM: Human hematolymphoid cells in SCID mice. Curr Opin Immunol. 1994, 6: 327-333.
CAS
PubMed
Google Scholar
Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin M, Kashanchi F: The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology. 2009, 6: 76-
PubMed Central
PubMed
Google Scholar
Choudhary SK, Rezk NL, Ince WL, Cheema M, Zhang L, Su L, Swanstrom R, Kashuba AD, Margolis DM: Suppression of human immunodeficiency virus type 1 (HIV-1) viremia with reverse transcriptase and integrase inhibitors, CD4+ T-cell recovery, and viral rebound upon interruption of therapy in a new model for HIV treatment in the humanized Rag2−/−{gamma}c−/− mouse. J Virol. 2009, 83: 8254-8258.
PubMed Central
CAS
PubMed
Google Scholar
Murphy B, Vapniarsky N, Hillman C, Castillo D, McDonnel S, Moore P, Luciw PA, Sparger EE: FIV establishes a latent infection in feline peripheral blood CD4+ T lymphocytes in vivo during the asymptomatic phase of infection. Retrovirology. 2012, 9: 12-
PubMed Central
CAS
PubMed
Google Scholar
Apetrei C, Pandrea I, Mellors JW: Nonhuman primate models for HIV cure research. PLoS Pathog. 2012, 8: e1002892-
PubMed Central
CAS
PubMed
Google Scholar
Dinoso JB, Rabi SA, Blankson JN, Gama L, Mankowski JL, Siliciano RF, Zink MC, Clements JE: A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol. 2009, 83: 9247-9257.
PubMed Central
CAS
PubMed
Google Scholar
North TW, Higgins J, Deere JD, Hayes TL, Villalobos A, Adamson L, Shacklett BL, Schinazi RF, Luciw PA: Viral sanctuaries during highly active antiretroviral therapy in a nonhuman primate model for AIDS. J Virol. 2010, 84: 2913-2922.
PubMed Central
CAS
PubMed
Google Scholar
Pandrea I, Gaufin T, Gautam R, Kristoff J, Mandell D, Montefiori D, Keele BF, Ribeiro RM, Veazey RS, Apetrei C: Functional cure of SIVagm infection in rhesus macaques results in complete recovery of CD4+ T cells and is reverted by CD8+ cell depletion. PLoS Pathog. 2011, 7: e1002170-
PubMed Central
CAS
PubMed
Google Scholar
Shytaj IL, Norelli S, Chirullo B, Della Corte A, Collins M, Yalley-Ogunro J, Greenhouse J, Iraci N, Acosta EP, Barreca ML, et al: A highly intensified ART regimen induces long-term viral suppression and restriction of the viral reservoir in a simian AIDS model. PLoS Pathog. 2012, 8: e1002774-
PubMed Central
CAS
PubMed
Google Scholar
Engelman A, Cherepanov P: The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog. 2008, 4: e1000046-
PubMed Central
PubMed
Google Scholar
Schrijvers R, De Rijck J, Demeulemeester J, Adachi N, Vets S, Ronen K, Christ F, Bushman FD, Debyser Z, Gijsbers R: LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog. 2012, 8: e1002558-
PubMed Central
CAS
PubMed
Google Scholar
Wang H, Jurado KA, Wu X, Shun MC, Li X, Ferris AL, Smith SJ, Patel PA, Fuchs JR, Cherepanov P, et al: HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Res. 2012, 40: 11518-30.
PubMed Central
CAS
PubMed
Google Scholar
Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F: HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002, 110: 521-529.
CAS
PubMed
Google Scholar
Lewinski MK, Bisgrove D, Shinn P, Chen H, Hoffmann C, Hannenhalli S, Verdin E, Berry CC, Ecker JR, Bushman FD: Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol. 2005, 79: 6610-6619.
PubMed Central
CAS
PubMed
Google Scholar
Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu X, Pierson TC, Margolick JB, Siliciano RF, Siliciano JD: Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol. 2004, 78: 6122-6133.
PubMed Central
CAS
PubMed
Google Scholar
Liu H, Dow EC, Arora R, Kimata JT, Bull LM, Arduino RC, Rice AP: Integration of human immunodeficiency virus type 1 in untreated infection occurs preferentially within genes. J Virol. 2006, 80: 7765-7768.
PubMed Central
CAS
PubMed
Google Scholar
Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F: A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med. 2005, 11: 1287-1289.
CAS
PubMed
Google Scholar
Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P, Cherepanov P, Engelman A: LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 2007, 21: 1767-1778.
PubMed Central
CAS
PubMed
Google Scholar
Lesbats P, Botbol Y, Chevereau G, Vaillant C, Calmels C, Arneodo A, Andreola ML, Lavigne M, Parissi V: Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes. PLoS Pathog. 2011, 7: e1001280-
PubMed Central
CAS
PubMed
Google Scholar
Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, James LC, Towers GJ, Young JA, Chanda SK, et al: HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog. 2011, 7: e1001313-
PubMed Central
CAS
PubMed
Google Scholar
Dieudonne M, Maiuri P, Biancotto C, Knezevich A, Kula A, Lusic M, Marcello A: Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery. EMBO J. 2009, 28: 2231-2243.
PubMed Central
CAS
PubMed
Google Scholar
Lenasi T, Contreras X, Peterlin BM: Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe. 2008, 4: 123-133.
PubMed Central
CAS
PubMed
Google Scholar
Han Y, Lin YB, An W, Xu J, Yang HC, O'Connell K, Dordai D, Boeke JD, Siliciano JD, Siliciano RF: Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe. 2008, 4: 134-146.
PubMed Central
CAS
PubMed
Google Scholar
Shan L, Yang HC, Rabi SA, Bravo HC, Shroff NS, Irizarry RA, Zhang H, Margolick JB, Siliciano JD, Siliciano RF: Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol. 2011, 85: 5384-5393.
PubMed Central
CAS
PubMed
Google Scholar
Gallastegui E, Millan-Zambrano G, Terme JM, Chavez S, Jordan A: Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol. 2011, 85: 3187-3202.
PubMed Central
CAS
PubMed
Google Scholar
De Marco A, Biancotto C, Knezevich A, Maiuri P, Vardabasso C, Marcello A: Intragenic transcriptional cis-activation of the human immunodeficiency virus 1 does not result in allele-specific inhibition of the endogenous gene. Retrovirology. 2008, 5: 98-
PubMed Central
PubMed
Google Scholar
Duverger A, Wolschendorf F, Zhang M, Wagner F, Hatcher B, Jones J, Cron RQ, van der Sluis RM, Jeeninga RE, Berkhout B, Kutsch O: An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection. J Virol. 2013, 87: 2264-2277.
PubMed Central
CAS
PubMed
Google Scholar
McKernan LN, Momjian D, Kulkosky J: Protein kinase C: one pathway towards the eradication of latent HIV-1 reservoirs. Adv Virol. 2012, 2012: 805347-
PubMed Central
PubMed
Google Scholar
Van Lint C, Burny A, Verdin E: The intragenic enhancer of human immunodeficiency virus type 1 contains functional AP-1 binding sites. J Virol. 1991, 65: 7066-7072.
PubMed Central
CAS
PubMed
Google Scholar
Van Lint C, Ghysdael J, Paras P, Burny A, Verdin E: A transcriptional regulatory element is associated with a nuclease-hypersensitive site in the pol gene of human immunodeficiency virus type 1. J Virol. 1994, 68: 2632-2648.
PubMed Central
CAS
PubMed
Google Scholar
Verdin E: DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol. 1991, 65: 6790-6799.
PubMed Central
CAS
PubMed
Google Scholar
Verdin E, Becker N, Bex F, Droogmans L, Burny A: Identification and characterization of an enhancer in the coding region of the genome of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1990, 87: 4874-4878.
PubMed Central
CAS
PubMed
Google Scholar
Colin L, Vandenhoudt N, de Walque S, Van Driessche B, Bergamaschi A, Martinelli V, Cherrier T, Vanhulle C, Guiguen A, David A, et al: The AP-1 binding sites located in the pol gene intragenic regulatory region of HIV-1 are important for viral replication. PLoS One. 2011, 6: e19084-
PubMed Central
CAS
PubMed
Google Scholar
Hamer DH, Bocklandt S, McHugh L, Chun TW, Blumberg PM, Sigano DM, Marquez VE: Rational design of drugs that induce human immunodeficiency virus replication. J Virol. 2003, 77: 10227-10236.
PubMed Central
CAS
PubMed
Google Scholar
Warrilow D, Gardner J, Darnell GA, Suhrbier A, Harrich D: HIV type 1 inhibition by protein kinase C modulatory compounds. AIDS Res Hum Retroviruses. 2006, 22: 854-864.
CAS
PubMed
Google Scholar
Marquez N, Calzado MA, Sanchez-Duffhues G, Perez M, Minassi A, Pagani A, Appendino G, Diaz L, Munoz-Fernandez MA, Munoz E: Differential effects of phorbol-13-monoesters on human immunodeficiency virus reactivation. Biochem Pharmacol. 2008, 75: 1370-1380.
CAS
PubMed
Google Scholar
Bedoya LM, Marquez N, Martinez N, Gutierrez-Eisman S, Alvarez A, Calzado MA, Rojas JM, Appendino G, Munoz E, Alcami J: SJ23B, a jatrophane diterpene activates classical PKCs and displays strong activity against HIV in vitro. Biochem Pharmacol. 2009, 77: 965-978.
CAS
PubMed
Google Scholar
Kulkosky J, Culnan DM, Roman J, Dornadula G, Schnell M, Boyd MR, Pomerantz RJ: Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood. 2001, 98: 3006-3015.
CAS
PubMed
Google Scholar
Kulkosky J, Sullivan J, Xu Y, Souder E, Hamer DH, Pomerantz RJ: Expression of latent HAART-persistent HIV type 1 induced by novel cellular activating agents. AIDS Res Hum Retroviruses. 2004, 20: 497-505.
CAS
PubMed
Google Scholar
Bocklandt S, Blumberg PM, Hamer DH: Activation of latent HIV-1 expression by the potent anti-tumor promoter 12-deoxyphorbol 13-phenylacetate. Antiviral Res. 2003, 59: 89-98.
CAS
PubMed
Google Scholar
Gulakowski RJ, McMahon JB, Buckheit RW, Gustafson KR, Boyd MR: Antireplicative and anticytopathic activities of prostratin, a non-tumor-promoting phorbol ester, against human immunodeficiency virus (HIV). Antiviral Res. 1997, 33: 87-97.
CAS
PubMed
Google Scholar
Hezareh M, Moukil MA, Szanto I, Pondarzewski M, Mouche S, Cherix N, Brown SJ, Carpentier JL, Foti M: Mechanisms of HIV receptor and co-receptor down-regulation by prostratin: role of conventional and novel PKC isoforms. Antivir Chem Chemother. 2004, 15: 207-222.
CAS
PubMed
Google Scholar
Biancotto A, Grivel JC, Gondois-Rey F, Bettendroffer L, Vigne R, Brown S, Margolis LB, Hirsch I: Dual role of prostratin in inhibition of infection and reactivation of human immunodeficiency virus from latency in primary blood lymphocytes and lymphoid tissue. J Virol. 2004, 78: 10507-10515.
PubMed Central
CAS
PubMed
Google Scholar
Korin YD, Brooks DG, Brown S, Korotzer A, Zack JA: Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J Virol. 2002, 76: 8118-8123.
PubMed Central
CAS
PubMed
Google Scholar
Brooks DG, Hamer DH, Arlen PA, Gao L, Bristol G, Kitchen CM, Berger EA, Zack JA: Molecular characterization, reactivation, and depletion of latent HIV. Immunity. 2003, 19: 413-423.
CAS
PubMed
Google Scholar
Johnson HE, Banack SA, Cox PA: Variability in content of the anti-AIDS drug candidate prostratin in Samoan populations of Homalanthus nutans. J Nat Prod. 2008, 71: 2041-2044.
PubMed Central
CAS
PubMed
Google Scholar
Margolis DM: Confronting proviral HIV infection. Curr HIV/AIDS Rep. 2007, 4: 60-64.
PubMed
Google Scholar
Wender PA, Kee JM, Warrington JM: Practical synthesis of prostratin, DPP, and their analogs, adjuvant leads against latent HIV. Science. 2008, 320: 649-652.
PubMed Central
CAS
PubMed
Google Scholar
Kovochich M, Marsden MD, Zack JA: Activation of latent HIV using drug-loaded nanoparticles. PLoS One. 2011, 6: e18270-
PubMed Central
CAS
PubMed
Google Scholar
Nath A, Maragos WF, Avison MJ, Schmitt FA, Berger JR: Acceleration of HIV dementia with methamphetamine and cocaine. J Neurovirol. 2001, 7: 66-71.
CAS
PubMed
Google Scholar
Rippeth JD, Heaton RK, Carey CL, Marcotte TD, Moore DJ, Gonzalez R, Wolfson T, Grant I: Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc. 2004, 10: 1-14.
CAS
PubMed
Google Scholar
Wolschendorf F, Duverger A, Jones J, Wagner FH, Huff J, Benjamin WH, Saag MS, Niederweis M, Kutsch O: Hit-and-run stimulation: a novel concept to reactivate latent HIV-1 infection without cytokine gene induction. J Virol. 2010, 84: 8712-8720.
PubMed Central
CAS
PubMed
Google Scholar
Fernandez G, Zaikos TD, Khan SZ, Jacobi AM, Behlke MA, Zeichner SL: Targeting IkappaB proteins for HIV latency activation: the role of individual IkappaB and NF-kappaB proteins. J Virol. 2013, 87: 3966-3978.
PubMed Central
CAS
PubMed
Google Scholar
Hoffmann A, Natoli G, Ghosh G: Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 2006, 25: 6706-6716.
CAS
PubMed
Google Scholar
Baltathakis I, Alcantara O, Boldt DH: Expression of different NF-kappaB pathway genes in dendritic cells (DCs) or macrophages assessed by gene expression profiling. J Cell Biochem. 2001, 83: 281-290.
CAS
PubMed
Google Scholar
Memet S, Laouini D, Epinat JC, Whiteside ST, Goudeau B, Philpott D, Kayal S, Sansonetti PJ, Berche P, Kanellopoulos J, Israel A: IkappaBepsilon-deficient mice: reduction of one T cell precursor subspecies and enhanced Ig isotype switching and cytokine synthesis. J Immunol. 1999, 163: 5994-6005.
CAS
PubMed
Google Scholar
Gallastegui E, Marshall B, Vidal D, Sanchez-Duffhues G, Collado JA, Alvarez-Fernandez C, Luque N, Terme JM, Gatell JM, Sanchez-Palomino S, et al: Combination of biological screening in a cellular model of viral latency and virtual screening identifies novel compounds that reactivate HIV-1. J Virol. 2012, 86: 3795-3808.
PubMed Central
CAS
PubMed
Google Scholar
Wolschendorf F, Bosque A, Shishido T, Duverger A, Jones J, Planelles V, Kutsch O: Kinase control prevents HIV-1 reactivation in spite of high levels of induced NF-kappaB activity. J Virol. 2012, 86: 4548-4558.
PubMed Central
CAS
PubMed
Google Scholar
Barton K, Margolis D: Selective targeting of the repressive transcription factors YY1 and cMyc to disrupt quiescent human immunodeficiency viruses. AIDS Res Hum Retroviruses. 2012, 29: 289-98.
PubMed
Google Scholar
Xing S, Bullen CK, Shroff NS, Shan L, Yang HC, Manucci JL, Bhat S, Zhang H, Margolick JB, Quinn TC, et al: Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J Virol. 2011, 85: 6060-6064.
PubMed Central
CAS
PubMed
Google Scholar
Doyon G, Zerbato J, Mellors JW, Sluis-Cremer N: Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog (PTEN). AIDS. 2012, 27: 7-11.
Google Scholar
Carroll-Anzinger D, Kumar A, Adarichev V, Kashanchi F, Al-Harthi L: Human immunodeficiency virus-restricted replication in astrocytes and the ability of gamma interferon to modulate this restriction are regulated by a downstream effector of the Wnt signaling pathway. J Virol. 2007, 81: 5864-5871.
PubMed Central
CAS
PubMed
Google Scholar
Narasipura SD, Henderson LJ, Fu SW, Chen L, Kashanchi F, Al-Harthi L: Role of beta-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes. J Virol. 2012, 86: 1911-1921.
PubMed Central
CAS
PubMed
Google Scholar
Rossi A, Mukerjee R, Ferrante P, Khalili K, Amini S, Sawaya BE: Human immunodeficiency virus type 1 Tat prevents dephosphorylation of Sp1 by TCF-4 in astrocytes. J Gen Virol. 2006, 87: 1613-1623.
CAS
PubMed
Google Scholar
Wortman B, Darbinian N, Sawaya BE, Khalili K, Amini S: Evidence for regulation of long terminal repeat transcription by Wnt transcription factor TCF-4 in human astrocytic cells. J Virol. 2002, 76: 11159-11165.
PubMed Central
CAS
PubMed
Google Scholar
Kumar A, Zloza A, Moon RT, Watts J, Tenorio AR, Al-Harthi L: Active beta-catenin signaling is an inhibitory pathway for human immunodeficiency virus replication in peripheral blood mononuclear cells. J Virol. 2008, 82: 2813-2820.
PubMed Central
CAS
PubMed
Google Scholar
Li W, Henderson LJ, Major EO, Al-Harthi L: IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway (DKK1) in a STAT 3-dependent manner. J Immunol. 2011, 186: 6771-6778.
PubMed Central
CAS
PubMed
Google Scholar
Henderson LJ, Narasipura SD, Adarichev V, Kashanchi F, Al-Harthi L: Identification of novel T cell factor 4 (TCF-4) binding sites on the HIV long terminal repeat which associate with TCF-4, beta-catenin, and SMAR1 to repress HIV transcription. J Virol. 2012, 86: 9495-9503.
PubMed Central
CAS
PubMed
Google Scholar
Selliah N, Zhang M, DeSimone D, Kim H, Brunner M, Ittenbach RF, Rui H, Cron RQ, Finkel TH: The gammac-cytokine regulated transcription factor, STAT5, increases HIV-1 production in primary CD4 T cells. Virology. 2006, 344: 283-291.
CAS
PubMed
Google Scholar
Shuai K, Liu B: Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003, 3: 900-911.
CAS
PubMed
Google Scholar
Bovolenta C, Camorali L, Lorini AL, Ghezzi S, Vicenzi E, Lazzarin A, Poli G: Constitutive activation of STATs upon in vivo human immunodeficiency virus infection. Blood. 1999, 94: 4202-4209.
CAS
PubMed
Google Scholar
Crotti A, Lusic M, Lupo R, Lievens PM, Liboi E, Della Chiara G, Tinelli M, Lazzarin A, Patterson BK, Giacca M, et al: Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood. 2007, 109: 5380-5389.
CAS
PubMed
Google Scholar
Della Chiara G, Crotti A, Liboi E, Giacca M, Poli G, Lusic M: Negative regulation of HIV-1 transcription by a heterodimeric NF-kappaB1/p50 and C-terminally truncated STAT5 complex. J Mol Biol. 2011, 410: 933-943.
CAS
PubMed
Google Scholar
Bouazzaoui A, Kreutz M, Eisert V, Dinauer N, Heinzelmann A, Hallenberger S, Strayle J, Walker R, Rubsamen-Waigmann H, Andreesen R, von Briesen H: Stimulated trans-acting factor of 50 kDa (Staf50) inhibits HIV-1 replication in human monocyte-derived macrophages. Virology. 2006, 356: 79-94.
CAS
PubMed
Google Scholar
Koppensteiner H, Brack-Werner R, Schindler M: Macrophages and their relevance in Human Immunodeficiency Virus Type I infection. Retrovirology. 2012, 9: 82-
PubMed Central
CAS
PubMed
Google Scholar
Le Douce V, Herbein G, Rohr O, Schwartz C: Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology. 2010, 7: 32-
PubMed Central
PubMed
Google Scholar
Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC: Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature. 2005, 435: 108-114.
CAS
PubMed
Google Scholar
Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK: Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology. 2007, 360: 247-256.
CAS
PubMed
Google Scholar
Mangeat B, Turelli P, Liao S, Trono D: A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem. 2004, 279: 14481-14483.
CAS
PubMed
Google Scholar
Nisole S, Stoye JP, Saib A: TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol. 2005, 3: 799-808.
CAS
PubMed
Google Scholar
Marcello A, Ferrari A, Pellegrini V, Pegoraro G, Lusic M, Beltram F, Giacca M: Recruitment of human cyclin T1 to nuclear bodies through direct interaction with the PML protein. EMBO J. 2003, 22: 2156-2166.
PubMed Central
CAS
PubMed
Google Scholar
Kajaste-Rudnitski A, Marelli SS, Pultrone C, Pertel T, Uchil PD, Mechti N, Mothes W, Poli G, Luban J, Vicenzi E: TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-kappaB-responsive long terminal repeat elements. J Virol. 2011, 85: 5183-5196.
PubMed Central
CAS
PubMed
Google Scholar
Allouch A, Di Primio C, Alpi E, Lusic M, Arosio D, Giacca M, Cereseto A: The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe. 2011, 9: 484-495.
CAS
PubMed
Google Scholar
Nishitsuji H, Abe M, Sawada R, Takaku H: ZBRK1 represses HIV-1 LTR-mediated transcription. FEBS Lett. 2012, 586: 3562-3568.
CAS
PubMed
Google Scholar
Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature. 2011, 474: 658-661.
PubMed Central
CAS
PubMed
Google Scholar
Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011, 474: 654-657.
PubMed Central
CAS
PubMed
Google Scholar
Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, et al: HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 2011, 480: 379-382.
CAS
PubMed
Google Scholar
Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, et al: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. 2012, 13: 223-228.
PubMed Central
CAS
PubMed
Google Scholar
Kim B, Nguyen LA, Daddacha W, Hollenbaugh JA: Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J Biol Chem. 2012, 287: 21570-21574.