Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med. 2012;2: a006916.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stoltzfus C. Regulation of HIV-1 alternative RNA splicing and its role in virus replication. Adv Virus Res. 2009;74:1–40.
Article
CAS
PubMed
Google Scholar
Ocwieja KE, Sherrill-Mix S, Mukherjee R, Custers-Allen R, David P, Brown M, Wang S, Link DR, Olson J, Travers K, et al. Dynamic regulation of HIV-1 mRNA populations analyzed by single-molecule enrichment and long-read sequencing. Nucleic Acids Res. 2012;40:10345–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emery A, Zhou S, Pollom E, Swanstrom R. Characterizing HIV-1 splicing by using next-generation sequencing. J Virol. 2017;91:e02515–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahiet C, Swanson CM. Control of HIV-1 gene expression by SR proteins. Biochem Soc Trans. 2016;44:1417–25.
Article
CAS
PubMed
Google Scholar
Sertznig H, Hillebrand F, Erkelenz S, Schaal H, Widera M. Behind the scenes of HIV-1 replication: alternative splicing as the dependency factor on the quiet. Virology. 2018;516:176–88.
Article
CAS
PubMed
Google Scholar
Sarracino A, Marcello A. The relevance of post-transcriptional mechanisms in HIV latency reversal. Curr Pharm Des. 2017;23:4103–11.
Article
CAS
PubMed
Google Scholar
Balachandran A, Ming L, Cochrane A. Teetering on the edge: the critical role of RNA processing control during HIV-1 replication. In: Parent L, editor. Retrovirus-cell interactions. Cambridge: Academic Press; 2018. p. 229–57.
Chapter
Google Scholar
Bai Y, Lee D, Yu T, Chasin LA. Control of 3′ splice site choice in vivo by ASF/SF2 and hnRNP A1. Nucleic Acids Res. 1999;27:1126–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jean-Philippe J, Paz S, Caputi M. hnRNP A1: the Swiss army knife of gene expression. Int J Mol Sci. 2013;14:18999–9024.
Article
PubMed
PubMed Central
CAS
Google Scholar
Okunola HL, Krainer AR. Cooperative-binding and splicing-repressive properties of hnRNP A1. Mol Cell Biol. 2009;29:5620–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gui JF, Lane WS, Fu XD. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature. 1994;369:678–82.
Article
CAS
PubMed
Google Scholar
Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J. 2009;417:15–27.
Article
CAS
PubMed
Google Scholar
Sanford JR, Ellis J, Caceres JF. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans. 2005;33:443–6.
Article
CAS
PubMed
Google Scholar
van Der Houven Van Oordt W, Newton K, Screaton GR, Caceres JF. Role of SR protein modular domains in alternative splicing specificity in vivo. Nucleic Acids Res. 2000;28:4822–31.
Article
PubMed Central
Google Scholar
Xiao SH, Manley JL. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 1997;11:334–44.
Article
CAS
PubMed
Google Scholar
Yeakley JM, Tronchere H, Olesen J, Dyck JA, Wang HY, Fu XD. Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J Cell Biol. 1999;145:447–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zahler AM, Lane WS, Stolk JA, Roth MB. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 1992;6:837–47.
Article
CAS
PubMed
Google Scholar
Zhou Z, Fu XD. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma. 2013;122:191–207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valcarcel J, Green MR. The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends Biochem Sci. 1996;21:296–301.
Article
CAS
PubMed
Google Scholar
Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe. 2008;4:495–504.
Article
CAS
PubMed
Google Scholar
Swanson CM, Sherer NM, Malim MH. SRp40 and SRp55 promote the translation of unspliced human immunodeficiency virus type 1 RNA. J Virol. 2010;84:6748–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jablonski JA, Caputi M. Role of cellular RNA processing factors in human immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity. J Virol. 2009;83:981–92.
Article
CAS
PubMed
Google Scholar
Jacquenet S, Decimo D, Muriaux D, Darlix JL. Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production. Retrovirology. 2005;2:33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tazi J, Bakkour N, Marchand V, Ayadi L, Aboufirassi A, Branlant C. Alternative splicing: regulation of HIV-1 multiplication as a target for therapeutic action. FEBS J. 2010;277:867–76.
Article
CAS
PubMed
Google Scholar
Lin S, Xiao R, Sun P, Xu X, Fu XD. Dephosphorylation-dependent sorting of SR splicing factors during mRNP maturation. Mol Cell. 2005;20:413–25.
Article
CAS
PubMed
Google Scholar
Lai MC, Lin RI, Tarn WY. Differential effects of hyperphosphorylation on splicing factor SRp55. Biochem J. 2003;371:937–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan PI, Stojdl DF, Marius RM, Bell JC. In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. Mol Cell Biol. 1997;17:5996–6001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prasad J, Colwill K, Pawson T, Manley JL. The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol Cell Biol. 1999;19:6991–7000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamm S. Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem. 2008;283:1223–7.
Article
CAS
PubMed
Google Scholar
Czubaty A, Piekielko-Witkowska A. Protein kinases that phosphorylate splicing factors: roles in cancer development, progression and possible therapeutic options. Int J Biochem Cell Biol. 2017;91:102–15.
Article
CAS
PubMed
Google Scholar
Bullock AN, Das S, Debreczeni JE, Rellos P, Fedorov O, Niesen FH, Guo K, Papagrigoriou E, Amos AL, Cho S, et al. Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation. Structure. 2009;17:352–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ngo JC, Chakrabarti S, Ding JH, Velazquez-Dones A, Nolen B, Aubol BE, Adams JA, Fu XD, Ghosh G. Interplay between SRPK and Clk/Sty kinases in phosphorylation of the splicing factor ASF/SF2 is regulated by a docking motif in ASF/SF2. Mol Cell. 2005;20:77–89.
Article
CAS
PubMed
Google Scholar
Rabinow L. CLK. In: Choi S, editor. Enclyopedia of signaling molecules. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-67199-4.
Chapter
Google Scholar
Shkreta L, Blanchette M, Toutant J, Wilhelm E, Bell B, Story BA, Balachandran A, Cochrane A, Cheung PK, Harrigan PR, et al. Modulation of the splicing regulatory function of SRSF10 by a novel compound that impairs HIV-1 replication. Nucleic Acids Res. 2017;45:4051–67.
Article
CAS
PubMed
Google Scholar
Wong R, Balachandran A, Mao AY, Dobson W, Gray-Owen S, Cochrane A. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy. Retrovirology. 2011;8:47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong RW, Balachandran A, Ostrowski MA, Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog. 2013;9: e1003241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muraki M, Ohkawara B, Hosoya T, Onogi H, Koizumi J, Koizumi T, Sumi K, Yomoda J, Murray MV, Kimura H, et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem. 2004;279:24246–54.
Article
CAS
PubMed
Google Scholar
Younis I, Berg M, Kaida D, Dittmar K, Wang C, Dreyfuss G. Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol Cell Biol. 2010;30:1718–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong RW, Balachandran A, Haaland M, Stoilov P, Cochrane A. Characterization of novel inhibitors of HIV-1 replication that function via alteration of viral RNA processing and rev function. Nucleic Acids Res. 2013;41:9471–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campos N, Myburgh R, Garcel A, Vautrin A, Lapasset L, Nadal ES, Mahuteau-Betzer F, Najman R, Fornarelli P, Tantale K, et al. Long lasting control of viral rebound with a new drug ABX464 targeting Rev-mediated viral RNA biogenesis. Retrovirology. 2015;12:30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Balachandran A, Wong R, Stoilov P, Pan S, Blencowe B, Cheung P, Harrigan PR, Cochrane A. Identification of small molecule modulators of HIV-1 Tat and Rev protein accumulation. Retrovirology. 2017;14:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wong RW, Balachandran A, Cheung PK, Cheng R, Pan Q, Stoilov P, Harrigan PR, Blencowe BJ, Branch DR, Cochrane A. An activator of G protein-coupled receptor and MEK1/2-ERK1/2 signaling inhibits HIV-1 replication by altering viral RNA processing. PLoS Pathog. 2020;16: e1008307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson ES, Lin CH, Xiao X, Stoilov P, Burge CB, Black DL. The cardiotonic steroid digitoxin regulates alternative splicing through depletion of the splicing factors SRSF3 and TRA2B. RNA. 2012;18:1041–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Vink M, Berkhout B, Das AT. Modification of the Tet-On regulatory system prevents the conditional-live HIV-1 variant from losing doxycycline-control. Retrovirology. 2006;3:82.
Article
PubMed
PubMed Central
Google Scholar
Zhou X, Vink M, Klaver B, Verhoef K, Marzio G, Das AT, Berkhout B. The genetic stability of a conditional live HIV-1 variant can be improved by mutations in the Tet-On regulatory system that restrain evolution. J Biol Chem. 2006;281:17084–91.
Article
CAS
PubMed
Google Scholar
Mousseau G, Valente ST. Role of host factors on the regulation of Tat-mediated HIV-1 transcription. Curr Pharm Des. 2017;23:4079–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK, Vu M, Lampiris H, Wong JK. HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci Transl Med. 2018;10: eaap9927.
Article
PubMed
PubMed Central
CAS
Google Scholar
Telwatte S, Moron-Lopez S, Aran D, Kim P, Hsieh C, Joshi S, Montano M, Greene WC, Butte AJ, Wong JK, Yukl SA. Heterogeneity in HIV and cellular transcription profiles in cell line models of latent and productive infection: implications for HIV latency. Retrovirology. 2019;16:32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaiser P, Joshi SK, Kim P, Li P, Liu H, Rice AP, Wong JK, Yukl SA. Assays for precise quantification of total (including short) and elongated HIV-1 transcripts. J Virol Methods. 2017;242:1–8.
Article
CAS
PubMed
Google Scholar
Williams SA, Chen LF, Kwon H, Fenard D, Bisgrove D, Verdin E, Greene WC. Prostratin antagonizes HIV latency by activating NF-kappaB. J Biol Chem. 2004;279:42008–17.
Article
CAS
PubMed
Google Scholar
Howard JM, Sanford JR. The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip Rev RNA. 2015;6:93–110.
Article
CAS
PubMed
Google Scholar
Elkins JM, Fedele V, Szklarz M, Abdul Azeez KR, Salah E, Mikolajczyk J, Romanov S, Sepetov N, Huang XP, Roth BL, et al. Comprehensive characterization of the published kinase inhibitor set. Nat Biotechnol. 2016;34:95–103.
Article
CAS
PubMed
Google Scholar
Balachandran A, Cochrane A. Screening for small molecule inhibitors of HIV-1 Gag expression. Methods. 2017;126:201–8.
Article
CAS
PubMed
Google Scholar
Drewry DH, Willson TM, Zuercher WJ. Seeding collaborations to advance kinase science with the GSK published kinase inhibitor set (PKIS). Curr Top Med Chem. 2014;14:340–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 2003;22:1868–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell GR, To RK, Spector SA. TREM-1 protects HIV-1-infected macrophages from apoptosis through maintenance of mitochondrial function. MBio. 2019;10: e02638-19.
Article
PubMed
PubMed Central
Google Scholar
Yuan Z, Fan X, Staitieh B, Bedi C, Spearman P, Guidot DM, Sadikot RT. HIV-related proteins prolong macrophage survival through induction of triggering receptor expressed on myeloid cells-1. Sci Rep. 2017;7:42028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swingler S, Mann AM, Zhou J, Swingler C, Stevenson M. Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein. PLoS Pathog. 2007;3:1281–90.
Article
CAS
PubMed
Google Scholar
Castellano P, Prevedel L, Eugenin EA. HIV-infected macrophages and microglia that survive acute infection become viral reservoirs by a mechanism involving Bim. Sci Rep. 2017;7:12866.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reynoso R, Wieser M, Ojeda D, Bonisch M, Kuhnel H, Bolcic F, Quendler H, Grillari J, Grillari-Voglauer R, Quarleri J. HIV-1 induces telomerase activity in monocyte-derived macrophages, possibly safeguarding one of its reservoirs. J Virol. 2012;86:10327–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colwill K, Pawson T, Andrews B, Prasad J, Manley JL, Bell JC, Duncan PI. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 1996;15:265–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan PI, Stojdl DF, Marius RM, Scheit KH, Bell JC. The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing. Exp Cell Res. 1998;241:300–8.
Article
CAS
PubMed
Google Scholar
Antiretroviral Therapy Cohort C. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008;372:293–9.
Article
Google Scholar
Cihlar T, Fordyce M. Current status and prospects of HIV treatment. Curr Opin Virol. 2016;18:50–6.
Article
CAS
PubMed
Google Scholar
Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med. 2012;2: a007161.
Article
PubMed
PubMed Central
CAS
Google Scholar
Margolis AM, Heverling H, Pham PA, Stolbach A. A review of the toxicity of HIV medications. J Med Toxicol. 2014;10:26–39.
Article
CAS
PubMed
Google Scholar
Wong JK, Yukl SA. Tissue reservoirs of HIV. Curr Opin HIV AIDS. 2016;11:362–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yukl SA, Shergill AK, Ho T, Killian M, Girling V, Epling L, Li P, Wong LK, Crouch P, Deeks SG, et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence. J Infect Dis. 2013;208:1212–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yukl SA, Shergill AK, McQuaid K, Gianella S, Lampiris H, Hare CB, Pandori M, Sinclair E, Gunthard HF, Fischer M, et al. Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS. 2010;24:2451–60.
Article
CAS
PubMed
Google Scholar
Belmonte L, Olmos M, Fanin A, Parodi C, Bare P, Concetti H, Perez H, de Bracco MM, Cahn P. The intestinal mucosa as a reservoir of HIV-1 infection after successful HAART. AIDS. 2007;21:2106–8.
Article
PubMed
Google Scholar
Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV infection. Immunity. 2013;39:633–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Currier JS, Lundgren JD, Carr A, Klein D, Sabin CA, Sax PE, Schouten JT, Smieja M, Working G. Epidemiological evidence for cardiovascular disease in HIV-infected patients and relationship to highly active antiretroviral therapy. Circulation. 2008;118:e29-35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S, Solomon T. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol. 2014;13:1139–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joshi D, O’Grady J, Dieterich D, Gazzard B, Agarwal K. Increasing burden of liver disease in patients with HIV infection. Lancet. 2011;377:1198–209.
Article
PubMed
Google Scholar
Dubrow R, Silverberg MJ, Park LS, Crothers K, Justice AC. HIV infection, aging, and immune function: implications for cancer risk and prevention. Curr Opin Oncol. 2012;24:506–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, Berti A, Rossi E, Roverato A, Palella F. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis. 2011;53:1120–6.
Article
PubMed
Google Scholar
Hsu DC, Sereti I, Ananworanich J. Serious non-AIDS events: Immunopathogenesis and interventional strategies. AIDS Res Ther. 2013;10:29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hileman CO, Funderburg NT. Inflammation, immune activation, and antiretroviral therapy in HIV. Curr HIV/AIDS Rep. 2017;14:93–100.
Article
PubMed
PubMed Central
Google Scholar
McCarthy SDS, Leontyev D, Nicoletti P, Binnington B, Kozlowski HN, Ostrowski M, Cochrane A, Branch DR, Wong RW. Targeting ABL1 or ARG tyrosine kinases to restrict HIV-1 infection in primary CD4+ T-cells or in humanized NSG mice. J Acquir Immune Defic Syndr. 2019;82:407–15.
Article
CAS
PubMed
Google Scholar
Lund N, Milev MP, Wong R, Sanmuganantham T, Woolaway K, Chabot B, Abou Elela S, Mouland AJ, Cochrane A. Differential effects of hnRNP D/AUF1 isoforms on HIV-1 gene expression. Nucleic Acids Res. 2012;40:3663–75.
Article
CAS
PubMed
Google Scholar
Kutluay SB, Emery A, Penumutchu SR, Townsend D, Tenneti K, Madison MK, Stukenbroeker AM, Powell C, Jannain D, Tolbert BS, et al. Genome-wide analysis of heterogeneous nuclear ribonucleoprotein (hnRNP) binding to HIV-1 RNA reveals a key role for hnRNP H1 in alternative viral mRNA splicing. J Virol. 2019;93: e01048-19.
Article
PubMed
PubMed Central
Google Scholar
Yeh YJ, Jenike KM, Calvi RM, Chiarella J, Hoh R, Deeks SG, Ho YC. Filgotinib suppresses HIV-1-driven gene transcription by inhibiting HIV-1 splicing and T cell activation. J Clin Invest. 2020;130:4969–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahal S, Cheng R, Cheung PK, Been T, Malty R, Geng M, Manianis S, Shkreta L, Jahanshahi S, Toutant J, et al. The thiazole-5-carboxamide GPS491 inhibits HIV-1, adenovirus, and coronavirus replication by altering RNA processing/accumulation. Viruses. 2021;14:60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zamiri M, Cheung PK, Brockman MA, Brumme ZL, Chabot B, Cochrane A, Grierson DS. 2-Trifluoromethylthiazole-5-carboxamides: analogues of a stilbene-based anti-HIV agent that impact HIV mRNA processing. ACS Med Chem Lett. 2021;12:1818–23.
Article
CAS
PubMed
Google Scholar
Wang P, Zhou Z, Hu A, Ponte de Albuquerque C, Zhou Y, Hong L, Sierecki E, Ajiro M, Kruhlak M, Harris C, et al. Both decreased and increased SRPK1 levels promote cancer by interfering with PHLPP-mediated dephosphorylation of Akt. Mol Cell. 2014;54:378–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erkelenz S, Hillebrand F, Widera M, Theiss S, Fayyaz A, Degrandi D, Pfeffer K, Schaal H. Balanced splicing at the Tat-specific HIV-1 3′ss A3 is critical for HIV-1 replication. Retrovirology. 2015;12:29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Caputi M, Freund M, Kammler S, Asang C, Schaal H. A bidirectional SF2/ASF- and SRp40-dependent splicing enhancer regulates human immunodeficiency virus type 1 rev, env, vpu, and nef gene expression. J Virol. 2004;78:6517–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Platt C, Calimano M, Nemet J, Bubenik J, Cochrane A. Differential effects of Tra2ss isoforms on HIV-1 RNA processing and expression. PLoS ONE. 2015;10: e0125315.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tranell A, Fenyo EM, Schwartz S. Serine- and arginine-rich proteins 55 and 75 (SRp55 and SRp75) induce production of HIV-1 vpr mRNA by inhibiting the 5′-splice site of exon 3. J Biol Chem. 2010;285:31537–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tranell A, Tingsborg S, Fenyo EM, Schwartz S. Inhibition of splicing by serine–arginine rich protein 55 (SRp55) causes the appearance of partially spliced HIV-1 mRNAs in the cytoplasm. Virus Res. 2011;157:82–91.
Article
CAS
PubMed
Google Scholar
Fukuhara T, Hosoya T, Shimizu S, Sumi K, Oshiro T, Yoshinaka Y, Suzuki M, Yamamoto N, Herzenberg LA, Hagiwara M. Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc Natl Acad Sci USA. 2006;103:11329–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uzor S, Zorzou P, Bowler E, Porazinski S, Wilson I, Ladomery M. Autoregulation of the human splice factor kinase CLK1 through exon skipping and intron retention. Gene. 2018;670:46–54.
Article
CAS
PubMed
Google Scholar
Ninomiya K, Kataoka N, Hagiwara M. Stress-responsive maturation of Clk1/4 pre-mRNAs promotes phosphorylation of SR splicing factor. J Cell Biol. 2011;195:27–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Gattoni R, Stevenin J, Steitz JA. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell. 2003;11:837–43.
Article
CAS
PubMed
Google Scholar
Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84:291–323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maciolek NL, McNally MT. Serine/arginine-rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus. J Virol. 2007;81:11208–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J. 2011;278:570–86.
Article
CAS
PubMed
Google Scholar
Huang TS, Nilsson CE, Punga T, Akusjarvi G. Functional inactivation of the SR family of splicing factors during a vaccinia virus infection. EMBO Rep. 2002;3:1088–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mueller N, Berkhout B, Das AT. HIV-1 splicing is controlled by local RNA structure and binding of splicing regulatory proteins at the major 5′ splice site. J Gen Virol. 2015;96:1906–17.
Article
CAS
PubMed
Google Scholar
Varjosalo M, Keskitalo S, Van Drogen A, Nurkkala H, Vichalkovski A, Aebersold R, Gstaiger M. The protein interaction landscape of the human CMGC kinase group. Cell Rep. 2013;3:1306–20.
Article
CAS
PubMed
Google Scholar
Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier JK, et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell. 2006;124:1283–98.
Article
CAS
PubMed
Google Scholar
Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272:263–7.
Article
CAS
PubMed
Google Scholar
Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol. 1997;15:871–5.
Article
CAS
PubMed
Google Scholar
Clayton KL, Collins DR, Lengieza J, Ghebremichael M, Dotiwala F, Lieberman J, Walker BD. Resistance of HIV-infected macrophages to CD8(+) T lymphocyte-mediated killing drives activation of the immune system. Nat Immunol. 2018;19:475–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rivero-Gutierrez B, Anzola A, Martinez-Augustin O, de Medina FS. Stain-free detection as loading control alternative to Ponceau and housekeeping protein immunodetection in Western blotting. Anal Biochem. 2014;467:1–3.
Article
CAS
PubMed
Google Scholar
Purcell D, Martin MA. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993;67:6365–78.
Article
CAS
PubMed
PubMed Central
Google Scholar