Trobridge GD, Kiem HP. Large animal models of hematopoietic stem cell gene therapy. Gene Ther. 2010;17(8):939–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evans DT, Silvestri G. Nonhuman primate models in AIDS research. Curr Opin HIV AIDS. 2013;8(4):255–61.
PubMed
PubMed Central
Google Scholar
Harouse JM, Gettie A, Eshetu T, Tan RC, Bohm R, Blanchard J, et al. Mucosal transmission and induction of simian AIDS by CCR5-specific simian/human immunodeficiency virus SHIV(SF162P3). J Virol. 2001;75(4):1990–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishimura Y, Shingai M, Willey R, Sadjadpour R, Lee WR, Brown CR, et al. Generation of the pathogenic R5-tropic simian/human immunodeficiency virus SHIVAD8 by serial passaging in rhesus macaques. J Virol. 2010;84(9):4769–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang HW, Tartaglia LJ, Whitney JB, Lim SY, Sanisetty S, Lavine CL, et al. Generation and evaluation of clade C simian-human immunodeficiency virus challenge stocks. J Virol. 2015;89(4):1965–74.
Article
PubMed
CAS
Google Scholar
Leonova E, Gainetdinov R. CRISPR/Cas9 Technology in Translational Biomedicine. Cell Physiol Biochem. 2020;54(3):354.
Article
CAS
PubMed
Google Scholar
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
Article
PubMed
CAS
Google Scholar
Yeh C, Richardson C, Corn J. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol. 2019;21(12):1468.
Article
CAS
PubMed
Google Scholar
Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, et al. Methodologies for improving HDR efficiency. Front Genet. 2019;9:691.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu M, Zhang W, Xin C, Yin J, Shang Y, Ai C, et al. Global detection of DNA repair outcomes induced by CRISPR-Cas9. Nucleic Acids Res. 2021;49(15):8732.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aida T, Feng GP. The dawn of non-human primate models for neurodevelopmental disorders. Curr Opin Genet Dev. 2020;65:160–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang Y, Zheng B, Shen B, Chen Y, Wang L, Wang J, et al. CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH. Hum Mol Genet. 2015;24(25):7255–64.
Article
CAS
PubMed
Google Scholar
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, et al. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature. 2018;560(7720):661–5.
Article
CAS
PubMed
Google Scholar
Yang W, Li S, Li XJ. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener. 2019;14:17.
Article
PubMed
PubMed Central
Google Scholar
Yang W, Liu Y, Tu Z, Xiao C, Yan S, Ma X, et al. CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res. 2019;29:334–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshimatsu S, Okahara J, Sone T, Takeda Y, Nakamura M, Sasaki E, et al. Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system. Sci Rep. 2019;9(1):1528.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yao X, Liu Z, Wang X, Wang Y, Nie YH, Lai L, et al. Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing. Cell Res. 2018;28(3):379–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui Y, Niu Y, Zhou J, Chen Y, Cheng Y, Li S, et al. Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination. Cell Res. 2018;28:383–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang Y, Chu C, Wang F, Niu YY. CRISPR/Cas9-mediated genome editing in nonhuman primates. Dis Models Mech. 2019;12(10):dmm039982.
Article
CAS
Google Scholar
Schmidt JK, Strelchenko N, Park MA, Kim YH, Mean KD, Schotzko ML, et al. Genome editing of CCR5 by CRISPR-Cas9 in Mauritian cynomolgus macaque embryos. Sci Rep. 2020;10(1):1.
Article
CAS
Google Scholar
Chen Y, Cui Y, Shen B, Niu Y, Zhao X, Wang L, et al. Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys. Cell Res. 2015;25:262–5.
Article
CAS
PubMed
Google Scholar
Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature. 2019;570(7761):326–31.
Article
CAS
PubMed
Google Scholar
Tu Z, Yang W, Yan S, Yin A, Gao J, Liu X, et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep. 2017;7:42081.
Article
CAS
PubMed
PubMed Central
Google Scholar
Midic U, Hung PH, Vincent KA, Goheen B, Schupp PG, Chen DD, et al. Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos. Hum Mol Genet. 2017;26(14):2678–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu Z, Yang W, Yan S, Yin A, Gao J, Liu X, et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep. 2017;7:1.
Article
CAS
Google Scholar
Wan HF, Feng CJ, Teng F, Yang SH, Hu BY, Niu YY, et al. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res. 2015;25(2):258–61.
Article
CAS
PubMed
Google Scholar
Zuo E, Cai Y, Li K, Wei Y, Wang B, Sun Y, et al. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res. 2017;27(7):933.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsukiyama T, Kobayashi K, Nakaya M, Iwatani C, Seita Y, Tsuchiya H, et al. Monkeys mutant for PKD1 recapitulate human autosomal dominant polycystic kidney disease. Nat Commun. 2019;10(1):1.
Article
CAS
Google Scholar
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836–43.
Article
CAS
PubMed
Google Scholar
Chen Y, Zheng Y, Kang Y, Yang W, Niu Y, Guo X, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet. 2015;24(13):3764–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548(7668):413.
Article
CAS
PubMed
Google Scholar
Zuccaro MV, Xu J, Mitchell C, Marin D, Zimmerman R, Rana B, et al. Allele-specific chromosome removal after cas9 cleavage in human embryos. Cell. 2020;183(6):1650.
Article
CAS
PubMed
Google Scholar
Zhao H, Tu Z, Xu H, Yan S, Yan H, Zheng Y, et al. Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate. Cell Res. 2017;27:1293–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adikusuma F, Piltz S, Corbett MA, Turvey M, McColl SR, Helbig KJ, Beard MR, Hughes J, et al. Large deletions induced by Cas9 cleavage. Nature. 2018;560(7717):E8.
Article
CAS
PubMed
Google Scholar
Alanis-Lobato G, Zohren J, McCarthy A, Fogarty N, Kubikova N, Hardman E, et al. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Proc Natl Acad Sci USA. 2021;118(22): e2004832117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma M, Ye A, Zheng W, Kong L. A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Res Int. 2013. https://doi.org/10.1155/2013/270805.
Article
PubMed
PubMed Central
Google Scholar
Liu R, Paxton W, Choe S, Ceradini D, Martin S, Horuk R, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86(3):367.
Article
CAS
PubMed
Google Scholar
Wang C, Cannon P. Clinical applications of genome editing to HIV cure. AIDS Patient Care STDs. 2016;30(12):539.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeballos MA, Gaj T. Next-generation CRISPR technologies and their applications in gene and cell therapy. Trends Biotechnol. 2020;S0167–7799(20):30287.
Google Scholar
Zhang WH, Aida T, del Rosario RCH, Wilde JJ, Ding CH, Zhang XH, et al. Multiplex precise base editing in cynomolgus monkeys. Nat Commun. 2020;11(1):1.
CAS
Google Scholar
Wang F, Zhang WQ, Yang QY, Kang Y, Fan YL, Wei JK, et al. Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing. Protein Cell. 2020;11(11):809–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M. Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry. 1996;35(11):3362–7.
Article
CAS
PubMed
Google Scholar
Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272(5270):1955–8.
Article
CAS
PubMed
Google Scholar
Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85(7):1135–48.
Article
CAS
PubMed
Google Scholar
Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381(6584):661–6.
Article
CAS
PubMed
Google Scholar
Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):667–73.
Article
CAS
PubMed
Google Scholar
Arendt V, Amand M, Iserentant G, Lemaire M, Masquelier C, Ndayisaba GF, et al. Predominance of the heterozygous CCR5 delta-24 deletion in African individuals resistant to HIV infection might be related to a defect in CCR5 addressing at the cell surface. J Int AIDS Soc. 2019;22(9): e25384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellwanger JH, Kulmann-Leal B, Kaminski VL, Rodrigues AG, Bragatte MAS, Chies JAB. Beyond HIV infection: neglected and varied impacts of CCR5 and CCR5Delta32 on viral diseases. Virus Res. 2020;286: 198040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593):722–5.
Article
CAS
PubMed
Google Scholar
Broder CC, Collman RG. Chemokine receptors and HIV. J Leukoc Biol. 1997;62(1):20–9.
Article
CAS
PubMed
Google Scholar
Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, Multicenter AIDS cohort study, Multicenter hemophilia cohort study, San Francisco city cohort, ALIVE study. Science. 1996;273(5283):1856–62.
Article
CAS
PubMed
Google Scholar
Stephens JC, Reich DE, Goldstein DB, Shin HD, Smith MW, Carrington M, et al. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet. 1998;62(6):1507–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanpain C, Lee B, Tackoen M, Puffer B, Boom A, Libert F, et al. Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood. 2000;96(5):1638–45.
Article
CAS
PubMed
Google Scholar
Folefoc AT, Fromme BJ, Katz AA, Flanagan CA. South African mutations of the CCR5 coreceptor for HIV modify interaction with chemokines and HIV Envelope protein. J Acquir Immune Defic Syndr. 2010;54(4):352–9.
Article
CAS
PubMed
Google Scholar
Bailon L, Mothe B, Berman L, Brander C. Novel approaches towards a functional cure of HIV/AIDS. Drugs. 2020;80(9):859–68.
Article
PubMed
PubMed Central
Google Scholar
Prator CA, Donatelli J, Henrich TJ. From Berlin to London: HIV-1 reservoir reduction following stem cell transplantation. Curr HIV/AIDS Rep. 2020;17(4):385–93.
Article
PubMed
Google Scholar
de Silva E, Stumpf MP. HIV and the CCR5-Delta32 resistance allele. FEMS Microbiol Lett. 2004;241(1):1–12.
Article
PubMed
CAS
Google Scholar
Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011;117(10):2791–9.
Article
CAS
PubMed
Google Scholar
Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Delta32/Delta32 haematopoietic stem-cell transplantation. Nature. 2019;568(7751):244–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta RK, Peppa D, Hill AL, Galvez C, Salgado M, Pace M, et al. Evidence for HIV-1 cure after CCR5Delta32/Delta32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV. 2020;7(5):e340–7.
Article
PubMed
PubMed Central
Google Scholar
Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.
Article
PubMed
Google Scholar
Chen Z, Kwon D, Jin Z, Monard S, Telfer P, Jones MS, et al. Natural infection of a homozygous delta24 CCR5 red-capped mangabey with an R2b-tropic simian immunodeficiency virus. J Exp Med. 1998;188(11):2057–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Telenti A. Safety concerns about CCR5 as an antiviral target. Curr Opin HIV AIDS. 2009;4(2):131–5.
Article
PubMed
Google Scholar
Hubacek JA, Dusek L, Majek O, Adamek V, Cervinkova T, Dlouha D, et al. CCR5Delta32 deletion as a protective factor in Czech first-wave COVID-19 subjects. Physiol Res. 2021;70(1):111–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim JK, Louie CY, Glaser C, Jean C, Johnson B, Johnson H, et al. Genetic deficiency of chemokine receptor CCR5 is a strong risk factor for symptomatic West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemic. J Infect Dis. 2008;197(2):262–5.
Article
PubMed
Google Scholar
Bigham AW, Buckingham KJ, Husain S, Emond MJ, Bofferding KM, Gildersleeve H, et al. Host genetic risk factors for West Nile virus infection and disease progression. PLoS ONE. 2011;6(9): e24745.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA, et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med. 2006;203(1):35–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kindberg E, Mickiene A, Ax C, Akerlind B, Vene S, Lindquist L, et al. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis. 2008;197(2):266–9.
Article
CAS
PubMed
Google Scholar
Mickiene A, Pakalniene J, Nordgren J, Carlsson B, Hagbom M, Svensson L, et al. Polymorphisms in chemokine receptor 5 and Toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS ONE. 2014;9(9): e106798.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bogunia-Kubik K, Duda D, Suchnicki K, Lange A. CCR5 deletion mutation and its association with the risk of developing acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Haematologica. 2006;91(12):1628–34.
CAS
PubMed
Google Scholar
Zhou M, Greenhill S, Huang S, Silva TK, Sano Y, Wu S, et al. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. Elife. 2016;5: e20985.
Article
PubMed
PubMed Central
Google Scholar
Wiseman RW, Wojcechowskyj JA, Greene JM, Blasky AJ, Gopon T, Soma T, et al. Simian immunodeficiency virus SIVmac239 infection of major histocompatibility complex-identical cynomolgus macaques from Mauritius. J Virol. 2007;81(1):349–61.
Article
CAS
PubMed
Google Scholar
Budde ML, Wiseman RW, Karl JA, Hanczaruk B, Simen BB, O’Connor DH. Characterization of Mauritian cynomolgus macaque major histocompatibility complex class I haplotypes by high-resolution pyrosequencing. Immunogenetics. 2010;62(11–12):773–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang H, Minder P, Park MA, Mesquitta WT, Torbett BE, Slukvin II. CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 Virus. Mol Ther Nucleic Acids. 2015;4: e268.
Article
CAS
PubMed
Google Scholar
D’Souza SS, Kumar A, Weinfurter J, Park MA, Maufort J, Tao L, et al. Generation of SIV-resistant T cells and macrophages from nonhuman primate induced pluripotent stem cells with edited CCR5 locus. Stem Cell Rep. 2022;17(4):953–63.
Article
CAS
Google Scholar
Curnow E, Hayes E. In vitro culture of embryos from the Cynomolgus Macaque (Macaca fascicularis). Methods Mol Biol. 2019;2006:321–39.
Article
CAS
PubMed
Google Scholar
Ma Y, Li J, Wang G, Ke Q, Qiu S, Gao L, et al. Efficient production of Cynomolgus monkeys with a toolbox of enhanced assisted reproductive technologies. Sci Rep. 2016;6:1.
CAS
Google Scholar
Wolfgang MJ, Eisele SG, Browne MA, Schotzko ML, Garthwaite MA, Durning M, et al. Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos. Proc Natl Acad Sci U S A. 2001;98(19):10728–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt JK, Strelchenko N, Park MA, Kim YH, Mean KD, Schotzko ML, et al. Genome editing of CCR5 by CRISPR-Cas9 in Mauritian cynomolgus macaque embryos. Sci Rep. 2020;10(1):18457.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8):765–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leibowitz ML, Papathanasiou S, Doerfler P, Blaine L, Sun L, Yao Y, et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nat Genetics. 2021;53(6):895.
Article
CAS
PubMed
Google Scholar
Lee H, Kim J. Unexpected CRISPR on-target effects. Nat Biotechnol. 2018;36(8):703.
Article
CAS
PubMed
Google Scholar
Papathanasiou S, Markoulaki S, Blaine L, Leibowitz M, Zhang C, Jaenisch R, et al. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Nat Commun. 2021;12(1):1.
Article
CAS
Google Scholar
Papas R, Kutteh W. Genetic testing for aneuploidy in patients who have had multiple miscarriages: a review of current literature. Appl Clin Genet. 2021;14:321.
Article
PubMed
PubMed Central
Google Scholar
Wang S, Ren S, Bai R, Xiao P, Zhou Q, Zhou Y, et al. No off-target mutations in functional genome regions of a CRISPR/Cas9-generated monkey model of muscular dystrophy. J Biol Chem. 2018;293(30):11654–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo X, He Y, Zhang C, He X, Yan L, Li M, et al. Trio deep-sequencing does not reveal unexpected off-target and on-target mutations in Cas9-edited rhesus monkeys. Nat Commun. 2019;10(1):1.
Article
CAS
Google Scholar
Qiu PY, Jiang J, Liu Z, Cai YJ, Huang T, Wang Y, et al. BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. Natl Sci Rev. 2019;6(1):87–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Niu YY, Yang SH, He XC, Ji SH, Si W, et al. The available time window for embryo transfer in the Rhesus monkey (Macaca mulatta). Am J Primatol. 2012;74(2):165–73.
Article
PubMed
Google Scholar
Iwamoto Y, Seki Y, Taya K, Tanaka M, Iriguchi S, Miyake Y, et al. Generation of macrophages with altered viral sensitivity from genome-edited rhesus macaque iPSCs to model human disease. Mol Ther Methods Clin Dev. 2021;21:262.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu Z, Zhao H, Li B, Yan S, Wang L, Tang Y, et al. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Hum Mol Genet. 2019;28(4):561–71
Chen Z, Wang J, Kang Y, Yang Q, Gu X, Zhi D, et al. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zoological research. 2021;42(4).