
Ogishi and Yotsuyanagi ﻿Retrovirology  (2018) 15:12 
https://doi.org/10.1186/s12977-018-0401-x

RESEARCH

Prediction of HIV‑associated 
neurocognitive disorder (HAND) from three 
genetic features of envelope gp120 
glycoprotein
Masato Ogishi1,2*   and Hiroshi Yotsuyanagi1

Abstract 

Background:  HIV-associated neurocognitive disorder (HAND) remains an important and yet potentially underdi-
agnosed manifestation despite the fact that the modern combination antiretroviral therapy (cART) has achieved 
effective viral suppression and greatly reduced the incidence of life-threatening events. Although HIV neurotoxicity is 
thought to play a central role, the potential of viral genetic signature as diagnostic and/or prognostic biomarker has 
yet to be fully explored.

Results:  Using a manually curated sequence metadataset (80 specimens, 2349 sequences), we demonstrated that 
only three genetic features are sufficient to predict HAND status regardless of sampling tissues; the accuracy reached 
100 and 94% in the hold-out testing subdataset and the entire dataset, respectively. The three genetic features 
stratified HAND into four distinct clusters. Extrapolating the classification to the 1619 specimens registered in the Los 
Alamos HIV Sequence Database, the global HAND prevalence was estimated to be 46%, with significant regional vari-
ations (30–71%). The R package HANDPrediction was implemented to ensure public availability of key codes.

Conclusions:  Our analysis revealed three amino acid positions in gp120 glycoprotein, providing the basis of the 
development of novel cART regimens specifically optimized for HAND-associated quasispecies. Moreover, the classi-
fier can readily be translated into a diagnostic biomarker, warranting prospective validation.

Keywords:  HIV-associated neurocognitive disorder (HAND), HIV envelope gp120 glycoprotein, Machine learning, 
Biomarker
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Background
Neurocognitive impairments during the course of 
chronic HIV infection, called HIV-associated neuro-
cognitive disorder (HAND), remain as an unconquered 
clinical entity despite the improvement of combination 
antiretroviral therapy (cART) over the last 20  years [1, 
2]. HAND is a comprehensive concept encompassing the 
broad spectrum of motor, cognitive, and neuropsychiat-
ric impairment, in which persistent HIV infection in the 
central nervous system (CNS) plays a fundamental role. 

According to the criteria proposed by the HIV Neurobe-
havioral Research Center (HNRC), HAND is stratified 
into three conditions, namely, asymptomatic neurocog-
nitive impairment (ANI), mild neurocognitive disorder 
(MND), and HIV-associated dementia (HAD) [3]. In a 
large cohort study from the U.S., prevalence estimates 
of ANI, MND and HAD were inferred at 33, 12 and 2%, 
respectively [4]. Other cohort studies yielded similar esti-
mates [5–7]. Despite its wide prevalence, diagnostic and 
therapeutic strategies are quite limited; currently, there 
is no molecularly defined biomarkers, and prompt ini-
tiation of cART is the only clinically available treatment, 
though its effectiveness on preventing the progression 
of neurocognitive impairment is still in hot controversy 
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[8, 9]. Indeed, as cART has become more accessible in 
resource-limited settings worldwide, thereby extend-
ing the expected lifespan of HIV-infected patients, the 
global burden of HAND is expected to be steadily on the 
rise. Recently, accumulating evidence suggests that per-
sistent viral replication and ongoing diversification in 
the CNS compartment even in patients with undetect-
ably suppressed viremia could lead to the emergence of 
neurotoxic quasispecies and thereby contribute to the 
progression of HAND [10, 11]. In this context, defin-
ing etiologically relevant diagnostic and/or prognostic 
biomarkers and optimal regimens based on those bio-
markers in the era of modern cART is an inevitable step 
forward to improve current clinical practice.

Neurotoxic HIV viral quasispecies have been hypoth-
esized to play an indispensable role in HAND pathogen-
esis. Although the mechanisms of HIV neurotoxicity has 
yet to be thoroughly clarified, several studies have sug-
gested that there is a link between HAND and the neu-
rotoxicity exerted by the orchestrated actions of several 
HIV proteins including trans-activating protein (Tat) and 
envelope glycoprotein (Env) [12]. Particularly, gp120, a 
fragment proteolytically cleaved from the Env protein, 
may mediate neuronal damage via direct induction of 
apoptosis both in rodents and primary human brain tis-
sue culture [13–15]. On the other hand, hypervariable 
region 3 (V3) located at the middle of gp120 is primar-
ily responsible for the genotypic and phenotypic diversity 
of HIV. A loop structure formed by V3 (V3 loop) inter-
acts with chemokine coreceptors CCR5 and/or CXCR4, 
thereby determining multifaceted viral phenotypes 
including cell tropism [16]. Studies of CNS-derived viral 
isolates have indicated the links between CCR5 tropism, 
macrophage/microglia tropism, and the compartmentali-
zation and persistent replication of viruses in the CNS 
[17–19]. Considering these insights, it is plausible to 
hypothesize that the gp120 glycoprotein serves as a pri-
mary, if not exclusive, determinant of both neurotropism, 
i.e., the ability to cross the blood–brain barrier and main-
tain replicative capacity in the CNS compartment, and 
neurotoxicity, i.e., the capability of igniting and/or fueling 
neurocognitive impairments. In this context, Pillai et al. 
[20] studied the C2V3 env subregion, and reported that 
the fifth residue of the V3 loop significantly correlated 
with neurocognitive deficit, although they did not explore 
the predictive significance of this signature. Indeed, a 
single amino acid signature is unlikely to be adequate 
to explain HIV adaptation during the course of HAND 
progression; thus, the combination of various signatures 
should be explored.

Machine learning (ML) is a highly promising technique 
for exploring a vastly large set of parameters to yield a 
potent classifier without prespecifying mathematical 

models. To gain optimized predictive accuracy, ML algo-
rithms iteratively evaluate three types of error: train-
ing errors, validation errors (i.e., in-sample errors), and 
generalization errors (i.e., out-of-sample errors). The 
ultimate goal of ML-based prediction is to construct 
a classifier which has minimal generalization errors to 
unobserved real-world data. When a training dataset 
is provided, ML algorithms internally evaluate train-
ing errors to find the best set of parameters specific to 
the algorithm, and validation errors are evaluated by 
methods such as cross-validation (CV). When multiple 
algorithms with different sets of parameters are com-
pared, the classifier with the smallest validation errors is 
selected. Then, the generalization errors should be eval-
uated with a testing dataset independent from model 
construction and selection.

Holman and Gabuzda applied ML-based approach 
to a manually collected metadataset of env C2V3C3 
sequences derived from patients with or without HIV-
associated dementia (HAD), reporting 75% accuracy for 
predicting HAD-associated env sequences [21]. Although 
their work provided intriguing insights into HIV neu-
ropathogenesis, its generalizability is limited by sev-
eral caveats. First, they reported the predictive accuracy 
via leave-one-out cross-validation. However, this cor-
responds to the validation error and may be a too opti-
mistic estimation of the generalization error because 
of overfitting of the model against the training dataset. 
Rather, hold-out validation with no classifier retraining is 
necessary to correctly evaluate the generalization error. 
Second, although they only tested a simple rule-based 
classification algorithm, this could be outperformed by 
several recently implemented machine learning algo-
rithms and an ensemble of those classifiers. Lastly, they 
attempted to construct a sequence-level classifier, and 
they empirically set a threshold at 95% of the patient’s 
sequences for classifying the patient as having HAD. 
However, such empirical criteria should be carefully 
interpreted for potential overfitting. Moreover, since it is 
plausible to assume that even patients with HAD harbor 
non-neurotoxic quasispecies, and vice versa for patients 
without clinically apparent neurocognitive impairments, 
a patient-level set of features capturing the diversity of 
intrapatient quasispecies could be more predictive rather 
than a sequence-level set of features.

The purpose of this retrospective analysis is to propose 
a potential biomarker for HAND. To this end, the most 
predictive genetic signatures were explored by generat-
ing an ML-based HAND prediction model. A thorough 
literature search led to the construction of the most com-
prehensive metadataset to date, comprised of 2494 env 
C2V3C3 sequences from 9 studies involving 85 speci-
mens from 43 patients. Iterative ML and stepwise feature 
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reduction yielded three genetic features. A final ensemble 
classifier achieved accuracy of 100 and 94% in the hold-
out testing subdataset and as a whole, respectively. Speci-
mens from various sampling sources were classifiable 
using the same genetic features. Clustering analysis strat-
ified HAND into four distinct clusters. The datasets, the 
main analysis workflow, and the in-house functions were 
made publicly available so as to maximize the reproduc-
ibility of the entire work.

Results
Construction of annotated HIV env sequence metadataset
A large, curated sequence dataset annotated with rel-
evant clinical information is indispensable for ML-based 
prediction of the HAND status. Initially, we considered 
using The HIVBrainSeqDB [22] (http://hivbrainseqdb.
dfci.harvard.edu/HIVSeqDB/) or The HAND Database 
[23] (http://www.handdatabase.org/). However, because 
these databases did not seem comprehensive, we decided 
to conduct a manual literature review. A thorough lit-
erature search resulted in the construction of a manu-
ally curated metadataset derived from 9 studies involving 
40 patients, and consisting of 2494 HIV env C2V3C3 
sequences (see “Methods” section for details), among 
which 2358 were unique (Additional file  1: Table  1). 
Sequences isolated from HAND and NonHAND cases 
formed several phylogenetically distinct clusters (Addi-
tional file  1: Fig.  1). Supported by this observation, we 
decided to further explore ML-based approach to con-
struct a classifier predicting the HAND status from the 
C2V3C3 sequences.

Machine learning for predicting HAND status
The 2349 C2V3C3 sequences derived from HAND or 
NonHAND patients were converted into a numeri-
cal matrix using the 76 AAIndex schemes relevant to 
the physicochemical properties of amino acids. Patients 
diagnosed as either HIV-associated encephalitis (HIVE) 
or non-specific neuropsychiatric disorder (NPD) were 
excluded. Next, sequences were grouped by patient and 
sampling source, and representative statistics (e.g. mean 
and standard deviation) were calculated for each align-
ment position. Features with little variance, and a set of 
highly correlated features were excluded. In this man-
ner, a total of 3169 patient-level predictive features were 
generated for 80 specimens. We performed ML with five 
distinct algorithms with ten different random seeds for 
hold-out data splitting. Stacking of the five classifiers was 
also attempted.

The mean and the best accuracy of the stacked classi-
fiers trained using all features were 63 and 78%, respec-
tively, in the hold-out validation subdataset (Fig.  1a 
and Additional file  1: Table  2). However, since this is 
extremely over-parametrized analysis, we attempted to 
reduce the number of features. First, algorithm-specific 
feature importance was calculated for each classifier, and 
the 20 most important ones were screened (Additional 
file  1: Table  3). Next, features selected by two or more 
distinct algorithms were selected. Finally, distributions 
between HAND and NonHAND cases were compared. 
P values were calculated by Welch’s t test, and adjust-
ment for multiple comparisons was done according to 
the method controlling the false discovery rate (FDR) 
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Fig. 1  Performance of ML-based classifiers predicting HAND. The in-house metadataset constructed from an extensive literature search was divided 
into the training and testing subdatasets. Five ML classifiers and their stacked classifier were trained using the training subdataset, and their accura-
cies were evaluated using the testing subdataset. Stacking algorithm was XGBT. a Classifiers trained using all features. b Classifiers trained with three 
minimal features. Dots represent ML attempts with different random seeds. SVM, support vector machine; RF, random forest; GBM, gradient boost-
ing machine; XGBL, extreme gradient boosting with linear booster; XGBT, extreme gradient boosting with tree booster; Stack, the stacked classifier

http://hivbrainseqdb.dfci.harvard.edu/HIVSeqDB/
http://hivbrainseqdb.dfci.harvard.edu/HIVSeqDB/
http://www.handdatabase.org/
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originally reported by Benjamini and Hochberg [24]. 
Features with adjusted P values of lower than 0.05 were 
retained. In this manner, seven important features were 
uncovered (Additional file  1: Fig.  2). Encouraged by the 
observation that feature reduction did improve the pre-
dictive accuracy, we further deciphered the best set of 
features by means of stepwise feature reduction (Table 1 
and Additional file 1: Table 4). Surprisingly, we observed 
the highest accuracy being 100% in the testing subdata-
set in two different algorithms (Fig. 1b). These classifiers 
used only three features. The mean and the best accuracy 
of the stacked classifiers were 76 and 100%, respectively 
(Fig.  1b and Additional file  1: Table  5). The accuracy of 
the best stacked classifier for the whole dataset was 94%, 
where the HAND status was predicted correctly in 75 
out of 80 specimens. The distributions of Bayesian pos-
terior probabilities showed that this classifier is expected 
to work well when the prior probability of HAND lies 
within the range from ~ 25% to ~ 50% (Additional file 1: 
Figure 3). Finally, as an external validation, all of the three 
specimens obtained from two patients with NPD were 
classified as HAND. One specimen was obtained from 
Patient 196, who was not diagnosed as HAD due to lack 
of information in the original paper despite the evidence 
of neuropsychiatric impairment [25]. The other two 
specimens were obtained from Subject 7115 at July 8th, 
2002 [26]. Although the diagnosis of HAD could not be 
made due to confounding conditions at that moment, the 
same patient was diagnosed as moderate to severe HAD 
2 years later. These two cases highlight the potential util-
ity of our sequence-based HAND classifier as a diagnos-
tic aid.

The distributions of the most important features 
were significantly different between the HAND and 
NonHAND cases (Fig.  2a). At position 291 (Pos291), 
the maximum value of the AAIndex DIGM050101, 
which represents a hydrostatic pressure asymmetry 
index, was shown to be the most predictive. The dif-
ference between the HAND and NonHAND cases 
was explained by the decrease of the frequency of 
291S in the HAND group (Fig.  2b). Meanwhile, the 
other two important AAIndices, namely, KARP850102 
and BHAR880101, are related to the flexibility of the 

residue. Variants enriched in the HAND cases such as 
315 K/S and 340D/K/S contributed to the different fea-
ture distributions (Fig. 2).

Molecular stratification of HAND through the minimal set 
of genetic features
HAND is a diagnosis of exclusion, thus inherently har-
boring some heterogeneity. We noticed that, although 
the stacked classifier predicts the HAND status with high 
confidence, the subordinate classifiers returned consid-
erably varied probabilities to the same cases, indicating 
that each of the classifiers captures distinct aspects of 
the triad of the genetic features. Indeed, clustering analy-
sis revealed four distinct HAND-rich clusters (H1-H4) 
with characteristic genetic landscapes (Fig.  3a). Clus-
ters enriched with NonHAND cases were combined as 
N. Random forest algorithm successfully constructed 
a classifier for these five categories, with the estimated 
accuracy from internal CV being 94%. A representa-
tive decision tree with the median number of nodes was 
shown in Fig.  3b. The tree understandably reflects the 
similarities between H2 and H4, and those between H1 
and H3. When each amino acid variants were considered 
to be features, no apparent cluster-specific enrichment 
occurred, underscoring the effectiveness of our AAIn-
dex-based feature generation framework (Additional 
file 1: Fig. 3).

To unveil the characteristics of each of the HAND 
clusters, we next applied the random forest classifier to 
the entire dataset obtained from The HAND Database 
(http://www.handdatabase.org/), which is a recently 
published, manually curated database of HIV sequences 
with clinical metadata [16] (Fig.  4). Collectively, 26 out 
of 33 (79%) HAD cases were classified into one of the 
HAND clusters, whereas all of the twenty cases origi-
nally annotated as not neurocognitively impaired were 
predicted as such (100%). Interestingly, nine out of 
eleven (82%) HIVE cases were predicted as N. Moreo-
ver, remaining two HIVE cases and the 6 cases with 
HAD and overlapping HIVE were classified as H2. These 
observations highlight the uniqueness of H2, poten-
tially bridging the two distinct disease entities, namely, 
HAND and HIVE.

Table 1  Important AAIndices identified in this study

For further information regarding each AAIndex, visit the AAIndex website (http://www.genome.jp/aaindex/) [42]

AAIndex ID Description Reference

DIGM050101 Hydrostatic pressure asymmetry index Di Giulio [47]

KARP850102 Flexibility parameter for one rigid neighbor Karplus and Schulz [48]

BHAR880101 Average flexibility indices Bhaskaran and Ponnuswamy [49]

http://www.handdatabase.org/
http://www.genome.jp/aaindex/
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Estimation of the global burden of HAND
One major obstacle against the epidemiological study 
regarding HAND is the dearth of molecularly defined 
biomarkers. Currently, a careful neuropsychiatric exami-
nation is the only solid basis; in addition to this, various 
tests including brain CT/MRI and the cerebrospinal fluid 
(CSF) analysis are frequently required to exclude various 
mimicking diseases such as meningoencephalitis, toxo-
plasmosis, and primary CNS lymphoma. Biomarkers 
measurable from peripheral plasma could greatly reduce 
the burden for diagnostic procedures, and thereby facili-
tate epidemiological and other clinical studies particu-
larly in resource-limited settings.

In view of this application, we retrospectively esti-
mated the global burden of HAND from the entire 
sequence dataset deposited in the Los Alamos HIV 
Sequence Database (https://www.hiv.lanl.gov/content/
sequence/HIV/mainpage.html), the largest database to 
date. Collectively, 46% of the cases were predicted as 
HAND, which was slightly higher than estimates from 
historical cohorts [4–7] (Fig.  5a). Among the predicted 

HAND cases, H1 was the most common cluster, fol-
lowed by H2, H3, and H4 (Fig. 5a). Geographically dis-
secting, Caribbean region was the region with the largest 
predicted HAND burden (71%), whereas Sub-Saharan 
Africa was the lowest prevalence (30%). Among HAND 
clusters, H1 was dominant in Sub-Saharan Africa and 
Asia/Middle-East/Oceania (97 and 85%, respectively). 
In other regions, no single dominant cluster was noted. 
Caribbean region was characterized by the high preva-
lence of H3 (59%). Europe and North America regions 
had relatively high prevalence of H2 (54 and 38%, 
respectively). These regional differences in viral genetic 
landscape might be associated with various factors such 
as ethnicity and human leucocyte antigen (HLA) allele 
frequencies. Among the HAND clusters, H1 had a mod-
erately higher viral load and lower CD4+ T-cell count 
compared to H2. Meanwhile, H3 had a statistically 
higher CD4+ T-cell count compared to H1 (Additional 
file 1: Figure 5). These trends were unchanged even when 
the P values were adjusted according to the FDR-based 
method [24].

P = 0.002 P = 0.003 P = 0.006
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Fig. 2  The minimal set of features predictive of HAND. Model-specific feature importance was estimated using the varImp function implemented 
in the caret package for each of the ML algorithms except SVM. Features listed in the top 20 in two or more algorithms were selected. P values 
were calculated using Welch’s t test and adjusted by the FDR-based method [24]. Adjusted P values of less than 0.05 were considered significant. 
In this manner, seven genetic features were retained (Additional file 1: Figure 2). Stepwise feature reduction was performed, and the minimal set of 
features yielding the best-performing stacked classifier was obtained. a Distributions of detected features among HAND and NonHAND groups. The 
values of each feature were converted to Z-score for visualization purposes. b Scaled AAIndex values and relative residue frequencies in sequence 
sets derived from HAND and NonHAND cases. The weights of individual sequences are normalized by the respective sequencing depths of indi-
vidual patients. The alignment position numbers correspond to the positions in the HXB2 HIV-1 sequence (accession: K03455)
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Data and code availability for future research
Both the datasets and the in-house functions created 
in this study were bundled as the R package HAND-
Prediction, and distributed on GitHub (https://github.
com/masato-ogishi/HANDPrediction). To facilitate 
future research, the entire analysis workflow was also 
publicly distributed as an HTML document (Addi-
tional file 2).

Discussion
In this work, the three genetic features of the HIV env 
gene most predictive of the HAND status were identified 
through the construction of a highly accurate classifier 
via machine learning (ML). The surprisingly small num-
ber of features, three, strongly counter-argues the pos-
sibility of overfitting and supports the generalizability of 

the model to external datasets. The set of features strati-
fied the 37 specimens derived from HAND cases into 
four clusters. The stratification process was successfully 
recapitulated by random forest algorithm, which enabled 
extrapolation of the genetic feature-based classification of 
HAND status. Estimation of global burden of HAND was 
demonstrated using the Loa Alamos HIV sequence data-
base. The regional differences in the relative frequencies 
of HAND clusters probed by this retrospective analysis 
underscore the potential usefulness of our framework as 
an aid for epidemiological research, thereby warranting 
prospective validation.

In contrast to previous studies, neurotoxicity was 
stringently distinguished from neurotropism during the 
construction of the metadataset in this study. This is 
because it is inappropriate to discuss those two distinct 
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phenotypes interchangeably, since neurotoxic viral qua-
sispecies that may trigger neurocognitive impairment 
could reside both inside and outside the CNS, and viral 
quasispecies harbored in the CNS do not necessarily 
exert neurotoxicity. Indeed, as shown in Fig. 3a, HAND-
associated genetic signatures were shared among speci-
mens derived from the CNS, lymphatic system, and 
peripheral circulation. This indicates that selection 
pressure outside the CNS is not a major driver for qua-
sispecies evolution, which is consistent with a recent 
observational study led by Stefic et al. [27].

It is an exciting possibility that viral sequences obtained 
from peripheral circulation could be used as a diagnostic 
biomarker of HAND. Whether these genetic biomark-
ers provide clues to HAND at asymptomatic stage is of 
great interest, as many neuropsychiatric tests suffer from 
lower diagnostic performance at this stage [28, 29]. How-
ever, one caveat of this study is that the sequences were 
mainly obtained from AIDS patients without viremia 
suppression by modern cART. In contrast, prompt ini-
tiation of cART is the gold standard of contemporary 
clinical practice [30]. In this setting, immune reconsti-
tution due to cART may affect viral quasispecies with 
HAND-associated signatures and alter their systemic 
distributions. Meanwhile, CNS penetration effective-
ness score of cART compound is another consideration, 
since higher penetration score has been associated with 
lower neurocognitive impairment [31]. However, how 
the architecture of HIV quasispecies is affected by vari-
ous cART regimens, and what roles these alterations may 
play in the pathogenesis of HAND, should be elucidated 
in future research.

Patient-level features are more informative than 
sequence-level features for predicting patient-level 
phenotypes [32]. Consistent with this viewpoint, the 
summary statistics representing the distribution of phys-
icochemical properties of intrapatient viral quasispecies 
were used as the features on the basis of which ML was 
performed. One caveat of this approach is the sequence 
depth per patient; observed relative frequencies of 
each of the amino acid variants at each of the positions 
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retrieved from The HAND Database [23]. The RF classifier (Fig. 3b) was 
applied to predict the corresponding HAND clusters. HAD, HIV-associ-
ated dementia; HIVE, HIV encephalitis
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Fig. 5  Estimation of the global burden of HAND. A total of 19,800 env sequences from 1619 specimens were retrieved from The Los Alamos HIV 
Sequence Database. The RF classifier (Fig. 3b) was applied to predict the corresponding HAND clusters
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may not reflect true intrapatient abundance with lim-
ited sequencing depth. Alternatively, next-generation 
sequencing platform could allow researchers to estimate 
relative abundance of variants with remarkably improved 
accuracy. We have previously shown that intrapatient 
abundances of viral quasispecies could be reliably esti-
mated bioinformatically from short-read sequence data-
sets generated by the Illumina MiSeq platform [33]. This 
process is known as “quasispecies reconstruction”. Inte-
gration of high-throughput sequencing technology and 
quasispecies reconstruction could enable more accurate 
estimations of intrapatient quasispecies abundance with 
augmented scalability. Such large-scale datasets could 
bolster the precision and accuracy of the HAND predic-
tion framework presented in this work.

A number of gp120 variants have been associated 
with neurotropism and/or neurotoxicity. For example, 
Dunfee et al. [34] reported T283N as a neurotoxic vari-
ant causing enhanced macrophage infectivity and neu-
ronal degeneration. Duenas-Decamp et  al. [27] showed 
that the otherwise non-macrophage-tropic strain LN40 
can be transformed into a macrophage-tropic strain by 
introducing 283  N substitution. However, in an already 
macrophage-tropic strain (B33), substitution of 283  N 
into 283T did not alter tropism, indicating the existence 
of other determinants [27]. In our analysis, three posi-
tions, namely, Pos291, Pos315, and, Pos340, were identi-
fied to be the most predictive for HAND status (Fig. 2b). 
Holman and Gabuzda also reported the involvement 
of Pos315 in HAND-predicting signature [21]. Pos315 
resides in the tip of the V3-loop, and various variants 
such as R315K, R315T, and R315Q have been associ-
ated with reduced efficacy of neutralizing antibodies 
(NAbs) [35–38]. In our analysis, R315K and R315Q were 
enriched in the HAND and NonHAND cases, respec-
tively (Fig. 2b). Although the other two positions, Pos291 
and Pos340, were less intensively studied, S291 (enriched 
in NonHAND) has been associated with decreased 
infectivity to macrophages in R5 virus [27]. Meanwhile, 
compartmentalization of N340, a variant enriched in 
NonHAND in our analysis, to the CNS was observed in 
some cases [39]. Both S291 and N340 were also identified 
in this study (Additional file 1: Figure 4).

The current concept of HAND is heterogeneous due 
to its nature of being diagnosed on the basis of symp-
tomatic criteria and by exclusion of other confound-
ing conditions. To our knowledge, there is no attempt 
to date to molecularly stratify the disease entity. In this 
work, four HAND clusters were identified based on a 
clustering analysis. Particularly, H2 is interesting because 
it was associated with HIVE (Fig.  4). Since H2 and the 
closest cluster H4 were distinguished by the Pos340 
feature (Fig.  3), and H4 was associated with both HAD 

and HAD +  HIVE (Fig.  4), Pos340 might be important 
in separating HAND and HIVE. Moreover, geographi-
cally speaking, both H2 and H4 seemed to be enriched 
in Europe and North America (Fig. 5). Such geographical 
difference, if is the case, should be taken into considera-
tion when interpreting various research on HAND from 
various nations. The biological and epidemiological rel-
evance of those variants and clusters has yet to be eluci-
dated, thus warranting further research.

This study has some limitations, similarly to prior stud-
ies. First, since this is a retrospective observational study, 
no causative link can be definitively established. Amino 
acid signatures detected could be relevant to the neuro-
toxicity of HIV, but should not be interpreted as causa-
tive of HAND. Second, although unprecedented size, the 
numbers of unique specimens and patients were fairly 
small. Although we successfully reduced the number of 
required genetic features down to three, the risk of over-
fitting to the entire dataset should not be negated. Pro-
spective collection of the adequate size of specimens 
would be the only strategy to effectively resolve this 
concern. Third, since most of the currently available env 
sequences were derived from HAD cases, the most severe 
form of HAND, the utility of our analysis in predicting 
early-stage HAND has yet to be fully verified. Similarly to 
this point, the effect of cART regimens on the evolution-
ary trajectory of viral quasispecies should also be taken 
into consideration in future research. We do not argue 
that our analysis provides all answers; rather, we hope 
this work could be a starting point. Therefore, we made 
publicly available the datasets, the custom codes, and the 
entire analysis workflow for the community.

Conclusions
In this study, robust prediction of HAND status from 
three genetic features derived from the HIV env 
sequences was demonstrated. Furthermore, based on the 
combination of these three genetic features, we strati-
fied HAND into four clusters with unique characteris-
tics. These results could be utilized as a diagnostic aid 
after prospectively validation. Finally, the biological and 
epidemiological significance of newly discovered genetic 
features, potentially providing the basis of the develop-
ment of novel cART regimens specifically optimized for 
HAND-associated quasispecies, are to be elucidated in 
future research.

Methods
Computational analysis
All computational analyses were conducted using R ver. 
3.4.1 (https://www.r-project.org/) [40]. The latest ver-
sions of R packages were consistently used. The dataset 
and the scripts generated in this study are available as the 

https://www.r-project.org/
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R package HANDPrediction on GitHub (https://github.
com/masato-ogishi/HANDPrediction). The entire analy-
sis workflow is also available as an HTML document 
(Additional file 2).

Assembly of the HIV env sequence metadataset
A thorough literature search was conducted to collect 
previously published studies on HIV neurotoxicity and/
or neurotropism. Sequences and accompanying meta-
data were retrieved from the Los Alamos HIV Sequence 
Database (http://www.hiv.lanl.gov/content/sequence/
HIV/mainpage.html/) and manually curated. Diagnoses 
of HIV-associated neurological conditions were retrieved 
from original publications for all of the cases. The sub-
categories of HAND (AMI, MND, and HAD) were 
combined as ‘HAND’, and the AIDS-dementia complex 
(ADC) was also considered ‘HAND’ in this study. HIVE 
and other NPDs were labeled as such. Cases with no neu-
rocognitive impairments were labeled as ‘NonHAND’ 
regardless of other CNS diseases including bacterial 
meningitis, toxoplasmosis, and CNS lymphoma. The 
sample sources were categorized into one of the follow-
ing categories: ‘CNS’, ‘Blood’, ‘Lymph’, and ‘Others’.

Alignment of HIV env sequences
The HXB2 HIV-1 sequence (accession: K03455) was used 
as a reference. The env region was identified by mapping 
sequences to the reference sequence using Geneious ver 
8.1.8 (www.geneious.com). The built-in Geneious mapper 
was used with the “Medium Sensitivity” option selected. 
Default parameters were used. Sequences not mapped to 
the reference were discarded from the metadataset. The 
env C2V3C3 regions were manually determined, clipped, 
and re-aligned with MAFFT [41]. The alignment was 
refined and translated using the HIVAlign tool with the 
HMM-align option selected (https://www.hiv.lanl.gov/
content/sequence/VIRALIGN/viralign.html). Alignment 
gaps shared by the reference sequence and more than 
75% of the aligned sequences were manually removed. 
Sequences containing stop codons inside the C2V3C3 
region were discarded.

Machine learning
AAIndex matrix
AAIndex metrics (http://www.genome.jp/aaindex/) 
[42] were adopted as quantitative measures of biophys-
icochemical properties of each amino acid. A total of 531 
AAIndices were retrieved from the BioSeqClass package 
available in Bioconductor [43]. The 76 AAIndices whose 
names matched with one of the following phrases were 
selected for machine learning: ‘Hydro’, ‘Charge’, ‘Polar’, 
‘Distribution’, and ‘Flexi’. A C2V3C3 sequence was con-
verted to a numerical vector comprising a set of AAIndex 

values corresponding to each amino acid residue at 
each alignment position. For all gaps and ambiguities 
(i.e., two or more amino acid residues indicated), values 
for all AAIndices were set to zero. In this manner, all 
sequences were converted to a numerical matrix, which 
had 76  ×  189 (188 alignment positions plus one gap) 
columns.

Hold‑out validation
The metadataset was split into the training and testing 
subdatasets at a ratio of 4:1. Note that the metadataset 
was split at the patient level, not at the sequence level. 
Sequence-level data splitting is inappropriate because 
the HAND vs NonHAND status is assigned to patients, 
not to individual sequences, and the genetic relatedness 
of the sequences derived from the same patient will likely 
lead to biased classification.

Preprocessing
In the training subdataset, columns with zero variance 
and near-zero variance were removed using the preProc-
ess function with the ‘zv’ and ‘nzv’ method implemented 
in the caret package [44]. Then, highly correlating col-
umns were filtered using preProcess with the ‘corr’ 
method. After these filtration steps, 3169 unique fea-
tures were retained. Finally, the features were centered 
and scaled using preProcess with the ‘center’ and ‘scale’ 
methods. All preprocessing steps were carried out with 
default parameter settings. In the testing phase, the same 
preprocessing conditions prepared in the training phase 
were applied.

Machine learning with different algorithms
For simplicity, binary classification was attempted, i.e., 
HAND vs NonHAND. The following algorithms were 
compared for performance: support vector machine 
(SVM), random forest (RF), gradient boosting machine 
(GBM), extreme gradient boosting with linear booster 
(XGBL), and extreme gradient boosting with tree booster 
(XGBT), all of which are implemented in the caret pack-
age. “Stacking” of the classifiers was done using XGBT as 
a supervised learning algorithm. Ten-fold repeated three-
fold CV was conducted in the training phase to improve 
the generalizability of the classifiers. Their predictive per-
formances, i.e., sensitivity, specificity, and overall accu-
racy, were estimated using the testing subdataset.

Feature importance analysis
Model-specific feature importance was estimated using 
the varImp function implemented in the caret package. 
All models except SVM tested in this study have their 
own feature importance measures. The 20 most impor-
tant features from each of the models were combined, 

https://github.com/masato-ogishi/HANDPrediction
https://github.com/masato-ogishi/HANDPrediction
http://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html/
http://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html/
http://www.geneious.com
https://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html
https://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html
http://www.genome.jp/aaindex/
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and features detected in two or more different models 
were selected. Next, the distribution of the feature val-
ues among the HAND and NonHAND groups were 
compared by Welch’s t test, and P values were adjusted 
by the FDR-based method by Benjamini and Hochberg 
[24]. Features whose adjusted P values were less than 0.05 
were selected. Finally, stepwise feature reduction was 
iteratively performed. ML was performed on the train-
ing subdataset with one of the features removed, and the 
accuracy in the testing subdataset. The removed feature 
giving the highest accuracy of the stacked classifier was 
removed for the next iteration.

Clustering analysis
K-means clustering was performed on the minimal 
set of the most important features, and the predicted 
probabilities by each of the classifiers. Visualization of 
the heatmap and dendrograms were performed using 
the ComplexHeatmap package [45]. Clusters enriched 
with the HAND cases were identified by manual 
inspection of the dendrogram. Clusters enriched with 
the NonHAND cases were combined and labeled as 
‘N’. The minimal set of the most important features 
was used to construct a multiclass random forest clas-
sifier classifying the HAND clusters and N using the 
entire dataset.

Characterization of HAND clusters using The HAND 
Database
The HAND Database [23] (http://database.handdatabase.
org/) was used to characterize each of the HAND clus-
ters. The entire dataset was downloaded as is. A total of 
1687 env sequences from 68 specimens were obtained. 
Sequences were aligned to the HXB2 reference sequence, 
converted to a numerical matrix, preprocessed using the 
preprocessing models prepared in the training phase. 
For each specimen, the corresponding HAND cluster 
was assigned by the multiclass random forest classi-
fier trained during the clustering analysis. The original 
labels of neuropathological conditions and the prediction 
results were linked and visualized as a Sankey plot using 
the googleVis package [46].

Estimation of the global burden of HAND using the Los 
Alamos HIV Sequence Database
The Los Alamos HIV Sequence Database (https://www.
hiv.lanl.gov/content/sequence/HIV/mainpage.html) was 
used to demonstrate a retrospective estimation of the 
global burden of HAND. The sequences whose “culture 
method” were either “primary” or “uncultured” were 
downloaded. A total of 19800 env sequences from 1619 
specimens were obtained. HAND status was predicted as 
described above.
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