Kozak M: The scanning model for translation: an update. J Cell Biol. 1989, 108: 229-241.
CAS
PubMed
Google Scholar
Merrick WC: Cap-dependent and cap-independent translation in eukaryotic systems. Gene. 2004, 332: 1-11.
CAS
PubMed
Google Scholar
Kozak M: Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984, 12: 857-872.
PubMed Central
CAS
PubMed
Google Scholar
Pelletier J, Sonenberg N: Insertion mutagenesis to increase secondary structure within the 5' noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell. 1985, 40: 515-526.
CAS
PubMed
Google Scholar
Butsch M, Boris-Lawrie K: Destiny of unspliced retroviral RNA: ribosome and/or virion?. J Virol. 2002, 76: 3089-3094.
PubMed Central
CAS
PubMed
Google Scholar
Anderson EC, Lever AM: Human immunodeficiency virus type 1 Gag polyprotein modulates its own translation. J Virol. 2006, 80: 10478-10486.
PubMed Central
CAS
PubMed
Google Scholar
Kaye JF, Lever AM: Human immunodeficiency virus types 1 and 2 differ in the predominant mechanism used for selection of genomic RNA for encapsidation. J Virol. 1999, 73: 3023-3031.
PubMed Central
CAS
PubMed
Google Scholar
Levin JG, Grimley PM, Ramseur JM, Berezesky IK: Deficiency of 60 to 70S RNA in murine leukemia virus particles assembled in cells treated with actinomycin D. J Virol. 1974, 14: 152-161.
PubMed Central
CAS
PubMed
Google Scholar
Levin JG, Rosenak MJ: Synthesis of murine leukemia virus proteins associated with virions assembled in actinomycin D-treated cells: evidence for persistence of viral messenger RNA. Proc Natl Acad Sci USA. 1976, 73: 1154-1158.
PubMed Central
CAS
PubMed
Google Scholar
Butsch M, Boris-Lawrie K: Translation is not required to generate virion precursor RNA in human immunodeficiency virus type 1-infected T cells. J Virol. 2000, 74: 11531-11537.
PubMed Central
CAS
PubMed
Google Scholar
LeBlanc JJ, Beemon KL: Unspliced Rous sarcoma virus genomic RNAs are translated and subjected to nonsense-mediated mRNA decay before packaging. J Virol. 2004, 78: 5139-5146.
PubMed Central
CAS
PubMed
Google Scholar
Weil JE, Beemon KL: A 3' UTR sequence stabilizes termination codons in the unspliced RNA of Rous sarcoma virus. RNA. 2006, 12: 102-110.
PubMed Central
CAS
PubMed
Google Scholar
Berkhout B: Structure and function of the human immunodeficiency virus leader RNA. Prog Nucleic Acid Res Mol Biol. 1996, 54: 1-34.
CAS
PubMed
Google Scholar
Schwartz S, Felber BK, Benko DM, Fenyo EM, Pavlakis GN: Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol. 1990, 64: 2519-2529.
PubMed Central
CAS
PubMed
Google Scholar
Purcell DF, Martin MA: Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993, 67: 6365-6378.
PubMed Central
CAS
PubMed
Google Scholar
Parkin NT, Cohen EA, Darveau A, Rosen C, Haseltine W, Sonenberg N: Mutational analysis of the 5' non-coding region of human immunodeficiency virus type 1: effects of secondary structure on translation. EMBO J. 1988, 7: 2831-2837.
PubMed Central
CAS
PubMed
Google Scholar
Miele G, Mouland A, Harrison GP, Cohen E, Lever AM: The human immunodeficiency virus type 1 5' packaging signal structure affects translation but does not function as an internal ribosome entry site structure. J Virol. 1996, 70: 944-951.
PubMed Central
CAS
PubMed
Google Scholar
Geballe AP, Gray MK: Variable inhibition of cell-free translation by HIV-1 transcript leader sequences. Nucleic Acids Res. 1992, 20: 4291-4297.
PubMed Central
CAS
PubMed
Google Scholar
Dasso MC, Jackson RJ: Efficient initiation of mammalian mRNA translation at a CUG codon. Nucleic Acids Res. 1989, 17: 6485-6497.
PubMed Central
CAS
PubMed
Google Scholar
Hann SR: Regulation and function of non-AUG-initiated proto-oncogenes. Biochimie. 1994, 76: 880-886.
CAS
PubMed
Google Scholar
Das AT, van Dam AP, Klaver B, Berkhout B: Improved envelope function selected by long-term cultivation of a translation-impaired HIV-1 mutant. Virology. 1998, 244: 552-562.
CAS
PubMed
Google Scholar
Yilmaz A, Bolinger C, Boris-Lawrie K: Retrovirus translation initiation: Issues and hypotheses derived from study of HIV-1. Curr HIV Res. 2006, 4: 131-139.
CAS
PubMed
Google Scholar
Schwartz S, Felber BK, Pavlakis GN: Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol Cell Biol. 1992, 12: 207-219.
PubMed Central
CAS
PubMed
Google Scholar
Nicot C, Harrod RL, Ciminale V, Franchini G: Human T-cell leukemia/lymphoma virus type 1 nonstructural genes and their functions. Oncogene. 2005, 24: 6026-6034.
CAS
PubMed
Google Scholar
Coffin JM, Hughes SH, Varmus HE: Retroviruses. 1997, Cold Spring Harbor: Cold Spring Harbor Laboratory Press
Google Scholar
Bandyopadhyay PK, Temin HM: Expression from an internal AUG codon of herpes simplex thymidine kinase gene inserted in a retrovirus vector. Mol Cell Biol. 1984, 4: 743-748.
PubMed Central
CAS
PubMed
Google Scholar
Pelletier J, Kaplan G, Racaniello VR, Sonenberg N: Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5' noncoding region. Mol Cell Biol. 1988, 8: 1103-1112.
PubMed Central
CAS
PubMed
Google Scholar
Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E: A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 1988, 62: 2636-2643.
PubMed Central
CAS
PubMed
Google Scholar
Hellen CU, Sarnow P: Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001, 15: 1593-1612.
CAS
PubMed
Google Scholar
Etchison D, Milburn SC, Edery I, Sonenberg N, Hershey JW: Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem. 1982, 257: 14806-14810.
CAS
PubMed
Google Scholar
Joachims M, Van Breugel PC, Lloyd RE: Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol. 1999, 73: 718-727.
PubMed Central
CAS
PubMed
Google Scholar
Kerekatte V, Keiper BD, Badorff C, Cai A, Knowlton KU, Rhoads RE: Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff?. J Virol. 1999, 73: 709-717.
PubMed Central
CAS
PubMed
Google Scholar
Chen CY, Sarnow P: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 1995, 268: 415-417.
CAS
PubMed
Google Scholar
Bolinger C, Yilmaz A, Hartman TR, Kovacic MB, Fernandez S, Ye J, et al: RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1. Nucleic Acids Res. 2007, 35: 2629-2642.
PubMed Central
CAS
PubMed
Google Scholar
Brasey A, Lopez-Lastra M, Ohlmann T, Beerens N, Berkhout B, Darlix JL, et al: The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol. 2003, 77: 3939-3949.
PubMed Central
CAS
PubMed
Google Scholar
Buck CB, Shen X, Egan MA, Pierson TC, Walker CM, Siliciano RF: The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J Virol. 2001, 75: 181-191.
PubMed Central
CAS
PubMed
Google Scholar
Herbreteau CH, Weill L, Decimo D, Prevot D, Darlix JL, Sargueil B, et al: HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon. Nat Struct Mol Biol. 2005
Google Scholar
Ohlmann T, Lopez-Lastra M, Darlix JL: An internal ribosome entry segment promotes translation of the simian immunodeficiency virus genomic RNA. J Biol Chem. 2000, 275: 11899-11906.
CAS
PubMed
Google Scholar
Deffaud C, Darlix JL: Rous sarcoma virus translation revisited: characterization of an internal ribosome entry segment in the 5' leader of the genomic RNA. J Virol. 2000, 74: 11581-11588.
PubMed Central
CAS
PubMed
Google Scholar
Deffaud C, Darlix JL: Characterization of an internal ribosomal entry segment in the 5' leader of murine leukemia virus env RNA. J Virol. 2000, 74: 846-850.
PubMed Central
CAS
PubMed
Google Scholar
Berlioz C, Darlix JL: An internal ribosomal entry mechanism promotes translation of murine leukemia virus gag polyprotein precursors. J Virol. 1995, 69: 2214-2222.
PubMed Central
CAS
PubMed
Google Scholar
Vagner S, Waysbort A, Marenda M, Gensac MC, Amalric F, Prats AC: Alternative translation initiation of the Moloney murine leukemia virus mRNA controlled by internal ribosome entry involving the p57/PTB splicing factor. J Biol Chem. 1995, 270: 20376-20383.
CAS
PubMed
Google Scholar
Berlioz C, Torrent C, Darlix JL: An internal ribosomal entry signal in the rat VL30 region of the Harvey murine sarcoma virus leader and its use in dicistronic retroviral vectors. J Virol. 1995, 69: 6400-6407.
PubMed Central
CAS
PubMed
Google Scholar
Butsch M, Hull S, Wang Y, Roberts TM, Boris-Lawrie K: The 5' RNA terminus of spleen necrosis virus contains a novel posttranscriptional control element that facilitates human immunodeficiency virus Rev/RRE-independent Gag production. J Virol. 1999, 73: 4847-4855.
PubMed Central
CAS
PubMed
Google Scholar
Roberts TM, Boris-Lawrie K: The 5' RNA terminus of spleen necrosis virus stimulates translation of nonviral mRNA. J Virol. 2000, 74: 8111-8118.
PubMed Central
CAS
PubMed
Google Scholar
Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR, Boris-Lawrie K: RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol. 2006, 13: 509-516.
CAS
PubMed
Google Scholar
Hull S, Boris-Lawrie K: RU5 of Mason-Pfizer monkey virus 5' long terminal repeat enhances cytoplasmic expression of human immunodeficiency virus type 1 gag-pol and nonviral reporter RNA. J Virol. 2002, 76: 10211-10218.
PubMed Central
CAS
PubMed
Google Scholar
Roberts TM, Boris-Lawrie K: Primary sequence and secondary structure motifs in spleen necrosis virus RU5 confer translational utilization of unspliced human immunodeficiency virus type 1 reporter RNA. J Virol. 2003, 77: 11973-11984.
PubMed Central
CAS
PubMed
Google Scholar
Russell RA, Zeng Y, Erlwein O, Cullen BR, McClure MO: The R region found in the human foamy virus long terminal repeat is critical for both Gag and Pol protein expression. J Virol. 2001, 75: 6817-6824.
PubMed Central
CAS
PubMed
Google Scholar
Yamasaki Y, Narain S, Yoshida H, Hernandez L, Barker T, Hahn PC, et al: Autoantibodies to RNA helicase A: a new serologic marker of early lupus. Arthritis Rheum. 2007, 56: 596-604.
CAS
PubMed
Google Scholar
Wei X, Pacyna-Gengelbach M, Schluns K, An Q, Gao Y, Cheng S, et al: Analysis of the RNA helicase A gene in human lung cancer. Oncol Rep. 2004, 11: 253-258.
CAS
PubMed
Google Scholar
Zhong X, Safa AR: RNA helicase A in the MEF1 transcription factor complex up-regulates the MDR1 gene in multidrug-resistant cancer cells. J Biol Chem. 2004, 279: 17134-17141.
CAS
PubMed
Google Scholar
Takeda Y, Caudell P, Grady G, Wang G, Suwa A, Sharp GC, et al: Human RNA helicase A is a lupus autoantigen that is cleaved during apoptosis. J Immunol. 1999, 163: 6269-6274.
CAS
PubMed
Google Scholar
Chester N, Kuo F, Kozak C, O'Hara CD, Leder P: Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom's syndrome gene. Genes Dev. 1998, 12: 3382-3393.
PubMed Central
CAS
PubMed
Google Scholar
Robb GB, Rana TM: RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol Cell. 2007, 26: 523-537.
CAS
PubMed
Google Scholar
Moore MJ: From birth to death: the complex lives of eukaryotic mRNAs. Science. 2005, 309: 1514-1518.
CAS
PubMed
Google Scholar
Ernst RK, Bray M, Rekosh D, Hammarskjold ML: A structured retroviral RNA element that mediates nucleocytoplasmic export of intron-containing RNA. Mol Cell Biol. 1997, 17: 135-144.
PubMed Central
CAS
PubMed
Google Scholar
Pasquinelli AE, Ernst RK, Lund E, Grimm C, Zapp ML, Rekosh D, et al: The constitutive transport element (CTE) of Mason-Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway. EMBO J. 1997, 16: 7500-7510.
PubMed Central
CAS
PubMed
Google Scholar
Jin L, Guzik BW, Bor YC, Rekosh D, Hammarskjold ML: Tap and NXT promote translation of unspliced mRNA. Genes Dev. 2003, 17: 3075-3086.
PubMed Central
CAS
PubMed
Google Scholar
Swartz JE, Bor YC, Misawa Y, Rekosh D, Hammarskjold ML: The shuttling SR protein 9G8 plays a role in translation of unspliced mRNA containing a constitutive transport element. J Biol Chem. 2007, 282: 19844-19853.
CAS
PubMed
Google Scholar
Gruter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, et al: TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell. 1998, 1: 649-659.
CAS
PubMed
Google Scholar
Huang Y, Steitz JA: Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell. 2001, 7: 899-905.
CAS
PubMed
Google Scholar
Huang Y, Gattoni R, Stevenin J, Steitz JA: SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell. 2003, 11: 837-843.
CAS
PubMed
Google Scholar
Huang Y, Yario TA, Steitz JA: A molecular link between SR protein dephosphorylation and mRNA export. Proc Natl Acad Sci USA. 2004, 101: 9666-9670.
PubMed Central
CAS
PubMed
Google Scholar
Bray M, Prasad S, Dubay JW, Hunter E, Jeang KT, Rekosh D, et al: A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc Natl Acad Sci USA. 1994, 91: 1256-1260.
PubMed Central
CAS
PubMed
Google Scholar
Hull S, Boris-Lawrie K: Analysis of synergy between divergent simple retrovirus posttranscriptional control elements. Virology. 2003, 317: 146-154.
CAS
PubMed
Google Scholar
Thermann R, Hentze MW: Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature. 2007, 447: 875-878.
CAS
PubMed
Google Scholar
Sanford JR, Longman D, Caceres JF: Multiple roles of the SR protein family in splicing regulation. Prog Mol Subcell Biol. 2003, 31: 33-58.
CAS
PubMed
Google Scholar
Sanford JR, Gray NK, Beckmann K, Caceres JF: A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 2004, 18: 755-768.
PubMed Central
CAS
PubMed
Google Scholar
McLaren M, Asai K, Cochrane A: A novel function for Sam68: enhancement of HIV-1 RNA 3' end processing. RNA. 2004, 10: 1119-1129.
PubMed Central
CAS
PubMed
Google Scholar
Reddy TR, Tang H, Xu W, Wong-Staal F: Sam68, RNA helicase A and Tap cooperate in the post-transcriptional regulation of human immunodeficiency virus and type D retroviral mRNA. Oncogene. 2000, 19: 3570-3575.
CAS
PubMed
Google Scholar
Coyle JH, Guzik BW, Bor YC, Jin L, Eisner-Smerage L, Taylor SJ, et al: Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK. Mol Cell Biol. 2003, 23: 92-103.
PubMed Central
CAS
PubMed
Google Scholar
Soros VB, Carvajal HV, Richard S, Cochrane AW: Inhibition of human immunodeficiency virus type 1 Rev function by a dominant-negative mutant of Sam68 through sequestration of unspliced RNA at perinuclear bundles. J Virol. 2001, 75: 8203-8215.
PubMed Central
CAS
PubMed
Google Scholar
Woolaway K, Asai K, Emili A, Cochrane A: hnRNP E1 and E2 have distinct roles in modulating HIV-1 gene expression. Retrovirology. 2007, 4: 28-
PubMed Central
PubMed
Google Scholar
Ostareck DH, Ostareck-Lederer A, Wilm M, Thiele BJ, Mann M, Hentze MW: mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell. 1997, 89: 597-606.
CAS
PubMed
Google Scholar
Schwartz S, Felber BK, Fenyo EM, Pavlakis GN: Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol. 1990, 64: 5448-5456.
PubMed Central
CAS
PubMed
Google Scholar
Schubert U, Bour S, Willey RL, Strebel K: Regulation of virus release by the macrophage-tropic human immunodeficiency virus type 1 AD8 isolate is redundant and can be controlled by either Vpu or Env. J Virol. 1999, 73: 887-896.
PubMed Central
CAS
PubMed
Google Scholar
Anderson JL, Johnson AT, Howard JL, Purcell DF: Both linear and discontinuous ribosome scanning are used for translation initiation from bicistronic human immunodeficiency virus type 1 env mRNAs. J Virol. 2007, 81: 4664-4676.
PubMed Central
CAS
PubMed
Google Scholar
Krummheuer J, Johnson AT, Hauber I, Kammler S, Anderson JL, Hauber J, et al: A minimal uORF within the HIV-1 vpu leader allows efficient translation initiation at the downstream env AUG. Virology. 2007, 363: 261-271.
CAS
PubMed
Google Scholar
Pooggin MM, Futterer J, Skryabin KG, Hohn T: A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J Gen Virol. 1999, 80 (Pt 8): 2217-2228.
CAS
PubMed
Google Scholar
Pooggin MM, Hohn T, Futterer J: Role of a short open reading frame in ribosome shunt on the cauliflower mosaic virus RNA leader. J Biol Chem. 2000, 275: 17288-17296.
CAS
PubMed
Google Scholar
Pooggin MM, Futterer J, Skryabin KG, Hohn T: Ribosome shunt is essential for infectivity of cauliflower mosaic virus. Proc Natl Acad Sci USA. 2001, 98: 886-891.
PubMed Central
CAS
PubMed
Google Scholar
Ryabova LA, Pooggin MM, Hohn T: Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog Nucleic Acid Res Mol Biol. 2002, 72: 1-39.
CAS
PubMed
Google Scholar
Ryabova LA, Hohn T: Ribosome shunting in the cauliflower mosaic virus 35S RNA leader is a special case of reinitiation of translation functioning in plant and animal systems. Genes Dev. 2000, 14: 817-829.
PubMed Central
CAS
PubMed
Google Scholar
Browne GJ, Proud CG: Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem. 2002, 269: 5360-5368.
CAS
PubMed
Google Scholar
Jacks T, Varmus HE: Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985, 230: 1237-1242.
CAS
PubMed
Google Scholar
Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE: Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988, 331: 280-283.
CAS
PubMed
Google Scholar
Jacks T, Madhani HD, Masiarz FR, Varmus HE: Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988, 55: 447-458.
CAS
PubMed
Google Scholar
Falk H, Mador N, Udi R, Panet A, Honigman A: Two cis-acting signals control ribosomal frameshift between human T-cell leukemia virus type II gag and pro genes. J Virol. 1993, 67: 6273-6277.
PubMed Central
CAS
PubMed
Google Scholar
Mador N, Panet A, Honigman A: Translation of gag, pro, and pol gene products of human T-cell leukemia virus type 2. J Virol. 1989, 63: 2400-2404.
PubMed Central
CAS
PubMed
Google Scholar
Dulude D, Baril M, Brakier-Gingras L: Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1. Nucleic Acids Res. 2002, 30: 5094-5102.
PubMed Central
CAS
PubMed
Google Scholar
Staple DW, Butcher SE: Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. J Mol Biol. 2005, 349: 1011-1023.
CAS
PubMed
Google Scholar
Gaudin C, Mazauric MH, Traikia M, Guittet E, Yoshizawa S, Fourmy D: Structure of the RNA signal essential for translational frameshifting in HIV-1. J Mol Biol. 2005, 349: 1024-1035.
CAS
PubMed
Google Scholar
Dulude D, Berchiche YA, Gendron K, Brakier-Gingras L, Heveker N: Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology. 2006, 345: 127-136.
CAS
PubMed
Google Scholar
Leger M, Dulude D, Steinberg SV, Brakier-Gingras L: The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift. Nucleic Acids Res. 2007, 35: 5581-5592.
PubMed Central
CAS
PubMed
Google Scholar
Gendron K, Charbonneau J, Dulude D, Heveker N, Ferbeyre G, Brakier-Gingras L: The presence of the TAR RNA structure alters the programmed -1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation. Nucleic Acids Res. 2008, 36: 30-40.
PubMed Central
CAS
PubMed
Google Scholar
Frolova L, Le GX, Zhouravleva G, Davydova E, Philippe M, Kisselev L: Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA. 1996, 2: 334-341.
PubMed Central
CAS
PubMed
Google Scholar
Song H, Mugnier P, Das AK, Webb HM, Evans DR, Tuite MF, et al: The crystal structure of human eukaryotic release factor eRF1 – mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell. 2000, 100: 311-321.
CAS
PubMed
Google Scholar
Bertram G, Bell HA, Ritchie DW, Fullerton G, Stansfield I: Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA. 2000, 6: 1236-1247.
PubMed Central
CAS
PubMed
Google Scholar
Hatfield DL, Levin JG, Rein A, Oroszlan S: Translational suppression in retroviral gene expression. Adv Virus Res. 1992, 41: 193-239.
CAS
PubMed
Google Scholar
Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S: Translational readthrough of an amber termination codon during synthesis of feline leukemia virus protease. J Virol. 1985, 55: 870-873.
PubMed Central
CAS
PubMed
Google Scholar
Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S: Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci USA. 1985, 82: 1618-1622.
PubMed Central
CAS
PubMed
Google Scholar
Orlova M, Yueh A, Leung J, Goff SP: Reverse transcriptase of Moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell. 2003, 115: 319-331.
CAS
PubMed
Google Scholar
Felsenstein KM, Goff SP: Expression of the gag-pol fusion protein of Moloney murine leukemia virus without gag protein does not induce virion formation or proteolytic processing. J Virol. 1988, 62: 2179-2182.
PubMed Central
CAS
PubMed
Google Scholar
Meyer BE, Malim MH: The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev. 1994, 8: 1538-1547.
CAS
PubMed
Google Scholar
Felber BK, Hadzopoulou-Cladaras M, Cladaras C, Copeland T, Pavlakis GN: rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci USA. 1989, 86: 1495-1499.
PubMed Central
CAS
PubMed
Google Scholar
Richard N, Iacampo S, Cochrane A: HIV-1 Rev is capable of shuttling between the nucleus and cytoplasm. Virology. 1994, 204: 123-131.
CAS
PubMed
Google Scholar
Hidaka M, Inoue J, Yoshida M, Seiki M: Post-transcriptional regulator (rex) of HTLV-1 initiates expression of viral structural proteins but suppresses expression of regulatory proteins. EMBO J. 1988, 7: 519-523.
PubMed Central
CAS
PubMed
Google Scholar
Seiki M, Inoue J, Hidaka M, Yoshida M: Two cis-acting elements responsible for posttranscriptional trans-regulation of gene expression of human T-cell leukemia virus type I. Proc Natl Acad Sci USA. 1988, 85: 7124-7128.
PubMed Central
CAS
PubMed
Google Scholar
Indik S, Gunzburg WH, Salmons B, Rouault F: A novel, mouse mammary tumor virus encoded protein with Rev-like properties. Virology. 2005, 337: 1-6.
CAS
PubMed
Google Scholar
Mertz JA, Simper MS, Lozano MM, Payne SM, Dudley JP: Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J Virol. 2005, 79: 14737-14747.
PubMed Central
CAS
PubMed
Google Scholar
Cochrane AW, Jones KS, Beidas S, Dillon PJ, Skalka AM, Rosen CA: Identification and characterization of intragenic sequences which repress human immunodeficiency virus structural gene expression. J Virol. 1991, 65: 5305-5313.
PubMed Central
CAS
PubMed
Google Scholar
Maldarelli F, Martin MA, Strebel K: Identification of posttranscriptionally active inhibitory sequences in human immunodeficiency virus type 1 RNA: novel level of gene regulation. J Virol. 1991, 65: 5732-5743.
PubMed Central
CAS
PubMed
Google Scholar
Schwartz S, Campbell M, Nasioulas G, Harrison J, Felber BK, Pavlakis GN: Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in Rev-independent gag expression. J Virol. 1992, 66: 7176-7182.
PubMed Central
CAS
PubMed
Google Scholar
Schwartz S, Felber BK, Pavlakis GN: Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein. J Virol. 1992, 66: 150-159.
PubMed Central
CAS
PubMed
Google Scholar
Schneider R, Campbell M, Nasioulas G, Felber BK, Pavlakis GN: Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation. J Virol. 1997, 71: 4892-4903.
PubMed Central
CAS
PubMed
Google Scholar
Malim MH, Cullen BR: Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Mol Cell Biol. 1993, 13: 6180-6189.
PubMed Central
CAS
PubMed
Google Scholar
Arrigo SJ, Chen IS: Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev. 1991, 5: 808-819.
CAS
PubMed
Google Scholar
D'Agostino DM, Felber BK, Harrison JE, Pavlakis GN: The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs. Mol Cell Biol. 1992, 12: 1375-1386.
PubMed Central
PubMed
Google Scholar
Arrigo SJ, Weitsman S, Rosenblatt JD, Chen IS: Analysis of rev gene function on human immunodeficiency virus type 1 replication in lymphoid cells by using a quantitative polymerase chain reaction method. J Virol. 1989, 63: 4875-4881.
PubMed Central
CAS
PubMed
Google Scholar
Iacampo S, Cochrane A: Human immunodeficiency virus type 1 Rev function requires continued synthesis of its target mRNA. J Virol. 1996, 70: 8332-8339.
PubMed Central
CAS
PubMed
Google Scholar
Kusuhara K, Anderson M, Pettiford SM, Green PL: Human T-cell leukemia virus type 2 Rex protein increases stability and promotes nuclear to cytoplasmic transport of gag/pol and env RNAs. J Virol. 1999, 73: 8112-8119.
PubMed Central
CAS
PubMed
Google Scholar
Reddy TR, Xu W, Mau JK, Goodwin CD, Suhasini M, Tang H, et al: Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nat Med. 1999, 5: 635-642.
CAS
PubMed
Google Scholar
Modem S, Badri KR, Holland TC, Reddy TR: Sam68 is absolutely required for Rev function and HIV-1 production. Nucleic Acids Res. 2005, 33: 873-879.
PubMed Central
CAS
PubMed
Google Scholar
Rosen CA, Terwilliger E, Dayton A, Sodroski JG, Haseltine WA: Intragenic cis-acting art gene-responsive sequences of the human immunodeficiency virus. Proc Natl Acad Sci USA. 1988, 85: 2071-2075.
PubMed Central
CAS
PubMed
Google Scholar
Olsen HS, Cochrane AW, Rosen C: Interaction of cellular factors with intragenic cis-acting repressive sequences within the HIV genome. Virology. 1992, 191: 709-715.
CAS
PubMed
Google Scholar
Black AC, Luo J, Chun S, Bakker A, Fraser JK, Rosenblatt JD: Specific binding of polypyrimidine tract binding protein and hnRNP A1 to HIV-1 CRS elements. Virus Genes. 1996, 12: 275-285.
CAS
PubMed
Google Scholar
Black AC, Luo J, Watanabe C, Chun S, Bakker A, Fraser JK, et al: Polypyrimidine tract-binding protein and heterogeneous nuclear ribonucleoprotein A1 bind to human T-cell leukemia virus type 2 RNA regulatory elements. J Virol. 1995, 69: 6852-6858.
PubMed Central
CAS
PubMed
Google Scholar
Zolotukhin AS, Michalowski D, Bear J, Smulevitch SV, Traish AM, Peng R, et al: PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol. 2003, 23: 6618-6630.
PubMed Central
CAS
PubMed
Google Scholar
Afonina E, Neumann M, Pavlakis GN: Preferential binding of poly(A)-binding protein 1 to an inhibitory RNA element in the human immunodeficiency virus type 1 gag mRNA. J Biol Chem. 1997, 272: 2307-2311.
CAS
PubMed
Google Scholar
Najera I, Krieg M, Karn J: Synergistic stimulation of HIV-1 rev-dependent export of unspliced mRNA to the cytoplasm by hnRNP A1. J Mol Biol. 1999, 285: 1951-1964.
CAS
PubMed
Google Scholar
Hentze MW, Kulozik AE: RNA surveillance and nonsense-mediated decay. Cell. 1999, 96: 307-310.
CAS
PubMed
Google Scholar
Haas J, Park EC, Seed B: Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol. 1996, 6: 315-324.
CAS
PubMed
Google Scholar
Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA: A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol. 2000, 74: 4839-4852.
PubMed Central
CAS
PubMed
Google Scholar
Muesing MA, Smith DH, Capon DJ: Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell. 1987, 48: 691-701.
CAS
PubMed
Google Scholar
Roy S, Agy M, Hovanessian AG, Sonenberg N, Katze MG: The integrity of the stem structure of human immunodeficiency virus type 1 Tat-responsive sequence of RNA is required for interaction with the interferon-induced 68,000-Mr protein kinase. J Virol. 1991, 65: 632-640.
PubMed Central
CAS
PubMed
Google Scholar
Patel RC, Stanton P, McMillan NM, Williams BR, Sen GC: The interferon-inducible double-stranded RNA-activated protein kinase self-associates in vitro and in vivo. Proc Natl Acad Sci USA. 1995, 92: 8283-8287.
PubMed Central
CAS
PubMed
Google Scholar
Wu S, Kaufman RJ: A model for the double-stranded RNA (dsRNA)-dependent dimerization and activation of the dsRNA-activated protein kinase PKR. J Biol Chem. 1997, 272: 1291-1296.
CAS
PubMed
Google Scholar
Thomis DC, Samuel CE: Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase. J Virol. 1993, 67: 7695-7700.
PubMed Central
CAS
PubMed
Google Scholar
Galabru J, Hovanessian A: Autophosphorylation of the protein kinase dependent on double-stranded RNA. J Biol Chem. 1987, 262: 15538-15544.
CAS
PubMed
Google Scholar
Langland JO, Jacobs BL: Cytosolic double-stranded RNA-dependent protein kinase is likely a dimer of partially phosphorylated Mr = 66,000 subunits. J Biol Chem. 1992, 267: 10729-10736.
CAS
PubMed
Google Scholar
Merrick WC: Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992, 56: 291-315.
PubMed Central
CAS
PubMed
Google Scholar
Roy S, Katze MG, Parkin NT, Edery I, Hovanessian AG, Sonenberg N: Control of the interferon-induced 68-kilodalton protein kinase by the HIV-1 tat gene product. Science. 1990, 247: 1216-1219.
CAS
PubMed
Google Scholar
Gunnery S, Rice AP, Robertson HD, Mathews MB: Tat-responsive region RNA of human immunodeficiency virus 1 can prevent activation of the double-stranded-RNA-activated protein kinase. Proc Natl Acad Sci USA. 1990, 87: 8687-8691.
PubMed Central
CAS
PubMed
Google Scholar
Mordechai E, Kon N, Henderson EE, Suhadolnik RJ: Activation of the interferon-inducible enzymes, 2',5'-oligoadenylate synthetase and PKR by human T-cell leukemia virus type I Rex-response element. Virology. 1995, 206: 913-922.
CAS
PubMed
Google Scholar
Brand SR, Kobayashi R, Mathews MB: The Tat protein of human immunodeficiency virus type 1 is a substrate and inhibitor of the interferon-induced, virally activated protein kinase, PKR. J Biol Chem. 1997, 272: 8388-8395.
CAS
PubMed
Google Scholar
McMillan NA, Chun RF, Siderovski DP, Galabru J, Toone WM, Samuel CE, et al: HIV-1 Tat directly interacts with the interferon-induced, double-stranded RNA-dependent kinase, PKR. Virology. 1995, 213: 413-424.
CAS
PubMed
Google Scholar
Endo-Munoz L, Warby T, Harrich D, McMillan NA: Phosphorylation of HIV Tat by PKR increases interaction with TAR RNA and enhances transcription. Virol J. 2005, 2: 17-
PubMed Central
PubMed
Google Scholar
Gatignol A, Buckler-White A, Berkhout B, Jeang KT: Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science. 1991, 251: 1597-1600.
CAS
PubMed
Google Scholar
Bannwarth S, Talakoub L, Letourneur F, Duarte M, Purcell DF, Hiscott J, et al: Organization of the human tarbp2 gene reveals two promoters that are repressed in an astrocytic cell line. J Biol Chem. 2001, 276: 48803-48813.
CAS
PubMed
Google Scholar
Duarte M, Graham K, Daher A, Battisti PL, Bannwarth S, Segeral E, et al: Characterization of TRBP1 and TRBP2. Stable stem-loop structure at the 5' end of TRBP2 mRNA resembles HIV-1 TAR and is not found in its processed pseudogene. J Biomed Sci. 2000, 7: 494-506.
CAS
PubMed
Google Scholar
Benkirane M, Neuveut C, Chun RF, Smith SM, Samuel CE, Gatignol A, et al: Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J. 1997, 16: 611-624.
PubMed Central
CAS
PubMed
Google Scholar
Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, Cotte L, et al: Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood. 2001, 98: 906-912.
CAS
PubMed
Google Scholar
Feldman S, Stein D, Amrute S, Denny T, Garcia Z, Kloser P, et al: Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol. 2001, 101: 201-210.
CAS
PubMed
Google Scholar
Murray HW, Rubin BY, Masur H, Roberts RB: Impaired production of lymphokines and immune (gamma) interferon in the acquired immunodeficiency syndrome. N Engl J Med. 1984, 310: 883-889.
CAS
PubMed
Google Scholar
Dorin D, Bonnet MC, Bannwarth S, Gatignol A, Meurs EF, Vaquero C: The TAR RNA-binding protein, TRBP, stimulates the expression of TAR-containing RNAs in vitro and in vivo independently of its ability to inhibit the dsRNA-dependent kinase PKR. J Biol Chem. 2003, 278: 4440-4448.
CAS
PubMed
Google Scholar
Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005, 436: 740-744.
PubMed Central
CAS
PubMed
Google Scholar
Bennasser Y, Yeung ML, Jeang KT: HIV-1 TAR RNA subverts RNA interference in transfected cells through sequestration of TAR RNA-binding protein, TRBP. J Biol Chem. 2006, 281: 27674-27678.
CAS
PubMed
Google Scholar
Gatignol A, Laine S, Clerzius G: Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity?. Retrovirology. 2005, 2: 65-
PubMed Central
PubMed
Google Scholar
Dong B, Silverman RH: 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J Biol Chem. 1995, 270: 4133-4137.
CAS
PubMed
Google Scholar
Nilsen TW, Weissman SG, Baglioni C: Role of 2',5'-oligo(adenylic acid) polymerase in the degradation of ribonucleic acid linked to double-stranded ribonucleic acid by extracts of interferon-treated cells. Biochemistry. 1980, 19: 5574-5579.
CAS
PubMed
Google Scholar
Min JY, Krug RM: The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'–5' oligo (A) synthetase/RNase L pathway. Proc Natl Acad Sci USA. 2006, 103: 7100-7105.
PubMed Central
CAS
PubMed
Google Scholar
Cayley PJ, Davies JA, McCullagh KG, Kerr IM: Activation of the ppp(A2'p)nA system in interferon-treated, herpes simplex virus-infected cells and evidence for novel inhibitors of the ppp(A2'p)nA-dependent RNase. Eur J Biochem. 1984, 143: 165-174.
CAS
PubMed
Google Scholar
Rivas C, Gil J, Melkova Z, Esteban M, Diaz-Guerra M: Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2-5A synthetase enzyme. Virology. 1998, 243: 406-414.
CAS
PubMed
Google Scholar
SenGupta DN, Silverman RH: Activation of interferon-regulated, dsRNA-dependent enzymes by human immunodeficiency virus-1 leader RNA. Nucleic Acids Res. 1989, 17: 969-978.
PubMed Central
CAS
PubMed
Google Scholar
Wu JM, Chiao JW, Maayan S: Diagnostic value of the determination of an interferon-induced enzyme activity: decreased 2',5'-oligoadenylate dependent binding protein activity in AIDS patient lymphocytes. AIDS Res. 1986, 2: 127-131.
CAS
PubMed
Google Scholar
Homan JW, Steele AD, Martinand-Mari C, Rogers TJ, Henderson EE, Charubala R, et al: Inhibition of morphine-potentiated HIV-1 replication in peripheral blood mononuclear cells with the nuclease-resistant 2-5A agonist analog, 2-5A(N6B). J Acquir Immune Defic Syndr. 2002, 30: 9-20.
CAS
PubMed
Google Scholar
Dimitrova DI, Reichenbach NL, Yang X, Pfleiderer W, Charubala R, Gaughan JP, et al: Inhibition of HIV type 1 replication in CD4+ and CD14+ cells purified from HIV type 1-infected individuals by the 2-5A agonist immunomodulator, 2-5A(N6B). AIDS Res Hum Retroviruses. 2007, 23: 123-134.
PubMed Central
CAS
PubMed
Google Scholar
Kumar A: RNA interference: a multifaceted innate antiviral defense. Retrovirology. 2008, 5: 17-
PubMed Central
PubMed
Google Scholar
Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, et al: A cellular microRNA mediates antiviral defense in human cells. Science. 2005, 308: 557-560.
CAS
PubMed
Google Scholar
Cullen BR: Is RNA interference involved in intrinsic antiviral immunity in mammals?. Nat Immunol. 2006, 7: 563-567.
CAS
PubMed
Google Scholar
Berkhout B, Jeang KT: RISCy business: MicroRNAs, pathogenesis, and viruses. J Biol Chem. 2007, 282: 26641-26645.
CAS
PubMed
Google Scholar
Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, et al: Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science. 2007, 315: 1579-1582.
CAS
PubMed
Google Scholar
Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, et al: Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med. 2007, 13: 1241-1247.
CAS
PubMed
Google Scholar
Qu F, Morris TJ: Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett. 2005, 579: 5958-5964.
CAS
PubMed
Google Scholar
Qian S, Zhong X, Yu L, Ding B, Haan PD, Boris-Lawrie K: HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1. Proc Natl Acad Sci U S A. 2009, 106 (2): 605-610.
PubMed Central
CAS
PubMed
Google Scholar
Yeung ML, Benkirane M, Jeang KT: Small non-coding RNAs, mammalian cells, and viruses: regulatory interactions?. Retrovirology. 2007, 4: 74-
PubMed Central
PubMed
Google Scholar
Bennasser Y, LE SY, Benkirane M, Jeang KT: Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity. 2005, 22: 607-619.
CAS
PubMed
Google Scholar
Lin J, Cullen BR: Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J Virol. 2007, 81: 12218-12226.
PubMed Central
CAS
PubMed
Google Scholar
Haasnoot J, de Vries W, Geutjes EJ, Prins M, de Haan P, Berkhout B: The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog. 2007, 3: e86-
PubMed Central
PubMed
Google Scholar
Yeung ML, Bennasser Y, Myers TG, Jiang G, Benkirane M, Jeang KT: Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology. 2005, 2: 81-
PubMed Central
PubMed
Google Scholar
Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005, 436: 740-744.
PubMed Central
CAS
PubMed
Google Scholar
Cullen BR: Viruses and microRNAs. Nat Genet. 2006, 38 (Suppl): S25-S30.
CAS
PubMed
Google Scholar
Rizvi TA, Schmidt RD, Lew KA, Keeling ME: Rev/RRE-independent Mason-Pfizer monkey virus constitutive transport element-dependent propagation of SIVmac239 vectors using a single round of replication assay. Virology. 1996, 222: 457-463.
CAS
PubMed
Google Scholar
Zufferey R, Donello JE, Trono D, Hope TJ: Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. 1999, 73: 2886-2892.
PubMed Central
CAS
PubMed
Google Scholar
Yilmaz A, Fernandez S, Lairmore MD, Boris-Lawrie K: Coordinate enhancement of transgene transcription and translation in a lentiviral vector. Retrovirology. 2006, 3: 13-
PubMed Central
PubMed
Google Scholar
Bahner I, Sumiyoshi T, Kagoda M, Swartout R, Peterson D, Pepper K, et al: Lentiviral vector transduction of a dominant-negative Rev gene into human CD34+ hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol Ther. 2007, 15: 76-85.
CAS
PubMed
Google Scholar