Skip to main content

Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Table 2 Logistic Regression for predicting transmission based on number of glycosites in the variable loops

From: Application of a case–control study design to investigate genotypic signatures of HIV-1 transmission

  Univariate Odds Ratio (95% confidence interval) p-value   Odds Ratio with subtype interaction (95% confidence interval) p-value Test for Homogeneity between subtype, p-value Wilcoxon Rank Sum p-value
PNGs in V1 loop    PNGs in V1 loop     
1 to 2    Subtype B 1 to 2     0.109
3 1.11 (0.59, 2.06) 0.751 3 1.42 (0.55, 3.62) 0.466   
≥ 4 1.62 (0.83, 3.14) 0.155 ≥ 4 2.29 (0.83, 6.36) 0.111   
    Subtype C 1 to 2     0.931
    3 0.66 (0.18, 2.48) 0.541   
    ≥ 4 0.54 (0.14, 2.10) 0.371 0.347  
PNGs in V2 loop    PNGs in V2 loop     
0 to 1    Subtype B 0 to 1     0.533
2 to 3 0.75 (0.44, 1.27) 0.282 2 to 3 0.84 (0.44, 1.63) 0.615   
    Subtype C 0 to 1     0.323
    2 to 3 0.67 (0.22, 2.13) 0.506 0.509  
PNGs in V3 loop    PNGs in V3 loop *    
0    Subtype B 0     0.024
1 2.56 (0.49, 13.43) 0.267 1     
    Subtype C 0     0.155
    1    0.008  
PNGs in V4 loop    PNGs in V4 loop     
0 to 1    Subtype B 0 to 1     0.572
2 0.51 (0.23, 1.14) 0.102 2 0.36 (0.10, 1.31) 0.122   
≥ 3 0.54 (0.25, 1.20) 0.133 ≥ 3 0.46 (0.13, 1.60) 0.219   
    Subtype C 0 to 1     0.329
    2 1.83 (0.35, 9.60) 0.473   
    ≥ 3 1.19 (0.22, 6.28) 0.842 0.001  
  1. Note: In groups where no sequences have 0 glycosites, logistic regression cannot be performed.