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Abstract 

Background:  Parent-offspring (PO) regression is a central tool to determine the heritability of phenotypic traits; i.e., 
the relative extent to which those traits are controlled by genetic factors. The applicability of PO regression to viral 
traits is unclear because the direction of viral transmission—who is the donor (parent) and who is the recipient (off-
spring)—is typically unknown and viral phylogenies are sparsely sampled.

Methods:  We assessed the applicability of PO regression in a realistic setting using Ornstein–Uhlenbeck simulated 
data on phylogenies built from 11,442 Swiss HIV Cohort Study (SHCS) partial pol sequences and set-point viral load 
(SPVL) data from 3293 patients.

Results:  We found that the misidentification of donor and recipient plays a minor role in estimating heritability and 
showed that sparse sampling does not influence the mean heritability estimated by PO regression. A mixed-effect 
model approach yielded the same heritability as PO regression but could be extended to clusters of size greater 
than 2 and allowed for the correction of confounding effects. Finally, we used both methods to estimate SPVL herit-
ability in the SHCS. We employed a wide range of transmission pair criteria to measure heritability and found a strong 
dependence of the heritability estimates to these criteria. For the most conservative genetic distance criteria, for 
which heritability estimates are conceptually expected to be closest to true heritability, we found estimates ranging 
from 32 to 46% across different bootstrap criteria. For less conservative distance criteria, we found estimates ranging 
down to 8%. All estimates did not change substantially after adjusting for host-demographic factors in the mixed-
effect model (±2%).

Conclusions:  For conservative transmission pair criteria, both PO regression and mixed-effect models are flexible and 
robust tools to estimate the contribution of viral genetic effects to viral traits under real-world settings. Overall, we 
find a strong effect of viral genetics on SPVL that is not confounded by host demographics.

Keywords:  Heritability, Parent-offspring regression, HIV-1, Set-point viral load, Ornstein–Uhlenbeck process, Mixed-
effect model
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Background
A key question in viral infections is to what extent viral 
genetic factors contribute to infection traits. A rel-
evant illustrative example for this question is the large 

variability in HIV-1 set-point viral load (SPVL) [1] and 
the associated effect of SPVL on the progression time to 
AIDS [2]. Several studies have previously estimated the 
heritability of SPVL using different methods, resulting in 
highly variable estimates ranging from 6 to 51% [3–9, 15].

This wide range of estimates can only partly be attrib-
uted to differences in datasets, as the choice of heritability 
estimation method also plays a crucial role [10]. “True” 

Open Access

Retrovirology

*Correspondence:  nadine.bachmann2@usz.ch; roger.kouyos@usz.ch 
1 Department of Infectious Diseases and Hospital Epidemiology, 
University Hospital Zurich, Zurich, Switzerland
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7303-9542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12977-017-0356-3&domain=pdf


Page 2 of 10Bachmann et al. Retrovirology  (2017) 14:33 

(broad-sense) heritability is defined as the fraction of trait 
variance explained by genetic factors [11]. Parent-off-
spring (PO) regression, the focus of our analysis, provides 
estimates that are conceptually closest to this definition. 
PO regression is the traditional quantitative genetics tool 
to measure heritability. PO regression compares trait val-
ues in parents to trait values in their offspring and uses the 
slope of the linear regression line of parent (or donor) and 
offspring (or recipient) trait values as an estimate for her-
itability. In the special case of a population consisting of 
only parent-offspring pairs with identical viral genomes, 
the slope of the PO regression yields by definition the her-
itability of the trait [11]. Because ideally no or little viral 
evolution occurs between parent and offspring, the herit-
ability estimates from PO regression are insensitive to dif-
ferent models of trait evolution. By contrast, phylogenetic 
comparative methods fit specific models of trait evolution 
to the trait on the transmission tree; examples of these 
methods include Pagel’s lambda [12], phylogenetic mixed 
models [13, 14] and a recent improvement of this method 
[15]. It is unclear how well such a model can reflect the 
complex process of evolution of an HIV-1 trait like set-
point viral load. Indeed, Leventhal and Bonhoeffer [10] 
recently showed in a simulation study using Wright-Fisher 
populations that PO regression yielded better heritabil-
ity estimates and claimed that as long as model assump-
tions of phylogenetic methods could not be adjusted to 
higher adequacy, PO regression should be preferred over 
estimates from phylogenetic methods. Thereby they sup-
ported earlier results that suggested using PO regression 
as an unbiased estimator of SPVL heritability [5].

Nevertheless, in a realistic setup transmission pairs 
generally do not have an identical genotype, and the her-
itability estimate thus depends on the transmission pair 
definition. PO regression also neglects the trait infor-
mation of patients that are not in transmission pairs; 
a large dataset is therefore needed in order to maintain 
adequate statistical power. Two key challenges arise when 
applying PO regression in a clinical setting: Firstly, when 
extracting transmission pairs from phylogenetic trees, it 
is typically impossible to identify directionality, i.e., who 
is donor and recipient [16, 17]. Secondly, due to sparse 
sampling, transmission pairs detected on the phylogeny 
are generally not “real” transmission pairs, but merely 
represent the closest patients in the transmission chain 
with available viral sequence data.

Here, we assess the applicability of PO regression in a 
realistic clinical setting using sequence and viral load data 
from the Swiss HIV Cohort Study (SHCS). In particular, 
using simulated data on phylogenies derived from SHCS 
sequence data, we test PO regression robustness against 
both the lack of knowledge concerning transmission 
directionality and sparse sampling. We then consider 

clinical SPVL data and show, using a mixed-effect model 
variant of PO-regression, that the observed heritability is 
not due to confounding host demographic factors.

Results
Study population
We assessed the suitability of PO regression using simu-
lated traits and thereafter estimated heritability of SPVL 
data on the SHCS transmission network. 11,442 of the 
19,227 individuals enrolled in the SHCS had available viral 
sequence data (March 3, 2016) and were hence included 
in the phylogenetic analysis. The number of transmission 
pairs extracted from these phylogenies (and included in 
the PO regression) depended on the genetic distance and 
support-value criteria used for defining these pairs. We 
considered a range of such criteria because, intuitively, we 
expected a trade-off between accuracy of the PO regres-
sion and statistical power: On the one hand, PO regres-
sion between pairs with zero viral genetic distance yields 
the heritability of a trait by definition [5]. Hence, the accu-
racy of estimates should increase with decreasing genetic 
distance, arguing for strict distance criteria. On the other 
hand, only small number of pairs will fit very strict cri-
teria. For the full SHCS phylogeny, with genetic distance 
thresholds of 0.005, 0.01, 0.02, 0.03 substitutions/site and 
no condition on bootstrap values, the number of extracted 
transmission pairs was 471, 918, 1605 and 2023, respec-
tively. Using a minimum bootstrap value of 0.7 (0.9), 
the respective numbers of detected transmission pairs 
decreased to 403, 781, 1372, 1696 (291, 525, 849, 990).

Random donor and recipient identification
As it is typically impossible to identify who is donor and 
recipient in viral transmission pairs (i.e., the direction 
of transmission), we assessed the hypothesis that ran-
dom donor and recipient assignment does not influence 
the heritability estimates of PO regression. In a previous 
study, the directionality of transmission was assessed for 
a subset of 202 phylogenetically identified transmission 
pairs of the SHCS with estimated seroconversion dates. 
This enabled drawing a conclusion on the directional-
ity of transmission with high confidence [18]. Of these, 
178 transmission pairs (with <3% genetic distance and no 
bootstrap) occurred in our tree as well. Based on these 
specific pairs and 100 Ornstein–Uhlenbeck (OU) simu-
lated trait values for them, we compared the heritability 
estimates derived by PO regression when using the “true” 
donors and recipients to randomly assigning donors and 
recipients. These simulations exhibited no difference 
between heritability estimates based on known and ran-
domly chosen donors and recipients (Fig.  1), indicating 
that potential misidentification of donors and recipients 
does not affect our heritability measurements.
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Sparse sampling
We next addressed the question of how sparse sampling 
influences the reliability of PO heritability estimates. 
Sequence and trait data is usually only available for a sub-
set of the population under consideration. Hence, trans-
mission pairs identified in the phylogeny will often not 
represent actual pairs, but rather just the closest sequences 
sampled. To study the impact of sparse sampling on PO 
regression, we constructed 100 sample phylogenetic trees, 
each with one-third of the sequences of the full tree (for 
the impact of other sparseness levels, see Additional file 1: 
Figure S3). We performed 100 OU simulations on the full 
tree. For each of these simulations and each transmission 
pair criterion, we determined the heritability using trans-
mission pairs from the full tree and from the 100 sparse 
trees. We observed that PO regression is robust to sparse 
sampling, in the sense that median heritability estimates 
are only weakly affected by sparse sampling, with the 
differences being particularly small when transmission 
pairs were extracted according to a conservative defini-
tion (Fig.  2). As expected however, variation around the 
median increases considerably in sparse trees (Additional 
file 1: Figure S3), which may make heritability estimation 
in sparsely sampled populations less reliable.

Dependence on transmission pair criterion
From a theoretical perspective, it is clear that PO regres-
sion performs perfectly if viral genetic distance between 

transmission pairs is zero. However, in a realistic setting 
this scenario is not feasible—therefore, we addressed the 
impact of genetic distance in the transmission pair crite-
rion on the PO estimator. Generally, we found that the 
heritability estimated by parent-offspring regression pro-
vides a lower bound for the true heritability. The extent 
to which PO regression underestimates the true herit-
ability depends both on the distance-cutoff used to define 
pairs and on the strength of selection implemented in the 
OU process: For the standard version of the OU process 
used here (corresponding to the maximum likelihood fit 
of OU to our data), we find that PO regression provides 
a close estimate for the strictest distance criteria (Fig. 3). 
For weaker selection parameters (which are however still 
in the large highest posterior density intervals), we find 
that PO regression provides close estimates for a much 
broader range of transmission pair criteria (Additional 
file  2: Figure S2). This indicates that accuracy of PO 
regression depends on the transmission pair criteria and 
that this dependence increases with the strength of direc-
tional selection.

Additionally, we aimed to understand the influence 
of neglecting tips of our phylogeny that are not mem-
bers of transmission pairs on our heritability estimates. 
Heritability estimates were higher when measured on 
all patients of the phylogeny versus only on transmis-
sion pairs, with a more pronounced effect for stricter 
criteria (Fig. 3). This is due to a non-random selection 
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Fig. 1  Randomly assigned donor and recipient. For each of 12 transmission pair criteria (combination of allowed genetic distance and bootstrap 
cutoff ), heritability measurements of 100 runs of OU-simulated trait values were obtained using only the 178 transmission pairs for which there was 
strong evidence for the directionality of transmission [18]. For each of the criteria, the PO estimates using known versus randomly assigned donors 
and recipients are compared. In each boxplot the black line near the middle of the box is the median value of the group. The top and bottom of the 
box represent the 25th and 75th percentile of the data and the vertical size of the box is therefore the interquartile range, or IQR. The “whisker”, or 
the arrows extending out of the box, show the reasonable extremes of the data, which we took as 1.5 × IQR (as it is the default in R). The individual 
points represent outliers
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of the tips belonging to transmission pairs. Since the 
transmission pairs belong to a specific subpopulation, 
this reiterates that heritability is a trait of a population 
because the measured heritability depends on both the 
expressed variation of a trait in a population as well 
as the variation in population specific environmental 
components.

Comparison with mixed effect model
An alternative approach to measure heritability on pairs 
is to use a linear mixed effect model, in which the pairs 
are viewed as independent groups. In this case, herit-
ability corresponds to the ratio of the between-group 
variance to the total variance. Both methods, PO regres-
sion and mixed effect models yielded nearly identical 
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Fig. 2  Sparse sampling. For each of 12 transmission pair criteria (combination of allowed genetic distance and bootstrap cutoff ) the heritability was 
estimated using PO regression on the full SHCS phylogeny (blue bars) and on 100 randomly generated sparse trees with sparseness 1/3 (red bars). 
For both estimations, the same 100 realizations of OU simulations on the full SHCS phylogeny and the 100 sparse phylogenies were used

PO regression vs. definition of heritability

PO regression, randomly assigned donor and recipient
by definition, only transmission pairs
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Fig. 3  PO regression versus definition of heritability. For each of 12 transmission pair criteria (combination of allowed genetic distance and boot-
strap cutoff ), three heritability definitions are compared: PO regression with randomly assigned donor and recipient, the true heritability (variance 
of genetic component over the overall variance) applied only to the transmission pairs that were included in the PO regression and the original 
definition applied to all SHCS tips of the tree. The boxplots represent heritability measurements from 100 realizations of the OU process
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heritability estimates (Fig.  4). This is in line with the 
theoretical expectation that the two approaches are 
equivalent. The mixed effect approach has however two 
advantages: (1) it can be naturally extended to clusters 
of more than two members (important when consider-
ing transmission clusters), (2) it allows to adjust the effect 
for potential confounders by including them as covari-
ates in the model. This is not possible in PO regression 
since including a potential confounder as a covariate in 
the linear regression would only account for its effect on 
the “offspring” but not for its effect on the “parent”. We 
next explored these advantages on real clinical data using 
HIV-1 SPVL as a case study.

Sensitivity analysis
The above OU-based simulation analyses employed the 
maximum likelihood model parameter estimates for 
HIV-1 SPVL values using the POUMM R package [15]. 
In a sensitivity analysis (Additional file 3: Figure S1), we 
find that PO regression provides reliable heritability esti-
mates over a broad range of parameters of the OU model 
(Additional file 4).

PO regression to measure SPVL heritability
In order to estimate the heritability of SPVL in the SHCS, 
we identify transmission pairs as cherries (adjacent tips 
with a common ancestor node) on the phylogeny that 
was constructed from patients with available SPVL and 
assign donor and recipients randomly. This approach 
of considering only the 29% of patients with SPVL and 
random PO assignment is justified by the results of our 

simulations. With this approach we find between 45 and 
380 pairs for the 12 different pair criteria and a SPVL 
heritability of 8–46%, respectively (Fig.  5). Notably, we 
observe a considerably higher heritability for pairs that 
are defined by stricter distance criteria, for example 
32–46% across different bootstrap values for transmis-
sion pairs with a genetic distance smaller than 0.5%. We 
suggest that the heritability estimates derived with these 
conservative definitions are closest to the true heritabil-
ity, even though they are associated with low sample sizes 
and large statistical error (see “Discussion” section). The 
SPVL results are qualitatively in line with our simulation 
results, but the effect of distance is more pronounced for 
the real SPVL data than for the simulated data.

The influence of covariates on the heritability estimate
Confounding effects can influence heritability estimates. 
Our simulations show that mixed effect models estimate 
heritability equally well as PO regression. Importantly, 
mixed effects models can both correct for confounders 
and include transmission clusters of size greater than 
two, leading to an increase in statistical power. We simul-
taneously tested five possible confounding effects—gen-
der, age, transmission route (MSM, heterosexual, IDU), 
ethnicity and center of treatment—and found no signifi-
cant influence on the heritability estimate (Fig. 6). On the 
other hand, an inclusion of clusters of size greater than 
two lowered the estimate. One possible interpretation of 
this is the increase of the average evolutionary distance 
through the inclusion of further patients within the dis-
tance cutoff compared to transmission pairs.
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Fig. 4  PO regression versus mixed effect model. For each of 12 transmission pair criteria (combination of allowed genetic distance and bootstrap 
cutoff ), the heritability estimates of PO regression and mixed effect models are compared using 100 realizations of an OU process. For the mixed 
effect model no covariates were included in order to allow direct comparison to PO regression
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Discussion
 Our results reiterate that the heritability of a trait is a 
property of the population in which it is measured; even 
the “true” (broad-sense) heritability will differ for dif-
ferent subpopulations. Using transmission pairs of a 

phylogeny, strictly speaking, one therefore cannot infer 
the heritability of a trait on the whole phylogeny, but only 
the heritability of the trait in the “transmission pair sub-
population”. The fact that heritability in the transmission 
pair population differ from the overall population and PO 
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Fig. 5  SPVL heritability for different transmission pair criteria. On the sparse tree that includes only sequences of patients with available SPVL, we 
measured heritability of SPVL using the same 12 criteria as were employed in the simulated data (combination of allowed genetic distance and 
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Fig. 6  SPVL heritability—including covariates. Heritability was measured using a mixed-effect model on transmission pairs and transmission clus-
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and center of treatment, separately (middle bars) and altogether (rightest bars)



Page 7 of 10Bachmann et al. Retrovirology  (2017) 14:33 

estimates depend strongly on the transmission pair crite-
ria puts into perspective the strongly varying SPVL herit-
ability estimates in the literature [3–8, 15]. We conclude 
that differences in SPVL heritability estimates between 
different cohorts, as well as between entire cohorts and 
specific subpopulations, are to be expected; for example 
extremely high heritability for MSM in the SHCS [3]. 
Nevertheless, our conceptually most credible PO regres-
sion-based estimates of set-point viral load heritability 
measured with conservative transmission pair criteria 
(32–46%) are in the upper range of previous estimates 
[3–8, 15].

On the one hand side, for strict transmission pair cri-
teria, our heritability estimates are in the upper range of 
previous results. This might be because we only consider 
set-point viral loads from individuals with a low within-
patient variability of chronic-phase viral load measure-
ments. By contrast, most other studies consider the first 
viral load measurement regardless of the subsequent 
fluctuation of this quantity. This implies that these stud-
ies might have underestimated heritability by consider-
ing individuals that do not have a well-defined SPVL and 
thereby misidentified measurement noise as an environ-
mental contribution to that trait. In accordance with this 
interpretation and similarly to [3], we also find consider-
ably lower heritability estimates (10% lower on average) 
when including also more fluctuating SPVL measure-
ments and such with unknown fluctuation (Additional 
file 5: Figure S4).

On the other hand, for liberal genetic distance cutoffs 
we gain statistical power but at the cost of methodologi-
cal correctness: Pairs with large genetic distance violate 
the assumption of “no or little evolution” between trans-
mission pairs. As it is this assumption which intuitively 
justifies the use of transmission pairs for parent-offspring 
regression, including such pairs may lead to underesti-
mates of heritability (Fig. 5) and potentially sensitivity of 
the estimates from PO regression to different models of 
trait evolution could arise.

A limitation of our study is given by the quite large 
range of plausible alpha and sigma parameters for our 
OU simulations. However, we are confident that the 
maximum likelihood estimate we chose for our simula-
tions represents the fitted data the best (considering the 
decrease in heritability estimate with liberal criteria) and 
verified that our results on misidentification of donor and 
recipient, and imperfect sampling are not sensitive to the 
change of these parameters within the range of the large 
highest posterior density intervals.

An additional limitation of PO regression in general is 
given by a potential selection towards transmission pairs 
with recent transmission, which we cannot account for 
due to many missing infection dates. However, we are 

considering a trait independent of infection time and 
do therefore not expect confounding of our heritability 
estimates.

Conclusion
Our study provides a validation of the applicability and 
robustness of PO regression to estimate heritability of 
viral traits in a realistic (i.e., imperfect) clinical setting 
using the SHCS as a case study. We simulated data based 
on a phylogeny constructed of viral sequence data and 
showed that two potential challenges—misidentifica-
tion of donor and recipient, and imperfect sampling—do 
not systematically distort heritability estimates by PO 
regression.

From the example of SPVL in the SHCS we learn that 
the heritability estimates depend on the employed trans-
mission pair selection criteria, with higher heritability 
estimates for stricter criteria. Despite lower statistical 
power, we suggest that conservative criteria should be 
preferred, because, conceptually, true heritability is esti-
mated at zero genetic distance, i.e., in the case where 
parent and offspring have identical genomes. This also 
represents a key limitation of PO regression and vice 
versa an advantage of phylogenetic comparative meth-
ods: only big datasets contain enough conservatively 
defined transmission pairs to draw statistically.

Finally, we showed that a mixed-effect model with pairs 
as groups yielded heritability estimates equivalent to PO 
regression. This model has the advantage of being able to 
also take into account clusters with more than two mem-
bers and to correct for the effect of covariates. Applying 
this model to SPVL showed that the heritability estimates 
of SPVL are robust to adjusting for demographic factors, 
suggesting that the high heritability of SPVL is not due 
to the clustering of such factors on the viral phylogeny. 
Additionally, considering clusters of size >2 led to lower 
SPVL estimates, which could be due to the increase of 
the average evolutionary distance through the inclusion 
of further patients within the distance cutoff compared to 
transmission pairs.

We conclude that PO regression is for conservative 
transmission pair criteria a robust estimator of herit-
ability (and provides a lower bound for these with liberal 
transmission pair criteria) in large datasets and that its 
conceptual problems are not quantitatively relevant in a 
real-life setting.

Methods
The Swiss HIV Cohort Study
The Swiss HIV Cohort Study (SHCS) is a large prospec-
tive, multi-center study established in 1988 [19] including 
a drug resistance database that contains HIV sequences 
for approximately 60% (11,442) of all patients enrolled 
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(>19,200). Since 1996 the SHCS drug resistance data-
base covers even 75% of all patients because more than 
11,000 genotypes were performed on plasma samples 
derived from the SHCS biobank. The sequence data-
base was checked for potential duplicates of the same 
patients if distances were zero or very small and errors 
were fixed together with the datacentre. At each semi-
annual follow-up visit, laboratory and clinical data are 
obtained. The SHCS includes HIV-infected individuals 
aged ≥18  years and is highly representative of the HIV 
epidemic in Switzerland, covering at least an estimated 
45% of total HIV infections reported to the Swiss health 
authorities [19] including some hard-to-reach popula-
tions [20]. Written informed consent was obtained for 
each SHCS study participant.

Set‑point viral load data
Our set-point viral load (SPVL) measurements were 
based on the log10 RNA measurements more than 
180  days after the first evidence of an HIV infection 
(given by either the (1) earliest documented positive HIV 
test, (2) the self-reported positive HIV test or (3) the 
SHCS registration date in absence of (1) and (2)), while 
the CD4 count was >300, the patient was untreated and 
there were no AIDS symptoms. Using this definition 
ensures that the patient is within the asymptomatic phase 
of the HIV infection with generally stable viral load. For 
5698 SHCS patients there was at least one RNA value 
available within this range. However, we found that the 
within-patient RNA variability is large in some patients: 
several RNA values fall in the range of possible set-point 
viral load values [21]. Therefore, we added the restriction 
that more than one RNA value per patient needed to be 
available and that the variability among those values had 
to be smaller than 0.4 log10 copies/ml. This restriction 
decreased the number of individuals in the SHCS with 
SPVL values to 3293 (see Additional file 5: Figure S4 for a 
sensitivity analysis regarding the effect of this restriction).

Phylogenetic tree construction
11,442 partial pol sequences from SHCS cohort par-
ticipants (one per patient) and 19,252 blasted Los Ala-
mos background sequences were pooled together and 
aligned to an HXB2 reference genome using MUSCLE 
[22]. Insertions relative to HXB2 and resistance muta-
tions according to the Stanford (http://hivdb.stanford.
edu/) and International Antiviral Society-USA (https://
www.iasusa.org/) lists were removed [18], and positions 
with many gaps were eliminated by Gblocks [23]. Con-
served blocks from multiple alignments were selected 
for phylogenetic analysis and a phylogenetic tree was 
reconstructed with FastTree using a generalized time-
reversible model [24]. One hundred Bootstrap trees were 

constructed using FSEQBOOT, and bootstrap values 
were assigned to the original tree using the script Com-
pareToBootstrap.pl of the FastTree package. All sparse 
trees in our analysis were derived from the original tree 
using the “drop.tip” function of the R package APE [25]. 
We chose a sparsity level of one-third since this approxi-
mately represents the fraction of SHCS patients on our 
phylogeny with available SPVL data. A sensitivity analy-
sis was performed to assess the effect of different sparsity 
levels (Additional file 4).

Extraction of Transmission pairs
We identified potential transmission pairs using the R 
package APE [25] and custom scripts as those cherries 
that fulfilled two criteria: (1) a genetic distance of at least 
0.5, 1, 2, and 3%, respectively; and (2) no bootstrap crite-
rion, or a bootstrap of more than 70 or 90%. Since there 
is no general consensus on what defines a “true” trans-
mission pair [26] from a phylogeny alone, we aimed to 
understand the effect of various transmission pair defini-
tions on the heritability estimates.

Simulated traits
To study PO regression, we simulated HIV-1 traits on the 
phylogenetic tree using the R package APE [25]. An Orn-
stein–Uhlenbeck (OU) process, which is a generalization 
of a Brownian motion (BM) that accounts for stabilizing 
selection, simulates the evolution of the trait on the tree. 
In the BM model a trait is assumed to evolve according 
to the stochastic process σdWt, where (Wt)(t≥0) denotes 
Brownian motion and accounts for randomness in the 
divergence of a trait, and σ scales the magnitude of fluc-
tuations. In the OU model, (Xt)(t≥0) is defined as

the global optimum level θ and the strength of selection 
α can be defined additionally [27]. To account for envi-
ronmental influences on the trait, a normally distrib-
uted term was added to the trait values, after they were 
generated by the OU model. Suitable parameters for the 
simulations were inferred from the “well-defined” SHCS 
SPVL values with restricted variability using a maximum 
likelihood fit with the R package POUMM [15]. We per-
formed a sensitivity analysis for the four inferred parame-
ters and also describe the uncertainty that remains when 
simultaneously varying alpha and sigma in the Additional 
file 4 (Additional file 3: Figure S1; Additional file 2: Figure 
S2).

Heritability estimates
Transmission pairs were extracted according to the dif-
ferent criteria described above and donor and recipient 
were randomly assigned. Then, a linear regression of 

dXt = α(θ − Xt)dt + σdWt;

http://hivdb.stanford.edu/
http://hivdb.stanford.edu/
https://www.iasusa.org/
https://www.iasusa.org/
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donor trait values against their respective recipient trait 
values was performed and the slope of this regression 
was used as the PO heritability estimator.

For the mixed effect model approach we fitted the trait 
data with a mixed-effect model (using the R package 
NLME [28]) with pairs or clusters as grouping variables 
and determined heritability as the ratio of the between-
group variance and the total variance.
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