Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Für Mikrosk Anat. 1873;9:413–68.
Article
Google Scholar
Nieuwenhuizen RPJ, Lidke KA, Bates M, Puig DL, Grünwald D, Stallinga S, et al. Measuring image resolution in optical nanoscopy. Nat Methods. 2013;10:557–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mak J, de Marco A. Recent advances in retroviruses via cryo-electron microscopy. Retrovirology. 2018;15(1):23.
Article
PubMed
PubMed Central
Google Scholar
Eggeling C, Willig KI, Sahl SJ, Hell SW. Lens-based fluorescence nanoscopy. Q Rev Biophys. 2015;48:178–243.
Article
PubMed
CAS
Google Scholar
Hell SW, Sahl SJ, Bates M, Zhuang X, Heintzmann R, Booth MJ, et al. The 2015 super-resolution microscopy roadmap. J Phys Appl Phys. 2015;48:443001.
Article
CAS
Google Scholar
Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol. 2017;18:685–701.
Article
PubMed
CAS
Google Scholar
Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science. 2017;355:606–12.
Article
PubMed
CAS
Google Scholar
Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc. 2000;198:82–7.
Article
PubMed
CAS
Google Scholar
Müller CB, Enderlein J. Image scanning microscopy. Phys Rev Lett. 2010;104:198101.
Article
PubMed
CAS
Google Scholar
York AG, Parekh SH, Nogare DD, Fischer RS, Temprine K, Mione M, et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods. 2012;9:749–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Korobchevskaya K, Lagerholm B, Colin-York H, Fritzsche M. Exploring the potential of airyscan microscopy for live cell imaging. Photonics. 2017;4:41.
Article
CAS
Google Scholar
De Luca GMR, Breedijk RMP, Brandt RAJ, Zeelenberg CHC, de Jong BE, Timmermans W, et al. Re-scan confocal microscopy: scanning twice for better resolution. Biomed Opt Express. 2013;4:2644.
Article
PubMed
PubMed Central
Google Scholar
Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19:780–2.
Article
PubMed
CAS
Google Scholar
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.
Article
PubMed
Google Scholar
Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91:4258–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed. 2008;47:6172–6.
Article
CAS
Google Scholar
Li D, Shao L, Chen B-C, Zhang X, Zhang M, Moses B, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science. 2015;349:aab3500.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep. 2015;5:15915.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hell SW, Jakobs S, Kastrup L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys Mater Sci Process. 2003;77:859–60.
Article
CAS
Google Scholar
Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature. 2011;478:204–8.
Article
PubMed
CAS
Google Scholar
Hofmann M, Eggeling C, Jakobs S, Hell SW. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci. 2005;102:17565–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods. 2008;5:943–5.
Article
PubMed
CAS
Google Scholar
Sharonov A, Hochstrasser RM. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci. 2006;103:18911–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci. 2009;106:22287–92.
Article
PubMed
PubMed Central
Google Scholar
Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA. 2000;97:8206–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Klar TA, Engel E, Hell SW. Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys Rev E. 2001;64:066613.
Article
CAS
Google Scholar
Westphal V, Hell SW. nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett. 2005;94:143903.
Article
PubMed
CAS
Google Scholar
Harke B, Keller J, Ullal CK, Westphal V, Schönle A, Hell SW. Resolution scaling in STED microscopy. Opt Express. 2008;16:4154.
Article
PubMed
Google Scholar
Osseforth C, Moffitt JR, Schermelleh L, Michaelis J. Simultaneous dual-color 3D STED microscopy. Opt Express. 2014;22:7028.
Article
PubMed
CAS
Google Scholar
Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW. Spherical nanosized focal spot unravels the interior of cells. Nat Methods. 2008;5:539–44.
Article
PubMed
CAS
Google Scholar
Hell SW, Schmidt R, Egner A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nat Photonics. 2009;3:381–7.
Article
CAS
Google Scholar
Bottanelli F, Kromann EB, Allgeyer ES, Erdmann RS, Wood Baguley S, Sirinakis G, et al. Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun. 2016;7:10778.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nagerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T. Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci. 2008;105:18982–7.
Article
PubMed
PubMed Central
Google Scholar
Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science. 2008;320:246–9.
Article
PubMed
CAS
Google Scholar
Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, et al. Sharper low-power STED nanoscopy by time gating. Nat Methods. 2011;8:571–3.
Article
PubMed
CAS
Google Scholar
Staudt T, Engler A, Rittweger E, Harke B, Engelhardt J, Hell SW. Far-field optical nanoscopy with reduced number of state transition cycles. Opt Express. 2011;19:5644.
Article
PubMed
Google Scholar
Heine J, Reuss M, Harke B, D’Este E, Sahl SJ, Hell SW. Adaptive-illumination STED nanoscopy. Proc Natl Acad Sci. 2017;114:9797–802.
Article
PubMed
PubMed Central
CAS
Google Scholar
Andresen M, Wahl MC, Stiel AC, Grater F, Schafer LV, Trowitzsch S, et al. Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci. 2005;102:13070–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Testa I, Urban NT, Jakobs S, Eggeling C, Willig KI, Hell SW. Nanoscopy of living brain slices with low light levels. Neuron. 2012;75:992–1000.
Article
PubMed
CAS
Google Scholar
Lavoie-Cardinal F, Jensen NA, Westphal V, Stiel AC, Chmyrov A, Bierwagen J, et al. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins. ChemPhysChem. 2014;15:655–63.
Article
PubMed
CAS
Google Scholar
Tiwari DK, Arai Y, Yamanaka M, Matsuda T, Agetsuma M, Nakano M, et al. A fast- and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy. Nat Methods. 2015;12:515–8.
Article
PubMed
CAS
Google Scholar
Masullo L, Boden A, Pennacchietti F, Coceano G, Ratz M, Testa I. Enhanced photon collection enables four dimensional fluorescence nanoscopy of living systems. 2018; Available from http://biorxiv.org/lookup/doi/10.1101/248880.
Kwon J, Hwang J, Park J, Han GR, Han KY, Kim SK. RESOLFT nanoscopy with photoswitchable organic fluorophores. Sci Rep. 2016;5:17804.
Article
CAS
Google Scholar
Roubinet B, Bossi ML, Alt P, Leutenegger M, Shojaei H, Schnorrenberg S, et al. Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy. Angew Chem Int Ed. 2016;55:15429–33.
Article
CAS
Google Scholar
Xiong Y, Vargas Jentzsch A, Osterrieth JWM, Sezgin E, Sazanovich IV, Reglinski K, et al. Spironaphthoxazine switchable dyes for biological imaging. Chem Sci. 2018;9:3029–40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods. 2014;11:313–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeld P. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci. 2009;106:8107–12.
Article
PubMed
PubMed Central
Google Scholar
Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods. 2011;8:1027–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
van de Linde S, Endesfelder U, Mukherjee A, Schüttpelz M, Wiebusch G, Wolter S, et al. Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochem Photobiol Sci. 2009;8:465.
Article
PubMed
CAS
Google Scholar
Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci. 2007;104:20308–13.
Article
PubMed
PubMed Central
Google Scholar
Bock H, Geisler C, Wurm CA, von Middendorff C, Jakobs S, Schönle A, et al. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl Phys B. 2007;88:161–5.
Article
CAS
Google Scholar
Bates M, Huang B, Dempsey GT, Zhuang X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science. 2007;317:1749–53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, et al. Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples. Nat Methods. 2008;5:527–9.
Article
PubMed
CAS
Google Scholar
Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci. 2009;106:3125–30.
Article
PubMed
PubMed Central
Google Scholar
Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci. 2009;106:2995–9.
Article
PubMed
PubMed Central
Google Scholar
Durisic N, Laparra-Cuervo L, Sandoval-Álvarez Á, Borbely JS, Lakadamyali M. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods. 2014;11:156–62.
Article
PubMed
CAS
Google Scholar
Jones SA, Shim S-H, He J, Zhuang X. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods. 2011;8:499–505.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang F, Hartwich TMP, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, et al. Video-rate nanoscopy using sCMOS camera–specific single-molecule localization algorithms. Nat Methods. 2013;10:653–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Min J, Vonesch C, Kirshner H, Carlini L, Olivier N, Holden S, et al. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Sci Rep. 2015;4:4577.
Article
CAS
Google Scholar
Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, et al. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods. 2012;9:195–200.
Article
CAS
Google Scholar
Gustafsson N, Culley S, Ashdown G, Owen DM, Pereira PM, Henriques R. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun. 2016;7:12471.
Article
PubMed
PubMed Central
CAS
Google Scholar
Power RM, Huisken J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods. 2017;14:360–73.
Article
PubMed
CAS
Google Scholar
Voie AH, Burns DH, Spelman FA. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc. 1993;170:229–36.
Article
PubMed
CAS
Google Scholar
Huisken J. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004;305:1007–9.
Article
PubMed
CAS
Google Scholar
Chen B-C, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science. 2014;346:1257998.
Article
PubMed
PubMed Central
CAS
Google Scholar
Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods. 2011;8:417–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, et al. Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods. 2011;8:1047–9.
Article
PubMed
CAS
Google Scholar
Gao L, Shao L, Higgins CD, Poulton JS, Peifer M, Davidson MW, et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell. 2012;151:1370–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chang B-J, Perez Meza VD, Stelzer EHK. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm. Proc Natl Acad Sci. 2017;114:4869–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MGL. Super-resolution video microscopy of live cells by structured illumination. Nat Methods. 2009;6:339–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schneider J, Zahn J, Maglione M, Sigrist SJ, Marquard J, Chojnacki J, et al. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat Methods. 2015;12:827–30.
Article
PubMed
CAS
Google Scholar
Schwentker MA, Bock H, Hofmann M, Jakobs S, Bewersdorf J, Eggeling C, et al. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc Res Tech. 2007;70:269–80.
Article
PubMed
CAS
Google Scholar
Chmyrov A, Keller J, Grotjohann T, Ratz M, d’Este E, Jakobs S, et al. Nanoscopy with more than 100,000 “doughnuts”. Nat Methods. 2013;10:737–40.
Article
PubMed
CAS
Google Scholar
Yang B, Przybilla F, Mestre M, Trebbia J-B, Lounis B. Large parallelization of STED nanoscopy using optical lattices. Opt Express. 2014;22:5581.
Article
PubMed
Google Scholar
Eggeling C, Hilbert M, Bock H, Ringemann C, Hofmann M, Stiel AC, et al. Reversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration. Microsc Res Tech. 2007;70:1003–9.
Article
PubMed
CAS
Google Scholar
Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods. 2008;5:155–7.
Article
PubMed
CAS
Google Scholar
Magde D, Elson E, Webb WW. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett. 1972;29:705–8.
Article
CAS
Google Scholar
Schwille P, Korlach J, Webb WW. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry. 1999;36:176–82.
Article
PubMed
CAS
Google Scholar
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature. 2009;457:1159–62.
Article
PubMed
CAS
Google Scholar
Honigmann A, Mueller V, Ta H, Schoenle A, Sezgin E, Hell SW, et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat Commun. 2014;5:5412.
Article
PubMed
CAS
Google Scholar
Benda A, Ma Y, Gaus K. Self-calibrated line-scan STED-FCS to quantify lipid dynamics in model and cell membranes. Biophys J. 2015;108:596–609.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chojnacki J, Waithe D, Carravilla P, Huarte N, Galiani S, Enderlein J, et al. Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state. Nat Commun. 2017;8:545.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lanzanò L, Scipioni L, Di Bona M, Bianchini P, Bizzarri R, Cardarelli F, et al. Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS. Nat Commun. 2017;8:65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Urban NT, Willig KI, Hell SW, Nägerl UV. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J. 2011;101:1277–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gould TJ, Burke D, Bewersdorf J, Booth MJ. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express. 2012;20:20998.
Article
PubMed
PubMed Central
Google Scholar
Takasaki KT, Ding JB, Sabatini BL. Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J. 2013;104:770–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moneron G, Hell SW. Two-photon excitation STED microscopy. Opt Express. 2009;17:14567.
Article
PubMed
CAS
Google Scholar
Fölling J, Belov V, Riedel D, Schönle A, Egner A, Eggeling C, et al. fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem. 2008;9:321–6.
Article
PubMed
CAS
Google Scholar
Booth MJ. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl. 2014;3:e165.
Article
Google Scholar
Heintzmann R, Huser T. Super-resolution structured illumination microscopy. Chem Rev. 2017;117:13890–908.
Article
PubMed
CAS
Google Scholar
Wäldchen S, Lehmann J, Klein T, van de Linde S, Sauer M. Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep. 2015;5:15348.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiong Y, Rivera-Fuentes P, Sezgin E, Vargas Jentzsch A, Eggeling C, Anderson HL. Photoswitchable spiropyran dyads for biological imaging. Org Lett. 2016;18:3666–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hubner W, McNerney GP, Chen P, Dale BM, Gordon RE, Chuang FYS, et al. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science. 2009;323:1743–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ivanchenko S, Godinez WJ, Lampe M, Kräusslich H-G, Eils R, Rohr K, et al. Dynamics of HIV-1 assembly and release. Mothes W, editor. PLoS Pathog. 2009;5:e1000652.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakane S, Iwamoto A, Matsuda Z. The V4 and V5 variable loops of HIV-1 envelope glycoprotein are tolerant to insertion of green fluorescent protein and are useful targets for labeling. J Biol Chem. 2015;290:15279–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pereira CF, Ellenberg PC, Jones KL, Fernandez TL, Smyth RP, Hawkes DJ, et al. Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system. Aiyar A, editor. PLoS ONE. 2011;6:e17016.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eckhardt M, Anders M, Muranyi W, Heilemann M, Krijnse-Locker J, Müller B. A SNAP-tagged derivative of HIV-1—a versatile tool to study virus-cell interactions. Ambrose Z, editor. PLoS ONE. 2011;6:e22007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hanne J, Göttfert F, Schimer J, Anders-Össwein M, Konvalinka J, Engelhardt J, et al. Stimulated emission depletion nanoscopy reveals time-course of human immunodeficiency virus proteolytic maturation. ACS Nano. 2016;10:8215–22.
Article
PubMed
CAS
Google Scholar
Sakin V, Hanne J, Dunder J, Anders-Össwein M, Laketa V, Nikić I, et al. A versatile tool for live-cell imaging and super-resolution nanoscopy studies of HIV-1 env distribution and mobility. Cell Chem Biol. 2017;24(635–645):e5.
Google Scholar
Sakin V, Paci G, Lemke EA, Müller B. Labeling of virus components for advanced, quantitative imaging analyses. FEBS Lett. 2016;590:1896–914.
Article
PubMed
CAS
Google Scholar
Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol. 2015;13:484–96.
Article
PubMed
CAS
Google Scholar
Lippincott-Schwartz J, Freed EO, van Engelenburg SB. A consensus view of ESCRT-mediated human immunodeficiency virus Type 1 abscission. Annu Rev Virol. 2017;4:309–25.
Article
PubMed
CAS
Google Scholar
Malkusch S, Muranyi W, Müller B, Kräusslich H-G, Heilemann M. Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol. 2013;139:173–9.
Article
PubMed
CAS
Google Scholar
Helma J, Schmidthals K, Lux V, Nüske S, Scholz AM, Kräusslich H-G, et al. Direct and dynamic detection of HIV-1 in living cells. Marcello A, editor. PLoS ONE. 2012;7:e50026.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gunzenhäuser J, Olivier N, Pengo T, Manley S. Quantitative super-resolution imaging reveals protein stoichiometry and nanoscale morphology of assembling HIV-gag virions. Nano Lett. 2012;12:4705–10.
Article
PubMed
CAS
Google Scholar
Lehmann M, Rocha S, Mangeat B, Blanchet F, Uji-i H, Hofkens J, et al. Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. Krausslich H-G, editor. PLoS Pathog. 2011;7:e1002456.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muranyi W, Malkusch S, Müller B, Heilemann M, Kräusslich H-G. Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. Trkola A, editor. PLoS Pathog. 2013;9:e1003198.
Article
PubMed
PubMed Central
Google Scholar
Gunzenhäuser J, Wyss R, Manley S. A quantitative approach to evaluate the impact of fluorescent labeling on membrane-bound HIV-gag assembly by titration of unlabeled proteins. Saad J, editor. PLoS ONE. 2014;9:e115095.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tedbury PR, Freed EO. The role of matrix in HIV-1 envelope glycoprotein incorporation. Trends Microbiol. 2014;22:372–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J, Anders M, et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science. 2012;338:524–8.
Article
PubMed
CAS
Google Scholar
Zhu P, Chertova E, Bess J, Lifson JD, Arthur LO, Liu J, et al. Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci. 2003;100:15812–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roy NH, Chan J, Lambele M, Thali M. Clustering and mobility of HIV-1 env at viral assembly sites predict its propensity to induce cell-cell fusion. J Virol. 2013;87:7516–25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich H-G. The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci. 2006;103:2641–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lorizate M, Sachsenheimer T, Glass B, Habermann A, Gerl MJ, Kräusslich H-G, et al. Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines: Lipidomics of HIV-1 particles and producer plasma membranes. Cell Microbiol. 2013;15:292–304.
Article
PubMed
CAS
Google Scholar
Chan R, Uchil PD, Jin J, Shui G, Ott DE, Mothes W, et al. Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides. J Virol. 2008;82:11228–38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017;18:361–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jouvenet N, Zhadina M, Bieniasz PD, Simon SM. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol. 2011;13:394–401.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baumgärtel V, Ivanchenko S, Dupont A, Sergeev M, Wiseman PW, Kräusslich H-G, et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat Cell Biol. 2011;13:469–74.
Article
PubMed
CAS
Google Scholar
Prescher J, Baumgärtel V, Ivanchenko S, Torrano AA, Bräuchle C, Müller B, et al. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. Aiken C, editor. PLoS Pathog. 2015;11:e1004677.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bleck M, Itano MS, Johnson DS, Thomas VK, North AJ, Bieniasz PD, et al. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. Proc Natl Acad Sci. 2014;111:12211–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Engelenburg SB, Shtengel G, Sengupta P, Waki K, Jarnik M, Ablan SD, et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science. 2014;343:653–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Neil SJD, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451:425–30.
Article
PubMed
CAS
Google Scholar
Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral vpu protein. Cell Host Microbe. 2008;3:245–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lelek M, Di Nunzio F, Henriques R, Charneau P, Arhel N, Zimmer C. Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proc Natl Acad Sci. 2012;109:8564–9.
Article
PubMed
PubMed Central
Google Scholar
Brandenberg OF, Magnus C, Rusert P, Regoes RR, Trkola A. Different infectivity of HIV-1 strains is linked to number of envelope trimers required for entry. Emerman M, editor. PLoS Pathog. 2015;11:e1004595.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brandenberg OF, Magnus C, Regoes RR, Trkola A. The HIV-1 entry process: a stoichiometric view. Trends Microbiol. 2015;23:763–74.
Article
PubMed
CAS
Google Scholar
Sattentau QJ. Cell-to-cell spread of retroviruses. Viruses. 2010;2:1306–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Battistini A, Sgarbanti M. HIV-1 latency: an update of molecular mechanisms and therapeutic strategies. Viruses. 2014;6:1715–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Malim MH, Emerman M. HIV-1 accessory proteins—ensuring viral survival in a hostile environment. Cell Host Microbe. 2008;3:388–98.
Article
PubMed
CAS
Google Scholar
Dirk BS, Pawlak EN, Johnson AL, Van Nynatten LR, Jacob RA, Heit B, et al. HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling. Sci Rep. 2016;6:37021.
Article
PubMed
PubMed Central
CAS
Google Scholar
Russell RA, Chojnacki J, Jones DM, Johnson E, Do T, Eggeling C, et al. Astrocytes resist HIV-1 fusion but engulf infected macrophage material. Cell Rep. 2017;18:1473–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sougrat R, Bartesaghi A, Lifson JD, Bennett AE, Bess JW, Zabransky DJ, et al. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog. 2007;3:e63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mengistu M, Ray K, Lewis GK, DeVico AL. Antigenic properties of the human immunodeficiency virus envelope glycoprotein Gp120 on virions bound to target cells. Aiken C, editor. PLoS Pathog. 2015;11:e1004772.
Article
PubMed
PubMed Central
Google Scholar
Pereira CF, Rossy J, Owen DM, Mak J, Gaus K. HIV taken by STORM: super-resolution fluorescence microscopy of a viral infection. Virol J. 2012;9:84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pham S, Tabarin T, Garvey M, Pade C, Rossy J, Monaghan P, et al. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry. Virology. 2015;486:121–33.
Article
PubMed
CAS
Google Scholar
Peng K, Muranyi W, Glass B, Laketa V, Yant SR, Tsai L, et al. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. eLife. 2014;3:e04114.
Article
PubMed
PubMed Central
Google Scholar
Hulme AE, Kelley Z, Foley D, Hope TJ. Complementary assays reveal a low level of CA associated with viral complexes in the nuclei of HIV-1-infected cells. Ross SR, editor. J Virol. 2015;89:5350–61.
Article
PubMed
PubMed Central
CAS
Google Scholar