Balazs AB, Chen J, Hong CM, et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2012;481(7379):81–4.
Article
CAS
Google Scholar
Mascola JR, Stiegler G, VanCott TC, et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med. 2000;6(2):207–10.
Article
CAS
PubMed
Google Scholar
Corey L, Gilbert PB, Juraska M, et al. Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition. N Engl J Med. 2021;384(11):1003–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ugolini S, Mondor I, Parren PW, et al. Inhibition of virus attachment to CD4+ target cells is a major mechanism of T cell line-adapted HIV-1 neutralization. J Exp Med. 1997;186(8):1287–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reh L, Magnus C, Schanz M, et al. Capacity of broadly neutralizing antibodies to inhibit HIV-1 cell–cell transmission is strain- and epitope-dependent. PLoS Pathog. 2015;11(7):e1004966.
Article
PubMed
PubMed Central
CAS
Google Scholar
Caskey M, Klein F, Lorenzi JCC, et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature. 2015;522(7557):487–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bournazos S, Klein F, Pietzsch J, et al. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell. 2014;158(6):1243–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asokan M, Dias J, Liu C, et al. Fc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibody. Proc Natl Acad Sci USA. 2020;117(31):18754–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hessell AJ, Hangartner L, Hunter M, et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature. 2007;449(7158):101–4.
Article
CAS
PubMed
Google Scholar
Wang P, Gajjar MR, Yu J, et al. Quantifying the contribution of Fc-mediated effector functions to the antiviral activity of anti-HIV-1 IgG1 antibodies in vivo. Proc Natl Acad Sci USA. 2020;117(30):18002–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parsons MS, Lee WS, Kristensen AB, et al. Fc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaques. J Clin Investig. 2019;129(1):182–91.
Article
PubMed
Google Scholar
Carpenter MC, Ackerman ME. Recent insights into Fc-mediated effector responses to HIV-1. Curr Opin HIV AIDS. 2020;15(5):282–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ackerman ME, Moldt B, Wyatt RT, et al. A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples. J Immunol Methods. 2011;366(1–2):8–19.
Article
CAS
PubMed
Google Scholar
Hezareh M, Hessell AJ, Jensen RC, et al. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J Virol. 2001;75(24):12161–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forthal DN, Gilbert PB, Landucci G, et al. Recombinant gp120 vaccine-induced antibodies inhibit clinical strains of HIV-1 in the presence of Fc receptor-bearing effector cells and correlate inversely with HIV infection rate. J Immunol. 2007;178(10):6596–603.
Article
CAS
PubMed
Google Scholar
Gomez-Roman VR, Florese RH, Patterson LJ, et al. A simplified method for the rapid fluorometric assessment of antibody-dependent cell-mediated cytotoxicity. J Immunol Methods. 2006;308(1–2):53–67.
Article
CAS
PubMed
Google Scholar
Asmal M, Sun Y, Lane S, et al. Antibody-dependent cell-mediated viral inhibition emerges after simian immunodeficiency virus SIVmac251 infection of rhesus monkeys coincident with gp140-binding antibodies and is effective against neutralization-resistant viruses. J Virol. 2011;85(11):5465–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felber BK, Lu Z, Hu X, et al. Co-immunization of DNA and protein in the same anatomical sites induces superior protective immune responses against SHIV challenge. Cell Rep. 2020;31(6):107624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Florese RH, Demberg T, Xiao P, et al. Contribution of nonneutralizing vaccine-elicited antibody activities to improved protective efficacy in rhesus macaques immunized with Tat/Env compared with multigenic vaccines. J Immunol. 2009;182(6):3718–27.
Article
CAS
PubMed
Google Scholar
Hidajat R, Xiao P, Zhou Q, et al. Correlation of vaccine-elicited systemic and mucosal nonneutralizing antibody activities with reduced acute viremia following intrarectal simian immunodeficiency virus SIVmac251 challenge of rhesus macaques. J Virol. 2009;83(2):791–801.
Article
CAS
PubMed
Google Scholar
Ackerman ME, Das J, Pittala S, et al. Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV. Nat Med. 2018;24(10):1590–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Om K, Paquin-Proulx D, Montero M, et al. Adjuvanted HIV-1 vaccine promotes antibody-dependent phagocytic responses and protects against heterologous SHIV challenge. PLoS Pathog. 2020;16(9):e1008764.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barouch DH, Alter G, Broge T, et al. Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys. Science. 2015;349(6245):320–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alter G, Yu WH, Chandrashekar A, et al. Passive transfer of vaccine-elicited antibodies protects against SIV in rhesus macaques. Cell. 2020;183(1):185–96 e14.
Baum LL, Cassutt KJ, Knigge K, et al. HIV-1 gp120-specific antibody-dependent cell-mediated cytotoxicity correlates with rate of disease progression. J Immunol. 1996;157(5):2168–73.
CAS
PubMed
Google Scholar
Ahmad R, Sindhu ST, Toma E, et al. Evidence for a correlation between antibody-dependent cellular cytotoxicity-mediating anti-HIV-1 antibodies and prognostic predictors of HIV infection. J Clin Immunol. 2001;21(3):227–33.
Article
CAS
PubMed
Google Scholar
Forthal DN, Landucci G, Daar ES. Antibody from patients with acute human immunodeficiency virus (HIV) infection inhibits primary strains of HIV type 1 in the presence of natural-killer effector cells. J Virol. 2001;75(15):6953–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stratov I, Chung A, Kent SJ. Robust NK cell-mediated human immunodeficiency virus (HIV)-specific antibody-dependent responses in HIV-infected subjects. J Virol. 2008;82(11):5450–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung AW, Navis M, Isitman G, et al. Activation of NK cells by ADCC antibodies and HIV disease progression. J Acquired Immune Deficiency Syndr. 2011;58(2):127–31.
Article
CAS
Google Scholar
Johansson SE, Rollman E, Chung AW, et al. NK cell function and antibodies mediating ADCC in HIV-1-infected viremic and controller patients. Viral Immunol. 2011;24(5):359–68.
Article
CAS
PubMed
Google Scholar
Wren LH, Chung AW, Isitman G, et al. Specific antibody-dependent cellular cytotoxicity responses associated with slow progression of HIV infection. Immunology. 2013;138(2):116–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambotte O, Ferrari G, Moog C, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. AIDS. 2009;23(8):897–906.
Article
CAS
PubMed
Google Scholar
Lambotte O, Pollara J, Boufassa F, et al. High antibody-dependent cellular cytotoxicity responses are correlated with strong CD8 T cell viral suppressive activity but not with B57 status in HIV-1 elite controllers. PLoS ONE. 2013;8(9):e74855.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forthal DN, Landucci G, Haubrich R, et al. Antibody-dependent cellular cytotoxicity independently predicts survival in severely immunocompromised human immunodeficiency virus-infected patients. J Infect Dis. 1999;180(4):1338–41.
Article
CAS
PubMed
Google Scholar
Ackerman ME, Dugast AS, McAndrew EG, et al. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b. J Virol. 2013;87(10):5468–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ackerman ME, Crispin M, Yu X, et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin Investig. 2013;123(5):2183–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung AW, Isitman G, Navis M, et al. Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure. Proc Natl Acad Sci USA. 2011;108(18):7505–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horwitz JA, Bar-On Y, Lu CL, et al. Non-neutralizing antibodies alter the course of HIV-1 infection in vivo. Cell. 2017;170(4):637–48 e10.
Santra S, Tomaras GD, Warrier R, et al. Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in rhesus macaques. PLoS Pathog. 2015;11(8):e1005042.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haynes BF, Gilbert PB, McElrath MJ, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med. 2012;366(14):1275–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung AW, Ghebremichael M, Robinson H, et al. Polyfunctional Fc-effector profiles mediated by IgG subclass selection distinguish RV144 and VAX003 vaccines. Sci Transl Med. 2014;6(228):228ra38.
Article
PubMed
CAS
Google Scholar
Zolla-Pazner S, deCamp A, Gilbert PB, et al. Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. PLoS ONE. 2014;9(2):e87572.
Article
PubMed
PubMed Central
CAS
Google Scholar
Perez LG, Martinez DR, deCamp AC, et al. V1V2-specific complement activating serum IgG as a correlate of reduced HIV-1 infection risk in RV144. PLoS ONE. 2017;12(7):e0180720.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yates NL, Liao H-X, Fong Y, et al. Vaccine-induced Env V1–V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med 2014;6(228):228ra39-ra39.
Chu TH, Crowley AR, Backes I, et al. Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies. PLoS Pathog. 2020;16(2):e1008083.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neidich SD, Fong Y, Li SS, et al. Antibody Fc effector functions and IgG3 associate with decreased HIV-1 risk. J Clin Investig. 2019;129(11):4838–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis GK, Ackerman ME, Scarlatti G, et al. Knowns and unknowns of assaying antibody-dependent cell-mediated cytotoxicity against HIV-1. Front Immunol. 2019;10:1025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Ferrari G, Alter G, et al. Diversity of antiviral IgG effector activities observed in HIV-infected and vaccinated subjects. J Immunol. 2016;197(12):4603–12.
Article
CAS
PubMed
Google Scholar
Pereyra F, Addo MM, Kaufmann DE, et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis. 2008;197(4):563–71.
Article
PubMed
Google Scholar
Flynn NM, Forthal DN, Harro CD, et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis. 2005;191(5):654–65.
Article
PubMed
Google Scholar
Pollara J, Hart L, Brewer F, et al. High-throughput quantitative analysis of HIV-1 and SIV-specific ADCC-mediating antibody responses. Cytometry Part A J Int Soc Anal Cytol. 2011;79(8):603–12.
Article
CAS
Google Scholar
Pollara J, Bonsignori M, Moody MA, et al. HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities. J Virol. 2014;88(14):7715–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Edmonds TG, Ding H, Yuan X, et al. Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC. Virology. 2010;408(1):1–13.
Article
CAS
PubMed
Google Scholar
Sambor A, Garcia A, Berrong M, et al. Establishment and maintenance of a PBMC repository for functional cellular studies in support of clinical vaccine trials. J Immunol Methods. 2014;409:107–16.
Article
CAS
PubMed
Google Scholar
Lewis GK, Guan Y, Kamin-Lewis R, et al. Epitope target structures of Fc-mediated effector function during HIV-1 acquisition. Curr Opin HIV AIDS. 2014;9(3):263–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan Y, Pazgier M, Sajadi MM, et al. Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding. Proc Natl Acad Sci U S A. 2013;110(1):E69-78.
Article
CAS
PubMed
Google Scholar
Rossio JL, Esser MT, Suryanarayana K, et al. Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol. 1998;72(10):7992–8001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chertova E, Bess JW Jr, Crise BJ, et al. Envelope glycoprotein incorporation, not shedding of surface envelope glycoprotein (gp120/SU), Is the primary determinant of SU content of purified human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol. 2002;76(11):5315–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chertova E, Crise BJ, Morcock DR, et al. Sites, mechanism of action and lack of reversibility of primate lentivirus inactivation by preferential covalent modification of virion internal proteins. Curr Mol Med. 2003;3(3):265–72.
Article
CAS
PubMed
Google Scholar
Forthal DN, Landucci G, Bream J, et al. FcgammaRIIa genotype predicts progression of HIV infection. J Immunol. 2007;179(11):7916–23.
Article
CAS
PubMed
Google Scholar
Gach JS, Bouzin M, Wong MP, et al. Human immunodeficiency virus type-1 (HIV-1) evades antibody-dependent phagocytosis. PLoS Pathog. 2017;13(12):e1006793.
Article
PubMed
PubMed Central
CAS
Google Scholar
Han Q, Bagheri N, Bradshaw EM, et al. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A. 2012;109(5):1607–12.
Article
CAS
PubMed
Google Scholar
Brown EP, Dowell KG, Boesch AW, et al. Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles. J Immunol Methods. 2017;443:33–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warnes GR, Bolker B, Bonebakker L, et al. gplots: various R programming tools for plotting data. 2015.
R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2013.
Konopka T. umap: Uniform Manifold Approximation and Projection. 2020.
McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv. 2020;1802.03426.
Liaw A, Wiener M, Breiman L, et al. RRF: feature selection with regularized random forest. 2018.
Ernst MD. Permutation methods: a basis for exact inference. Stat Sci. 2004;19(4):676–85.
Article
Google Scholar
Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93(3):491–507.
Article
Google Scholar
Ackerman ME, Mikhailova A, Brown EP, et al. Polyfunctional HIV-specific antibody responses are associated with spontaneous HIV control. PLoS Pathog. 2016;12(1):e1005315.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kramski M, Schorcht A, Johnston AP, et al. Role of monocytes in mediating HIV-specific antibody-dependent cellular cytotoxicity. J Immunol Methods. 2012;384(1–2):51–61.
Article
CAS
PubMed
Google Scholar
Pollara J, Orlandi C, Beck C, et al. Application of area scaling analysis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cell-mediated cytotoxicity assay. Cytometry Part A J Int Soc Anal Cytol. 2018;93(4):436–47.
Article
CAS
Google Scholar
French MA, Center RJ, Wilson KM, et al. Isotype-switched immunoglobulin G antibodies to HIV Gag proteins may provide alternative or additional immune responses to “protective” human leukocyte antigen-B alleles in HIV controllers. AIDS. 2013;27(4):519–28.
Article
CAS
PubMed
Google Scholar
Alter G, Dowell KG, Brown EP, et al. High-resolution definition of humoral immune response correlates of effective immunity against HIV. Mol Syst Biol. 2018;14(3):e7881.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pittala S, Bagley K, Schwartz JA, et al. Antibody Fab-Fc properties outperform titer in predictive models of SIV vaccine-induced protection. Mol Syst Biol. 2019;15(5):e8747.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chung AW, Mabuka JM, Ndlovu B, et al. Viral control in chronic HIV-1 subtype C infection is associated with enrichment of p24 IgG1 with Fc effector activity. AIDS. 2018;32(10):1207–17.
Article
CAS
PubMed
Google Scholar
Kazmin D, Nakaya HI, Lee EK, et al. Systems analysis of protective immune responses to RTS, S malaria vaccination in humans. Proc Natl Acad Sci U S A. 2017;114(9):2425–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blaney JE, Marzi A, Willet M, et al. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine. PLoS Pathog. 2013;9(5):e1003389-e.
Article
CAS
Google Scholar
Fox JM, Roy V, Gunn BM, et al. Optimal therapeutic activity of monoclonal antibodies against chikungunya virus requires Fc-FcgammaR interaction on monocytes. Sci Immunol. 2019. https://doi.org/10.1126/sciimmunol.aav5062.
Article
PubMed
PubMed Central
Google Scholar
Li D, He W, Liu X, et al. A potent human neutralizing antibody Fc-dependently reduces established HBV infections. Elife. 2017. https://doi.org/10.7554/eLife.26738.
Article
PubMed
PubMed Central
Google Scholar
Tortorici MA, Beltramello M, Lempp FA, et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science. 2020;370(6519):950–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ilinykh PA, Huang K, Santos RI, et al. Non-neutralizing antibodies from a Marburg infection survivor mediate protection by Fc-effector functions and by enhancing efficacy of other antibodies. Cell Host Microbe. 2020;27(6):976–91 e11.
Winkler ES, Gilchuk P, Yu J, et al. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell. 2021;184(7):1804–20 e16.
Rolland M, Edlefsen PT, Larsen BB, et al. Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature. 2012;490(7420):417–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prentice HA, Tomaras GD, Geraghty DE, et al. HLA class II genes modulate vaccine-induced antibody responses to affect HIV-1 acquisition. Sci Transl Med. 2015;7(296):296ra112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li SS, Gilbert PB, Tomaras GD, et al. FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial. J Clin Investig. 2014;124(9):3879–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lux A, Nimmerjahn F. Impact of differential glycosylation on IgG activity. Adv Exp Med Biol. 2011;780:113–24.
Article
CAS
PubMed
Google Scholar
Strohmeier GR, Brunkhorst BA, Seetoo KF, et al. Neutrophil functional responses depend on immune complex valency. J Leukoc Biol. 1995;58(4):403–14.
Article
CAS
PubMed
Google Scholar
Schroeder HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125(2):S41–52.
Article
PubMed
PubMed Central
Google Scholar
Chung AW, Crispin M, Pritchard L, et al. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function. AIDS. 2014;28(17):2523–30.
Article
CAS
PubMed
Google Scholar
Boesch AW, Osei-Owusu NY, Crowley AR, et al. biophysical and functional characterization of rhesus macaque IgG subclasses. Front Immunol. 2016;7:589.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lai JI, Licht AF, Dugast AS, et al. Divergent antibody subclass and specificity profiles but not protective HLA-B alleles are associated with variable antibody effector function among HIV-1 controllers. J Virol. 2014;88(5):2799–809.
Article
PubMed
PubMed Central
CAS
Google Scholar