Naif HM. Pathogenesis of HIV infection. Infect Dis Rep. 2013 [cited 2014 Apr 3];5. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892619/.
Le Douce V, Herbein G, Rohr O, Schwartz C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology. 2010;7:32.
Article
PubMed
PubMed Central
Google Scholar
Bergamaschi A, Pancino G. Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology. 2010;7:31.
Article
PubMed
PubMed Central
Google Scholar
Gorry PR, Francella N, Lewin SR, Collman RG. HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J Leukoc Biol. 2014;95:71–81.
Article
PubMed
PubMed Central
Google Scholar
Guenzel CA, Hérate C, Benichou S. HIV-1 Vpr-a still “enigmatic multitasker”. Front Microbiol. 2014;5:127.
Article
PubMed
PubMed Central
Google Scholar
Chen R, Rouzic EL, Kearney JA, Mansky LM, Benichou S. Vpr-mediated incorporation of UNG2 into HIV-1 particles is required to modulate the virus mutation rate and for replication in macrophages. J Biol Chem. 2004;279:28419–25.
Article
CAS
PubMed
Google Scholar
Guenzel CA, Hérate C, Le Rouzic E, Maidou-Peindara P, Sadler HA, Rouyez M-C, et al. Recruitment of the nuclear form of uracil DNA glycosylase into virus particles participates in the full infectivity of HIV-1. J Virol. 2012;86:2533–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Priet S, Gros N, Navarro J-M, Boretto J, Canard B, Quérat G, et al. HIV-1-associated uracil DNA glycosylase activity controls dUTP misincorporation in viral DNA and is essential to the HIV-1 life cycle. Mol Cell. 2005;17:479–90.
Article
CAS
PubMed
Google Scholar
Jones KL, Roche M, Gantier MP, Begum NA, Honjo T, Caradonna S, et al. X4 and R5 HIV-1 have distinct post-entry requirements for uracil DNA glycosylase during infection of primary cells. J Biol Chem. 2010;285:18603–14.
CAS
PubMed
PubMed Central
Google Scholar
Kaiser SM, Emerman M. Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G. J Virol. 2006;80:875–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schrofelbauer B, Yu Q, Zeitlin SG, Landau NR. Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG Uracil-DNA glycosylases. J Virol. 2005;79:10978–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang B, Chen K, Zhang C, Huang S, Zhang H. Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. J Biol Chem. 2007;282:11667–75.
Article
CAS
PubMed
Google Scholar
Sousa MML, Krokan HE, Slupphaug G. DNA-uracil and human pathology. Mol Aspects Med. 2007;28:276–306.
Article
CAS
PubMed
Google Scholar
Akbari M, Solvang-Garten K, Hanssen-Bauer A, Lieske NV, Pettersen HS, Pettersen GK, et al. Direct interaction between XRCC1 and UNG2 facilitates rapid repair of uracil in DNA by XRCC1 complexes. DNA Repair. 2010;9:785–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali SI, Shin J-S, Bae S-H, Kim B, Choi B-S. Replication protein A 32 interacts through a similar binding interface with TIPIN, XPA, and UNG2. Int J Biochem Cell Biol. 2010;42:1210–5.
Article
CAS
PubMed
Google Scholar
Hagen L, Kavli B, Sousa MML, Torseth K, Liabakk NB, Sundheim O, et al. Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J. 2008;27:51–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko R, Bennett SE. Physical and functional interaction of human nuclear uracil-DNA glycosylase with proliferating cell nuclear antigen. DNA Repair. 2005;4:1421–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mer G, Bochkarev A, Gupta R, Bochkareva E, Frappier L, Ingles CJ, et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell. 2000;103:449–56.
Article
CAS
PubMed
Google Scholar
Nagelhus TA, Haug T, Singh KK, Keshav KF, Skorpen F, Otterlei M, et al. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem. 1997;272:6561–6.
Article
CAS
PubMed
Google Scholar
Torseth K, Doseth B, Hagen L, Olaisen C, Liabakk N-B, Græsmann H, et al. The UNG2 Arg88Cys variant abrogates RPA-mediated recruitment of UNG2 to single-stranded DNA. DNA Repair. 2012;11:559–69.
Article
CAS
PubMed
Google Scholar
Fanning E, Klimovich V, Nager AR. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res. 2006;34:4126–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oakley GG, Patrick SM. Replication protein A: directing traffic at the intersection of replication and repair. Front Biosci (Landmark Ed). 2010;15:883–900.
Article
CAS
Google Scholar
Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol. 2014;122:1–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1–22.
Article
PubMed
Google Scholar
Begum NA, Kinoshita K, Kakazu N, Muramatsu M, Nagaoka H, Shinkura R, et al. Uracil DNA glycosylase activity is dispensable for immunoglobulin class switch. Science. 2004;305:1160–3.
Article
CAS
PubMed
Google Scholar
Begum NA, Izumi N, Nishikori M, Nagaoka H, Shinkura R, Honjo T. Requirement of non-canonical activity of uracil DNA glycosylase for class switch recombination. J Biol Chem. 2007;282:731–42.
Article
CAS
PubMed
Google Scholar
Begum NA, Stanlie A, Doi T, Sasaki Y, Jin HW, Kim YS, et al. Further evidence for involvement of a noncanonical function of uracil DNA glycosylase in class switch recombination. Proc Natl Acad Sci. 2009;106:2752–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamane A, Robbiani DF, Resch W, Bothmer A, Nakahashi H, Oliveira T, et al. RPA Accumulation during class switch recombination represents 5′–3′ DNA-end resection during the S-G2/M phase of the cell cycle. Cell Rep. 2013;3:138–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langlois M-A, Neuberger MS. Human APOBEC3G can restrict retroviral infection in avian cells and acts independently of both UNG and SMUG1. J Virol. 2008;82:4660–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mansky LM, Preveral S, Selig L, Benarous R, Benichou S. The interaction of Vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 in vivo mutation rate. J Virol. 2000;74:7039–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eldin P, Chazal N, Fenard D, Bernard E, Guichou J-F, Briant L. Vpr expression abolishes the capacity of HIV-1 infected cells to repair uracilated DNA. Nucleic Acids Res. 2013;42:1698–710.
Article
PubMed
PubMed Central
Google Scholar
Fischer JA, Muller-Weeks S, Caradonna S. Proteolytic degradation of the nuclear isoform of uracil-DNA glycosylase occurs during the S phase of the cell cycle. DNA Repair. 2004;3:505–13.
Article
CAS
PubMed
Google Scholar
Weil AF, Ghosh D, Zhou Y, Seiple L, McMahon MA, Spivak AM, et al. Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration. Proc Natl Acad Sci. 2013;110:E448–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, et al. Post-replicative base excision repair in replication foci. EMBO J. 1999;18:3834–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
BouHamdan M, Xue Y, Baudat Y, Hu B, Sire J, Pomerantz RJ, et al. Diversity of HIV-1 Vpr interactions involves usage of the WXXF motif of host cell proteins. J Biol Chem. 1998;273:8009–16.
Article
CAS
PubMed
Google Scholar
Park MS, Ludwig DL, Stigger E, Lee SH. Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J Biol Chem. 1996;271:18996–9000.
Article
CAS
PubMed
Google Scholar
Sugiyama T, Kantake N. Dynamic regulatory interactions of rad51, rad52, and replication protein-A in recombination intermediates. J Mol Biol. 2009;390:45–55.
Article
CAS
PubMed
Google Scholar
DeMott MS, Zigman S, Bambara RA. Replication protein A stimulates long patch DNA base excision repair. J Biol Chem. 1998;273:27492–8.
Article
CAS
PubMed
Google Scholar
Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 1999;18:4498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542–8.
Article
CAS
PubMed
Google Scholar
Xu Z, Zan H, Pone EJ, Mai T, Casali P. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012;12:517–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rada C, Di Noia JM, Neuberger MS. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell. 2004;16:163–71.
Article
CAS
PubMed
Google Scholar
Yousif AS, Stanlie A, Mondal S, Honjo T, Begum NA. Differential regulation of S-region hypermutation and class-switch recombination by noncanonical functions of uracil DNA glycosylase. Proc Natl Acad Sci USA. 2014;111:E1016–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeitlin SG, Chapados BR, Baker NM, Tai C, Slupphaug G, Wang JYJ. Uracil DNA N-glycosylase promotes assembly of human centromere protein A. PLoS ONE. 2011;6:e17151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tikhanovich I, Nasheuer HP. Host-specific replication of BK virus DNA in mouse cell extracts is independently controlled by DNA polymerase alpha-primase and inhibitory activities. J Virol. 2010;84:6636–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicolas A, Alazard-Dany N, Biollay C, Arata L, Jolinon N, Kuhn L, et al. Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments. J Virol. 2010;84:8871–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohni KN, Livingston CM, Cortez D, Weller SK. ATR and ATRIP are recruited to herpes simplex virus type 1 replication compartments even though ATR signaling is disabled. J Virol. 2010;84:12152–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kudoh A, Iwahori S, Sato Y, Nakayama S, Isomura H, Murata T, et al. Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein–Barr virus replication compartments. J Virol. 2009;83:6641–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su M-T, Liu I-H, Wu C-W, Chang S-M, Tsai C-H, Yang P-W, et al. Uracil DNA glycosylase BKRF3 contributes to EBV DNA replication through physical interactions with proteins in viral DNA replication complex. J Virol. 2014. doi:10.1128/JVI.00950-14.
Google Scholar
Wang X, Helfer CM, Pancholi N, Bradner JE, You J. Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J Virol. 2013;87:3871–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blackford AN, Bruton RK, Dirlik O, Stewart GS, Taylor AMR, Dobner T, et al. A role for E1B-AP5 in ATR signaling pathways during adenovirus infection. J Virol. 2008;82:7640–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh DK, Islam MN, Choudhury NR, Karjee S, Mukherjee SK. The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein. Nucleic Acids Res. 2007;35:755–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lada AG, Waisertreiger IS-R, Grabow CE, Prakash A, Borgstahl GEO, Rogozin IB, et al. Replication protein A (RPA) hampers the processive action of APOBEC3G cytosine deaminase on single-stranded DNA. PLoS ONE. 2011;6:e24848.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuentes GM, Fay PJ, Bambara RA. Relationship between plus strand DNA synthesis removal of downstream segments of RNA by human immunodeficiency virus, murine leukemia virus and avian myeloblastoma virus reverse transcriptases. Nucleic Acids Res. 1996;24:1719–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amacker M, Hottiger M, Mossi R, Hübscher U. HIV-1 nucleocapsid protein and replication protein A influence the strand displacement DNA synthesis of lentiviral reverse transcriptase. AIDS Lond Engl. 1997;11:534–6.
CAS
Google Scholar
Kitamura K, Wang Z, Chowdhury S, Simadu M, Koura M, Muramatsu M. Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9:e1003361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang G, Kitamura K, Wang Z, Liu G, Chowdhury S, Fu W, et al. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc Natl Acad Sci USA. 2013;110:2246–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selig L, Pages J-C, Tanchou V, Prévéral S, Berlioz-Torrent C, Liu LX, et al. Interaction with the p6 domain of the gag precursor mediates incorporation into virions of Vpr and Vpx proteins from primate lentiviruses. J Virol. 1999;73:592–600.
CAS
PubMed
PubMed Central
Google Scholar
Langevin C, Maidou-Peindara P, Aas PA, Jacquot G, Otterlei M, Slupphaug G, et al. Human immunodeficiency virus type 1 Vpr modulates cellular expression of UNG2 via a negative transcriptional effect. J Virol. 2009;83:10256–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouchet J, Hérate C, Guenzel CA, Vérollet C, Järviluoma A, Mazzolini J, et al. Single-domain antibody-SH3 fusions for efficient neutralization of HIV-1 Nef functions. J Virol. 2012;86:4856–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzolini J, Herit F, Bouchet J, Benmerah A, Benichou S, Niedergang F. Inhibition of phagocytosis in HIV-1-infected macrophages relies on Nef-dependent alteration of focal delivery of recycling compartments. Blood. 2010;115:4226–36.
Article
CAS
PubMed
Google Scholar
Bergamaschi A, Ayinde D, David A, Rouzic EL, Morel M, Collin G, et al. The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J Virol. 2009;83:4854–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brussel A, Sonigo P. Analysis of early human immunodeficiency virus type 1 DNA synthesis by use of a new sensitive assay for quantifying integrated provirus. J Virol. 2003;77:10119–24.
Article
CAS
PubMed
PubMed Central
Google Scholar