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Single‑molecule techniques to quantify 
and genetically characterise persistent HIV
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Abstract 

Antiretroviral therapy effectively suppresses, but does not eradicate HIV-1 infection. Persistent low-level HIV-1 can still 
be detected in plasma and cellular reservoirs even after years of effective therapy, and cessation of current treatments 
invariably results in resumption of viral replication. Efforts to eradicate persistent HIV-1 require a comprehensive 
examination of the quantity and genetic composition of HIV-1 within the plasma and infected cells located in the 
peripheral blood and tissues throughout the body. Single-molecule techniques, such as the single-copy assay and 
single-genome/proviral sequencing assays, have been employed to further our understanding of the source and 
viral dynamics of persistent HIV-1 during long-term effective therapy. The application of the single-copy assay, which 
quantifies plasma HIV-1 RNA down to a single copy, has revealed that viremia persists in the plasma and CSF after 
years of effective therapy. This low-level HIV-1 RNA also persists in the plasma following treatment intensification, 
treatment with latency reversing agents, cancer-related therapy, and bone marrow transplantation. Single-genome/
proviral sequencing assays genetically characterise HIV-1 populations after passing through different selective pres-
sures related to cell type, tissue type, compartment, or therapy. The application of these assays has revealed that the 
intracellular HIV-1 reservoir is stable and mainly located in CD4+ memory T cells. Moreover, this intracellular HIV-1 
reservoir is primarily maintained by cellular proliferation due to homeostasis and antigenic stimulation, although cryp-
tic replication may take place in anatomic sites where treatment is sub-optimal. The employment of single-genome/
proviral sequencing showed that latency reversing agents broadly activate quiescent proviruses but do not clear the 
intracellular reservoir. Recently, full-length individual proviral sequencing assays have been developed and the appli-
cation of these assays has revealed that the majority of intracellular HIV-1 DNA is genetically defective. In addition, the 
employment of these assays has shown that genetically intact proviruses are unequally distributed in memory T cell 
subsets during antiretroviral therapy. The application of single-molecule assays has enhanced the understanding of 
the source and dynamics of persistent HIV-1 in the plasma and cells of HIV-infected individuals. Future studies of the 
persistent HIV-1 reservoir and new treatment strategies to eradicate persistent virus will benefit from the utilization of 
these assays.
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Background
The development of antiretroviral therapy (ART) for the 
treatment of human immunodeficiency virus (HIV-1) 
remains one of the great triumphs of modern medicine. 
However, despite its success, this therapy has a number 

of limitations. Effective therapy requires meticulous life-
long adherence, which many HIV-infected patients find 
challenging. Nearly all treatment regimens are associated 
with some short-term and long-term toxicity. Moreo-
ver, although therapy suppresses viral replication, it does 
not completely restore health: treated HIV-1 disease is 
attended by chronic inflammation, persistent T cell dys-
function, and a shorter life expectancy [1]. In addition, 
ART is expensive and cannot be delivered sustainably 
to everyone in need. Finally, and very importantly, since 
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HIV-1 DNA persists as an integrated genome in long-
lived or slowly-dividing cellular reservoirs, current ther-
apeutic approaches are unlikely to prove curative [2, 3]. 
In light of these challenges, treatments aimed at HIV-1 
eradication stand out as a highly promising avenue to 
confront and defeat the HIV-1 epidemic [4, 5]. To move 
forward down the promising path of HIV-1 eradication 
strategies, it is critically important to identify where and 
how reservoirs of HIV-1 persist within HIV-infected 
individuals on ART and the effects of new curative treat-
ment strategies on these reservoirs.

To measure the level and genetic composition of per-
sistent HIV-1 in plasma, cell and tissue reservoirs, single-
molecule techniques such as the single-copy assay (SCA) 
and single-genome/proviral sequencing assays (SGS/SPS) 
have been employed [6, 7]. SCA has a broad dynamic 
range (1–106 copies/ml) and a limit of detection down to 
1 copy of HIV RNA [7]. Using this assay, it was found that 
approximately 80% of participants with plasma HIV-1 
RNA levels below 50 copies/ml had quantifiable viremia 
[7, 8]. Notably, this persistent viremia was evident even 
after seven years of therapy with an overall median 
HIV-1 RNA level of 3 copies/ml [9] and can result in viral 
rebound when effective treatment is terminated [10, 11]. 
Therefore, monitoring the levels of persistent viremia is 
not only crucial for confirming the continued effective-
ness of ART, but also for determining the effectiveness of 
new curative treatment strategies for eliminating HIV-1.

Identification of the cells that contribute to the latent 
HIV-1 reservoir and their maintenance during long-term 
effective therapy is crucial so that these cells can be tar-
geted for HIV-1 eradication. A well-defined reservoir of 
HIV-1 is memory CD4+ T cells, where HIV-1 latency 
is established when an activated CD4+ T cell becomes 
infected by HIV-1, but transitions to a memory T cell 
instead of undergoing lytic infection [2, 12–15]. These 
memory T cells contain integrated HIV-1 proviruses and 
the repression of transcriptional initiation (due to the 
chromatin environment and recruitment of histone dea-
cetylases) or post-transcriptional blocks (nuclear export, 
translation) enable HIV-1 to evade detection and clear-
ance by the immune system [13, 16, 17]. The study of viral 
reservoirs has largely focused on components of periph-
eral blood, but recent findings suggest that most infected 
cells are actually found in tissue sites—such as the spleen, 
lymph nodes and GALT—where 90% of lymphocytes 
are located [18–21]. The application of SGS/SPS assays 
provides a comprehensive understanding of the genetic 
characteristics and dynamics of persistent HIV-1 across 
a range of tissues and cells and how new treatments, such 
as latency reversing agents affect the genetic composition 
of the intracellular HIV-1 reservoir [22–28].

The amount of replication-competent HIV-1 in acti-
vated, resting memory, and memory T cell subsets or 
the actual size of the latent HIV-1 reservoir, during effec-
tive antiretroviral therapy is unclear [29]. The estimate of 
latently infected cells is 1 replication-competent provirus 
per 1 million resting memory CD4+ T cells [2, 30, 31]. 
However, as recently described by Ho and colleagues, 
the number of replication-competent proviruses in these 
cells is underestimated and could be 60-fold higher than 
previously predicted [32]. The design of future HIV-1 
curative therapies require a more thorough understand-
ing of the distribution of replication-competent HIV-1, 
i.e. the latent reservoir, within T cell subsets. The employ-
ment of recently developed full-length individual proviral 
sequencing assays will assist with the identification of the 
precise cellular location and amount of genetically intact 
virus that should be targeted by new curative therapies 
[32–35].

This review will discuss how the application of single-
molecule techniques have enhanced our understanding 
of the level, location, and cellular mechanisms contribut-
ing to persistent HIV-1 in the plasma, cells and tissues of 
HIV-1-infected individuals on effective therapy. In addi-
tion, this review will describe how these technologies 
have been applied to investigate the effectiveness of cura-
tive strategies.

Quantification of persistent HIV‑1 RNA using the 
single‑copy assay
In 2003, the original single-copy assay (SCA) was devel-
oped to quantify the levels of persistent viremia in the 
plasma of participants on effective therapy [7]. This assay 
uses larger plasma sample volumes (7  ml), improved 
nucleic acid isolation and purification techniques, and 
RT-PCR to accurately quantify HIV-1 in plasma sam-
ples over a broad dynamic range (1–106 copies/ml). The 
limit of detection down to 1 copy of HIV-1 RNA makes 
SCA 20–50 times more sensitive than currently approved 
commercial assays. To control for recovery of HIV-
1, each plasma sample is spiked with an internal virion 
standard derived from an unrelated retrovirus, the repli-
cation competent avian sarcoma-leukosis retrovirus vec-
tor RCAS BP(A). The employment of SCA revealed that 
approximately 80% of participants with plasma HIV-1 
RNA levels below 50 copies/ml had quantifiable viremia 
[7, 8]. This persistent viremia was evident in a study of 40 
participants even after 7 years of therapy with an overall 
median HIV-1 RNA level of 3 copies/ml [9]. The level of 
viremia correlated with pre-therapy plasma HIV-1 RNA, 
but not with the specific treatment regimen. A nonlinear 
mixed effects model revealed a biphasic decline in plasma 
RNA levels occurring over weeks 60–384: an initial phase 
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of decay with a half-life of 39  weeks and a subsequent 
phase with no perceptible decay. These data suggest there 
is a continual cellular source of persistent virus which 
contributes to viral rebound if ART is terminated.

Low-level viremia has been detected in the plasma of 
elite controllers; HIV-infected individuals who maintain 
plasma HIV-1 RNA levels < 50 copies/mL in the absence 
of any treatment [36–38]. Quantification of paired 
plasma and cerebrospinal fluid (CSF) samples from elite 
controllers revealed that significantly fewer CSF samples 
had detectable HIV-1 RNA compared to plasma sam-
ples 19 and 54% respectively (p = 0.02) [36]. Studies that 
measured HIV-1 RNA levels in paired plasma and CSF 
samples from ART-suppressed HIV-infected partici-
pants using SCA revealed that the proportion of samples 
with measurable HIV-1 RNA was lower in CSF samples 
(14–17%) compared to plasma samples (57–64%) and 
the median levels of HIV-1 RNA in the CSF were signifi-
cantly lower (p ≤ 0.0001) [39]. HIV-1 RNA was quanti-
fied in the CSF even after 10  years of effective therapy 
and correlated to elevated levels of CSF neopterin, a 
marker for intrathecal immune activation. To date, it is 
unknown whether the infrequent and lower amounts of 
HIV-1 RNA in the CSF of participants on effective ther-
apy reflect viral production within the CNS where ART 
levels can be lower or virion exchange between CSF and 
the blood.

Studies of persistent virus using a modified SCA have 
found that plasma viremia decays slowly with time [40, 
41]. In a recent study, molecular beacon technology with 
single-copy detection was used to quantify HIV-1 RNA 
in plasma and CSF of participants on effective ART expe-
riencing neurocognitive disorders [42]. These studies 
revealed that 42% of CSF samples from 220 HIV-positive 
individuals contained HIV-1 RNA persisting for over 
7  months in 69% of these participants. This low-level 
HIV-1 RNA in the CSF correlated with persistent viremia 
in the plasma and lower concentrations and distribution 
of ART into the CNS. However, poor neurocognitive per-
formance was associated with lower HIV-1 RNA levels 
in the CSF and discordance between HIV-1 RNA levels 
between the CSF and plasma.

The effects of treatment intensification 
on persistent viremia
In addition to the persistence of long-lived latently 
infected cells, low-level viral replication has been pro-
posed as a mechanism that maintains HIV-1 during long-
term effective therapy [43, 44]. If on-going replication is 
contributing to persistent viremia, treatment intensifica-
tion, the addition of one or more compounds to exist-
ing ART, should reduce this residual viremia. However, 
treatment intensification—for example, the addition of 

another drug such as raltegravir, to existing ART or treat-
ing participants with an intensified therapy of 5 versus 
3 drugs– has shown no perceptible change in persistent 
viremia in individuals receiving the intensified treatment, 
which suggests that on-going viral replication is not a 
probable source of persistent viremia [45–49]. In con-
trast, some studies of treatment intensification revealed 
that patients had an increase in episomal (unintegrated) 
HIV-1 DNA and decreased amounts of unspliced HIV-1 
RNA in CD4+ T-cells isolated from the terminal ileum 
[50, 51]. The results of these latter studies support the 
concept that some viral replication can occur despite 
suppressive HIV-1 therapy.

The effects of latency reversing agents 
and cancer‑related therapies on persistent viremia
HIV-1 latency is established when an activated CD4+ 
T cell becomes infected by HIV-1 but transitions to a 
memory T cell carrying an integrated HIV-1 provirus 
that is transcriptionally silent, thus evading detection and 
clearance by the immune system [2, 12, 14, 15]. Current 
research is focused on developing interventions such as 
latency reversing agents which involve the use of small 
molecules approved for cancer therapy, including histone 
deacetylase inhibitors (HDACis), to induce viral tran-
scription in latently infected cells followed by immune 
mediated clearance of these virus-producing cells 
[52–55]. The administration of HDACis, including pan-
obinostat, vorinostat, and romidepsin, to HIV-infected 
persons on effective ART enhanced intracellular HIV 
transcription and significantly increased cell-associated 
HIV-1 RNA (CA HIV-1 RNA) consistent with reversing 
latency [53–55]. In addition, treatment with panobinostat 
and romidepsin also increased plasma HIV-1 RNA levels, 
whereas no effect on plasma HIV-1 RNA levels was found 
during single-dose or multi-dose vorinostat therapy 
[52–55]. In 2011, disulfiram [bis(diethylthiocarbamoyl)
disulfide], a compound used to treat alcoholism, was 
found to reactivate latent HIV-1 in a cell-based screen 
[56]. Clinical trials were established to treat HIV-infected 
individuals on effective ART with multi-dose disulfiram. 
The administration of disulfiram transiently increased 
plasma HIV-1 RNA levels in a subset of participants [57, 
58], but there was no demonstrable effect on the size of 
the intracellular latent HIV-1 reservoir after treatment 
with HDACis or disulfiram.

Additional compounds being developed for treat-
ing cancer are being investigated as potential therapies 
to reduce persistent HIV-1 [59]. The upregulation of 
immune checkpoint coreceptors, such as programmed 
death 1 (PD-1) and cytotoxic T-lymphocyte associated 
protein 4 (CTLA-4), on malignant cells allows them to 
avoid immune destruction. Antibodies directed against 
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PD-1, CTLA-4 and a ligand of PD-1 called PD-L1 or 
immune checkpoint inhibitors are being used effec-
tively in cancer immunotherapy to enhance antitumor 
responses. Due to chronic HIV-1 antigenic stimulation, 
immune checkpoint coreceptors are upregulated on 
CD4+ and CD8+ T cells of HIV-1-infected individu-
als, resulting in T exhaustion and disease progression 
[60, 61]. Moreover, cells expressing PD-1 are enriched 
for integrated HIV-1 DNA in the blood and lymph node 
indicating that PD-1 expressing cells play a role in HIV-1 
persistence [60]. The treatment of six HIV-infected indi-
viduals on effective ART with an antibody to the PD-1 
ligand, anti-PD-L1, enhanced HIV-1 specific T cells but 
did not affect the levels of persistent viremia [62]. How-
ever, the treatment of an HIV-infected individual on ART 
with melanoma with anti-CTLA-4 (ipilimumab) resulted 
in an increase in cell-associated HIV-1 RNA and a cycli-
cal decrease in plasma HIV-1 RNA following each treat-
ment with an overall decline from 60 to 5 copies/ml [63]. 
Cancer-related therapies are being explored for their 
capacity to enhance latency reversal or promote killing 
of virus producing cells and several new therapies are in 
clinical trials [64].

Memory T cells contain one HIV‑1 DNA molecule
Efforts to eradicate HIV-1 require a comprehensive 
examination of the quantity and genetic composition 
of HIV-1 within infected cells located in cells and tis-
sues throughout the body. To determine the relationship 
among proviruses in cells from peripheral blood and tis-
sue compartments, a single-cell sequencing technique 
was developed which allowed for the examination of indi-
vidual viral DNA molecules from single cells. The quan-
tification of viral DNA molecules per infected cell and 
the relatedness of viral DNA sequences to one another, 
to DNA in other cells, and to contemporaneous plasma 
virus RNA can also be determined. The application of the 
single-cell sequencing assay to cells from untreated HIV-
infected participants revealed a correlation between viral 
RNA levels and frequency of intracellular HIV-1 DNA 
infection [23]. When analyzing the degree of multiple 
infection of CD4+ T-cells in peripheral blood and lymph 
node tissue it was found that the vast majority (>  90%) 
of the CD4+ T cells from peripheral blood and lymph 
node tissue contained only one HIV-1 DNA molecule, 
implying a limited potential for recombination in virus 
produced by these cells [23]. This result is in contrast 
to the generally accepted belief that most HIV-infected 
cells contain multiple HIV DNA molecules [65, 66]. 
These studies demonstrated a similar genetic composi-
tion of HIV-1 in lymph node tissue, peripheral blood cells 
and plasma of untreated participants [24]. This finding 
implies ongoing exchange between these compartments 

during untreated HIV-1 infection. In these single-cell 
studies not one HIV-1-infected monocyte was identi-
fied indicating that monocytes are not a major reservoir 
within HIV-1 infected untreated individuals.

Genetic characterisation of persistent virus 
in plasma and cells
To determine the source of persistent viremia and the 
effects of treatment initiation on the latent HIV-1 res-
ervoir, the genetic composition of persistent virus in the 
plasma and cells from patients on long-term effective 
therapy must be assessed. In a seminal study of memory 
T cell subsets, Chomont et  al. found integrated HIV-1 
DNA in central memory T cells (TCM) and transitional 
memory T cells (TTM). They found that the low prolifera-
tion rate of TCM allows them to persist in HIV-1-infected 
participants with relatively high CD4+ T cell counts. In 
participants with low CD4+ counts, TTM cells appear 
to be the major reservoir, which is maintained by IL-7 
induced homeostatic proliferation and plasma levels of 
IL-7 correlated inversely to the rate of decrease of the 
reservoir. This study suggests that there are at least two 
cellular mechanisms by which the reservoir within HIV-
1-infected memory CD4+ T-cells is maintained [12].

The study of viral reservoirs has largely focused on 
components of peripheral blood. However, recent find-
ings suggest that most infected cells are actually found 
in tissue sites—such as the spleen, lymph nodes and 
GALT—where 90% of lymphocytes are located [18–21, 
67, 68]. Therefore, a more comprehensive understanding 
of the genetic characteristics and dynamics of persistent 
HIV-1 across a range of tissues and cells is necessary. 
Single-genome/proviral sequencing (SGS/SPS) has been 
applied to assess the genetic composition of plasma-
derived HIV-1 RNA, cell-associated (CA) HIV-1 RNA 
and HIV-1 DNA. In conducting these assays, HIV-1 
RNA is extracted from plasma and CA HIV-1 RNA and 
DNA is extracted from cells derived from peripheral 
blood, gut-associated lymphoid tissue (GALT), lymph 
nodes, and bone marrow [20–23, 25, 67] and subse-
quently sequenced at limiting dilution to assess genetic 
diversity, genetic evolution, and infection frequency 
[22–25, 27, 69]. Genetic characterisation of HIV-1 DNA 
extracted from memory T cell subsets including TCM, 
TTM, effector memory T cells (TEM), and myeloid cells 
from peripheral blood, GALT, and lymph nodes, from 
ART-suppressed participants strongly suggests that the 
primary barrier to a cure is the remarkably stable pool of 
memory T cells. In agreement with earlier studies, SGS/
SPS analyses revealed that naïve T cells contain HIV-1, 
albeit at a lower infection frequency compared to mem-
ory T cell subsets [70–72]. These studies also revealed 
that participants treated during acute infection had 
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genetically homogeneous HIV-1 populations in all cells 
from all anatomic compartments and substantially lower 
HIV-1 reservoir size in blood, gut, and lymph node.

A study by Carter et  al. [73] has shown that HIV-1 
infects multipotent hematopoietic progenitor cells 
(HPCs) and that latent HIV-1 infection was established 
in some of these HPCs, although further research was 
needed to test whether persistent virus in memory T 
cells in participants on effective therapy was partially 
derived from HPCs. Recent studies of HPCs (Lin-CD34-) 
sorted from bone marrow revealed that these cells do 
not appear to contain HIV-1 and if this cellular popula-
tion is infected, the frequency of infection is very low 
(<  0.0005%) [22, 74].  In addition,  studies attempted to 
investigate the infection frequency of myeloid cells using 
SGS/SPS, but there was a high likelihood that the sorted 
myeloid cell population was contaminated with T cells, 
which still leaves the role of myeloid cells in the persis-
tence of HIV-1 an open question [25, 27]. However, the 
overall low HIV-1 infection frequency of myeloid cells 
indicates that if myeloid cells from peripheral blood, 
GALT and lymph node are infected, their importance as 
a latent HIV-1 reservoir in participants on ART may be 
limited.

Finally, applying these sensitive SGS/SPS techniques to 
compare the genetic composition of intracellular HIV-1 
populations to pre-ART plasma extracellular viral RNA 
showed very low levels of genetic change during long-
term effective therapy. In fact, one study estimated that 
the evolutionary rate was no greater than 0.0006 and 
0.002 nucleotide substitutions/site during the 4–12 years 
of suppressive therapy for the participants treated dur-
ing early and chronic infection, respectively [25]. These 
results suggest viral replication is not a major cause of 
persistence in the cellular populations analysed and that 
persistent intracellular HIV-1 DNA is most likely main-
tained by homeostatic and/or antigen-specific cellular 
proliferation [12, 25–27].

Anti‑latency compounds broadly activate latent 
HIV‑1 proviruses
A promising HIV-1 curative strategy called “shock and 
kill” involves treating patients on effective antiretrovi-
ral therapy with anti-latency compounds, such as his-
tone deacetylase inhibitors (HDACIs), which enhance 
HIV-1 transcription and reactivate or “shock” provirus 
from latent reservoirs [52–55]. The administration of 
the HDACIs, panobinostat, vorinostat, and romidepsin 
to HIV-1 infected individuals on antiretroviral therapy 
induces a significant increase in CA HIV-1 RNA from 
CD4+ T cells [53–55]. However, it is important to discern 
whether the increases in CA HIV-1 RNA are due to acti-
vation of a subset of proviruses or to global non-selective 

activation of a broad spectrum of latent proviruses. SGS/
SPS analyses of CA HIV-1 RNA and DNA and plasma-
derived RNA showed that the transcriptomes following 
panobinostat, vorinostat, and romidepsin administration 
are genetically diverse and intermingle on phylogenetic 
trees with intracellular HIV-1 DNA, indicating activation 
of transcription from an extensive range of integrated 
latent proviruses [69, 75]. HIV-1 sequences from blood 
CD4+ T cells and intestinal lamina propria mononuclear 
cells (LPMCs) of ART-suppressed individuals during and 
after treatment with panobinostat or romidepsin were 
compared to sequences from analytical treatment inter-
ruption (ATI) plasma after all therapy was stopped. These 
studies identified CA HIV-1 RNA and DNA sequences in 
the blood and LPMCs collected during panobinostat or 
romidepsin treatment that were closely related or iden-
tical to plasma sequences from the ATI [69, 75]. This 
demonstrates that both the intestines and blood are 
important reservoirs of HIV-1 during effective therapy 
and that these anatomic sites can harbour HIV-1 capable 
of emerging during a treatment interruption.

Full‑length individual proviral sequencing 
to identify the latent HIV‑1 reservoir
The design of future HIV-1 curative therapies require 
a more thorough understanding of the distribution of 
replication-competent HIV-1, i.e. the latent reservoir, 
within T cell subsets. Even though SGS/SPS can provide 
an in-depth genetic analysis and infection frequency of 
HIV-1 within specific T cell subsets, these assays overes-
timate the amount of replication-competent virus which 
resides within cells (Fig.  1) [34]. Therefore, full-length 
HIV sequencing of  >  90% of the HIV genome has been 
developed by several research groups [32–35]. The ini-
tial full-length HIV-1 assay involved the amplification 
of four overlapping segments of a single HIV-1 genome 
which were then sequenced and consolidated into one 
genome [32]. This assay allowed for the identification of 
defective versus intact HIV-1 genomes and studies with 
this method revealed that the latent HIV-1 reservoir was 
underestimated by earlier in  vitro assays [32]. Recently 
two research groups have developed assays utilizing next 
generation sequencing to amplify and sequence single 
near full-length HIV-1 proviruses within CD4+ T cell 
subsets [34, 35], which allows for in-depth genome-scale 
analyses of the HIV-1 populations in cells sorted from the 
peripheral blood and anatomic tissue sites. The applica-
tion of full-length individual proviral sequencing reveals 
that intact proviruses which potentially contribute to 
viral rebound following a treatment interruption were 
unequally distributed across T cell subsets. In addition, 
the presence of identical sequence expansions of intact 
proviruses indicates that proliferating cells contain virus 
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capable of rebound and actively contribute to the latent 
reservoir.

Alternative methods for measuring persistent 
HIV‑1
Several methods for measuring persistent HIV-1 have 
been developed, and these assays identify replication-
competent proviruses to varying degrees of sensitivity 
and specificity (Table  1). These can be categorised into 
cell culture based assays and PCR-based assays.

Cell culture based assays
The principal assay for estimating the amount of rep-
lication-competent provirus in resting memory T cells 
is the Quantitative Viral Outgrowth Assay (QVOA). In 

performing this assay resting memory CD4+ T cells 
are cultured at limiting dilution and stimulated with 
a T cell mitogen, such as phytohemagglutinin (PHA), 
to activate the transcription of the proviruses within 
these cells [76]. These activated cells are co-cultured 
with HIV-1 negative donor CD4+ T cells and virions 
released into the supernatant are then quantified by 
real-time quantitative PCR or enzyme-linked immuno-
sorbent assay. However, recent studies have shown that 
not all replication-competent virus is induced by this 
method and that the QVOA underestimates the HIV-1 
latent reservoir by as much as 60-fold [31]. Another 
assay, the Tat/Rev Induced Limiting Dilution Assay 
(TILDA) also involves stimulation of enriched CD4+ 
T cells with PHA and ionomycin to induce provirus 

HIV provirus 
Human Genomic DNA 

?

Full-length HIV Sequencing Single Genome/Proviral Sequencing 
Sequencing the p6-RT region 

or the envelope region 

Gives 2 separate phylogenetic 
trees where one provirus is 

represented by a single gene 

~92% of the whole provirus is 
sequenced and individual proviruses 

are aligned to each other 

19-fold higher intact p6-RT and 13-fold higher intact envelope        than intact full-length provirus 

vs 

Fig. 1  Single-genome/proviral sequencing overestimates the amount of replication-competent proviruses. p6-RT region shown in orange and 
V1–V3 env region shown in green
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expression. These cells are serially diluted, subjected 
to a pre-amplification RT-PCR step, and then quanti-
fied by real-time quantitative PCR using primers and 
probes specific for the tat/rev region [77]. As such, this 
assay measures the frequency of inducible multiply-
spliced HIV-1 RNA in latently-infected cells. Although 
this assay is more sensitive in detecting the functional 
HIV-1 reservoir than PCR-based assays (described 
below), some cells that generate a positive TILDA sig-
nal will not produce infectious virions and this can lead 
to an overestimation of the latent and replication-com-
petent HIV-1 reservoir.

PCR‑based assays
Due to the laborious nature of cell culture assays, as well 
as the large volumes of sample required, PCR-based 
assays have been employed as a high-throughput alter-
native for the quantification of intracellular HIV RNA 
and DNA [12, 78–80]. These assays amplify intracellular 
HIV RNA and DNA which is then quantified by real-time 
PCR or digital droplet PCR techniques [81–83]. How-
ever, these PCR-based assays overestimate the size of 
the viral reservoir as they typically quantify a portion of 
the HIV genome, such as the LTR region, which gives no 
indication as to whether the virus is replication compe-
tent. The virus could be defective outside of the genomic 
region which is quantified by these assays.

Single-genome sequencing of a specific viral genomic 
region provides some insight into the replication 

competency of a particular provirus, but many proviruses 
have large internal deletions or defects in genes outside 
of the sequenced region that will not be detected by this 
method [34]. Full-length individual proviral sequencing 
provides a stringent approach to identifying genetically 
intact HIV-1 proviruses without requiring these provi-
ruses to be reactivated. However, it would require in vitro 
studies to confirm that the genetically intact proviruses 
identified by this method are truly replication competent.

Conclusion
Single-molecule techniques, such as the single-copy assay 
and single-genome/proviral sequencing assays, have been 
employed to investigate the source and viral dynam-
ics of persistent HIV-1 during long-term effective ther-
apy. These assays have been employed to determine the 
effectiveness of new therapeutic treatments in reducing 
viremia and activating latent virus. Although great strides 
have been made with these techniques, there are many 
aspects of HIV-1 persistence that have yet to be explored, 
such as whether there is on-going replication in anatomic 
sites where treatment is sub-optimal [84]. Moreover, 
additional studies are required to fully determine all the 
cells and anatomic sites where genetically intact replica-
tion-competent virus resides.

Looking ahead, the full-length individual proviral 
sequencing assay holds particular promise to help answer 
these and other questions concerning the source and 
dynamics of replication-competent virus. In particular, 

Table 1  A comparison of the strengths and weaknesses of cell culture and PCR-based assays for the quantification of the 
HIV-1 reservoir

Assay name PCR or cell culture 
based

Strengths of the assay Weaknesses of the assay

Quantification of HIV-1 RNA in 
plasma and CSF

PCR Fast and high throughput The low levels of viremia in participants on long-
term ART could affect accuracy of this assay. 
Not a true representation of the intracellular 
reservoir

Quantification of intracellular HIV-1 
RNA and DNA

PCR Fast and high throughput Overestimates the size of the reservoir. Does not 
provide an indication of replication compe-
tency

Single-genome sequencing PCR High throughput Overestimates the size of the reservoir. Does not 
provide an indication of replication compe-
tency

Full-length individual proviral 
sequencing

PCR Relatively high throughput Expensive technique. Slightly overestimates the 
size of the reservoir. Replication competency of 
genetically intact proviruses will require confir-
mation by in vitro assays

Quantitative viral outgrowth assay Cell culture Quantifies replication-competent 
virus

Requires large numbers of resting memory T cells 
and is labour-intensive. Underestimates the size 
of the reservoir due to non-induced proviruses

Tat/rev induced limiting dilution 
assay

Cell culture Gives an indication of the size of the 
inducible reservoir

Requires sizeable numbers of cells and cannot be 
used for sorted T cell subsets. Overestimates the 
size of the reservoir
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this assay should be widely applied to interrogate cells 
from anatomical sites, such as the spleen, liver and cen-
tral nervous system. This current full-length proviral 
sequencing assay will need to be complemented with 
a newly developed full-length HIV-1 RNA sequencing 
assay in order to provide the fullest possible picture of 
the latent HIV reservoir and the effects of new curative 
treatment strategies.
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