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Abstract 

Background:  Combination antiretroviral therapy (cART) is able to control HIV-1 viral replication, however long-lived 
latent infection in resting memory CD4+ T-cells persist. The mechanisms for establishment and maintenance of latent 
infection in resting memory CD4+ T-cells remain unclear. Previously we have shown that HIV-1 infection of resting 
CD4+ T-cells co-cultured with CD11c+ myeloid dendritic cells (mDC) produced a population of non-proliferating 
T-cells with latent infection. Here we asked whether different antigen presenting cells (APC), including subpopula-
tions of DC and monocytes, were able to induce post-integration latent infection in resting CD4+ T-cells, and exam-
ined potential cell interactions that may be involved using RNA-seq.

Results:  mDC (CD1c+), SLAN+ DC and CD14+ monocytes were most efficient in stimulating proliferation of CD4+ 
T-cells during syngeneic culture and in generating post-integration latent infection in non-proliferating CD4+ T-cells 
following HIV-1 infection of APC-T cell co-cultures. In comparison, plasmacytoid DC (pDC) and B-cells did not induce 
latent infection in APC-T-cell co-cultures. We compared the RNA expression profiles of APC subpopulations that could 
and could not induce latency in non-proliferating CD4+ T-cells. Gene expression analysis, comparing the CD1c+ 
mDC, SLAN+ DC and CD14+ monocyte subpopulations to pDC identified 53 upregulated genes that encode proteins 
expressed on the plasma membrane that could signal to CD4+ T-cells via cell–cell interactions (32 genes), immune 
checkpoints (IC) (5 genes), T-cell activation (9 genes), regulation of apoptosis (5 genes), antigen presentation (1 gene) 
and through unknown ligands (1 gene).

Conclusions:  APC subpopulations from the myeloid lineage, specifically mDC subpopulations and CD14+ mono-
cytes, were able to efficiently induce post-integration HIV-1 latency in non-proliferating CD4+ T-cells in vitro. Inhibition 
of key pathways involved in mDC-T-cell interactions and HIV-1 latency may provide novel targets to eliminate HIV-1 
latency.
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Background
Despite the successes of cART in the reduction of mor-
bidity and mortality world wide, treatment is required 
life long. HIV-1 persists in individuals on cART in resting 
CD4+ T-cells as latent infection [1–3]. Latency occurs 

when viral DNA is integrated within the host genome 
and remains transcriptionally silent. Latent infection of 
resting CD4+ T-cells therefore represents the major bar-
rier to HIV-1.

It remains unclear how latency is established in resting 
CD4+ T-cells in vivo. Initial studies in vitro, showed that 
direct HIV-1 infection of resting CD4+ T-cells isolated 
from peripheral blood was inefficient and integration 
rarely occurred due to incomplete reverse transcription, 
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reduced nuclear import of the viral DNA and/or lim-
ited integration within the host genome [4–6]. However, 
in vitro latent infection can occur following the reversion 
of a HIV-1 infected, activated CD4+ T-cell to a resting 
state [7–10]. Alternatively, latent infection can also occur 
following the direct infection of a resting CD4+ T-cell 
exposed to high viral titers and spinoculation [11, 12], 
chemokines [13] or co-culture with other cell types [14, 
15].

As professional APCs, DC interact with HIV-1 dur-
ing initial infection at vaginal and rectal mucosa sites 
and in blood. Langerhan cells (LC) and dermal (D)DC 
at mucosa and, bone marrow derived classical or mye-
loid (m)DC and plasmacytoid (p)DC in blood are able 
to interact with T-cells, but their role in the establish-
ment and maintenance of HIV-1 latency remain unclear 
[16–18]. Blood derived mDC subpopulations differ from 
tissue DC. CD141+ and CD1c+ mDC are both found as 
resident cells in tissue (lymph node (LN), spleen, lungs), 
skin and, as more mature cells, circulating through the 
lymphatics to the LN [19–22]. SLAN+ DC represent a 
subpopulation of monocytic cells with increased poten-
tial to secrete pro-inflammatory cytokines and develop 
a DC phenotype, however precise residence remains 
unknown [23, 24]. CD14+ monocytes represent DC and 
macrophage precursors in blood [Reviewed in 25], and 
were also tested for their ability to establish latent infec-
tion in resting CD4+ T-cells.

We have previously developed an in  vitro co-culture 
model demonstrating that CD11c+ myeloid dendritic 
cells (mDC) induce post-integration latency in non-pro-
liferating memory CD4+ T-cells. Here we demonstrate 
that in addition to the mDC subsets (CD1c+, SLAN+ 
and CD141+), CD14+ monocytes were also able to 
induce post-integration HIV-1 latency in non-prolifer-
ating CD4+ T-cells. In comparison, T-cells co-cultured 
with pDC and B-cells were inefficient in the induction 
of latency. Using RNA-seq and Illumina gene expres-
sion microarrays, we also identified potential mediators 
of latent infection expressed by APC that could induce 
latency in the non-proliferating CD4+ T-cells during 
APC-T cell interactions.

Results
Monocytes are able to induce latency in resting CD4+ 
T‑cells
We have previously reported that mDC, but not pDC, 
are able to efficiently induce post-integration latent 
infection in resting CD4+ T-cells using an in  vitro DC-
T-cell co-culture model [14]. However, mDC and their 
subpopulations represent only a small proportion of 
peripheral blood mononuclear cells (PBMC) compared 
to monocytes, which represent a precursor to some DC 

and macrophage subpopulations. Therefore we compared 
monocytes and mDC isolated from healthy donors for 
their ability to induce latent infection in resting CD4+ 
T-cells (Fig.  1). eFluor670 labeled resting CD4+ T-cells 
were cultured alone, with CD11c+ mDC or bulk mono-
cytes and infected with an R5 using virus that expresses 
enhanced green fluorescent protein (EGFP). Similar 
to mDC, monocytes were able to induce productive 
infection in CD4+ T-cells, as measured by total EGFP 
expression at day 5 post-infection (Fig. 1b). At day 5 post-
infection non-proliferating (eFluor670hiEGFP−) CD4+ 
T-cells were sorted and cultured with phytohemagglu-
tinin (PHA)-stimulated feeder peripheral blood mono-
nuclear cells (PBMC), where the number of EGFP+ cells 
was quantified by flow cytometry as a surrogate marker 
of inducible latent infection. CD14+ monocytes were also 
able to significantly increase the induction of latent infec-
tion in non-proliferating cells (p > 0.05; Fig. 1c).

Isolation of functional APC
Given that we were able to show induction of latency 
in non-proliferating CD4+ T-cells following co-culture 
with both bulk monocytes and mDC, we next compared 
the latency inducing potential of the different monocyte 
and mDC subpopulations. Monocytes were sorted into 
CD14+ and CD14loCD16+ (CD16+) cells and mDC were 
sorted into CD1c+, CD141+ and SLAN+ DC, B-cells 
and pDC were also isolated by sorting (Fig. 2a). The final 
purity for all sorted APC subpopulations was >90  %, as 
determined post-sort by expression of specific known 
surface markers for the various subpopulations [26–30]. 
The APC subpopulations were examined using bright-
field microscopy after culture (Fig. 2b, c). The mDC and 
monocyte subpopulations were characterized with the 
formation of both long and short dendritic processes 
(Fig. 2b, c) Comparatively, pDC and B-cells had few pro-
cesses or ruffles (Fig. 2b, c; [28, 29, 31–33]).

APC function was tested in a syngeneic mixed leuko-
cyte reaction (MLR) using the proliferation dye eFluor670 
to measure proliferation of resting CD4+ T-cells. In the 
absence of mitogen stimulation, the relative potency of 
the various APC to induce T-cell proliferation at a ratio 
of 1 APC:10 CD4+ T-cells is shown (Fig. 3a). CD1c+ DC 
were the most potent at activating resting CD4+ T-cells, 
while pDC and CD141+ DC were least potent. The use 
of superantigen staphylococcal enterotoxin B (SEB) at 
low dose in the MLR had a modest effect on enhancing 
the capacity of APC to induce T-cell proliferation. T-cell 
proliferation following co-culture and SEB treatment was 
highest with CD1c+ DC and lowest with B-cells (Fig. 3b), 
confirming previous observations by others [26]. B-cells 
had a similar stimulatory capacity with and without 
superantigen (1.0 and 1.3  % proliferated CD4+ T-cells). 
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Finally, there was a dose response of CD4+ T-cell pro-
liferation with decreasing APC:T-cell ratio (1:10–1000). 
Together, these data confirm that all the APC subpopu-
lations isolated remained functional in the co-cultures 
used for infection.

T‑cell stimulation by APC subpopulations in HIV‑1 infected 
co‑cultures
We then measured T-cell proliferation following co-
culture with different APC subpopulations at 3 days fol-
lowing HIV-1 infection. The pattern of APC potency in 
induction of CD4+ T-cell proliferation in the presence 
of HIV-1 was similar to uninfected, sygeneic, co-cul-
tures (Fig.  3c), where proliferation of CD4+ T-cells was 

highest with CD1c+ DC and lowest with pDC. These 
experiments demonstrate that HIV-1 infection did not 
independently alter APC or T-cell function with respect 
to T-cell proliferation.

Several APC subpopulations enhanced productive 
infection of resting CD4+ T‑cells
We tested the ability of APC subpopulations to induce 
both productive and latent infection in resting CD4+ 
T-cells when cultured alone or co-cultured with one of 
the seven sorted APC subpopulations (Fig. 2a). Five days 
following infection, EGFP expression was quantified 
by flow cytometry as a measure of productive infection 
(Fig.  4a). We observed a significant increase in produc-
tive infection following HIV-1 infection in all APC co-
cultured with T-cells compared to resting CD4+ T-cells 
cultured alone (p = 0.03 for all APC co-cultures; Fig. 4b).

Different APC subpopulations can effectively induce latent 
infection in non‑proliferating CD4+ T‑cells
Five days following infection, non-proliferating 
(eFluor670hiEGFP−) CD4+ T-cells were sorted from 
the APC-T-cell co-cultures to quantify latent infection 
(Fig.  4a). The sorted CD4+ T-cells were directly stimu-
lated with anti-CD3/CD28 and IL-7 (Fig. 4c) in the pres-
ence and absence of an integrase inhibitor, L8. EGFP was 
quantified by flow cytometry as a measure of inducible 
latent infection. Total latent infection (no L8) was sig-
nificantly increased in non-proliferating CD4+ T-cells 
co-cultured with all mDC subpopulations, CD14+ mono-
cytes and B-cells, when compared to CD4+ T-cells cul-
tured alone (p  =  0.03; Fig.  4d). In comparison, total 
latent infection following co-culture with CD14loCD16+ 
monocytes, that were depleted of SLAN+ DC, was highly 
variable and not significantly different to T-cells cultured 
alone. As previously shown, latent infection was not 
found in T-cells co-cultured with pDC (p =  0.03 com-
pared to mDC co-cultures; Fig. 4d).

We also quantified post-integration latent infection by 
stimulating T-cells with anti CD3/CD28 and IL-7 stimu-
lation in the presence of L8. (Fig. 4c). The integrase inhib-
itor, L8, prevented any progression of pre-integration 
complexes to integration and inhibited secondary rounds 
of infection. Following infection of CD4+ T-cells co-
cultured with each APC subpopulation, post-integration 
latency followed a similar pattern to that observed for 
total latency, but at a lower frequency (Fig. 4d, e). Post-
integration latency was significantly increased in CD4+ 
T-cells following co-culture with mDC subpopulations 
CD1c+ and SLAN+, and CD14+ monocytes (p =  0.03, 
0.02 and 0.01, respectively; Fig.  4e). Post-integration 
latency induced by CD141+ DC was elevated, similar to 
what was induced by other mDC subsets, but this did 
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not reach statistical significance. In comparison, HIV-1 
infection of T-cells co-cultured with SLAN DC depleted 
CD14− CD16+ monocytes, B-cells and pDC was similar 
to infection of CD4+ T cells alone. Together these data 
show that only CD1c+mDC, SLAN+ DC and CD14+ 
monocytes were able to establish post-integration latent 
infection in non-proliferating CD4+ T-cells, while B-cells 
and CD141+ mDC were able to establish pre-integration 
latent infection. CD14loCD16hi SLAN− monocytes, like 
pDC, were unable to establish either pre or post-integra-
tion latency.

Next, we looked for a correlation between productive 
infection and post-integration latency following infec-
tion of T-cells co-cultured with different APC (Fig.  4f ). 
Overall, we found a weak correlation between produc-
tive and latent infection (Spearman’s r = 0.12; p = 0.02), 
which supports our previous findings [14]. However, the 
induction of productive infection does not inevitably lead 
to post-integration latency in resting CD4+ T-cells, as 
observed following co-culture with CD14loCD16hi mono-
cytes, B-cells and pDC. We conclude that cells able to 
establish both productive and latent infection likely share 
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common functional characteristics, which favour the 
establishment and maintenance of latent infection.

Differential gene expression of cell‑surface expressed 
molecules on APC
We next used RNA-seq to compare gene expression for 
genes involved in T-cell interactions with APC subpopu-
lations that induce latency (CD1c+ DC, SLAN+ DC and 
CD14+ monocytes) compared to APC that could not 
(pDC). Due to difficulties isolating APC from T-cell co-
cultures and HIV-1 infection, gene expression analysis 
was performed on freshly isolated APC subpopulations 
[34–36]. Component analysis showed clustering of the 

SLAN DC and CD14 monocytes and separate clusters of 
pDC and mDC (Additional file 1: Figure S1). Given that 
we have previously shown that cell contact is important 
in mDC-induced latency [14], we specifically selected 
genes encoding proteins that mediate mDC-T-cell inter-
actions, including those in cell membrane compartments 
at the cell surface, and in intracellular vesicles such as 
endosomes and compartments giving rise to exosomes.

In APC subpopulations that induced post-integra-
tion HIV-1 latency compared to APC that didn’t induce 
latency, we found 754 differentially upregulated genes 
(fold change ≥2, p-value <0.01; Fig.  5a). Analysis for 
expression in cellular compartment (GeneCodis; http://
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genecodis.cnb.csic.es), identified 285 known genes 
expressed in: membrane, plasma membrane, integral to 
membrane, integral to plasma membrane and cell junc-
tion ([37–39]; Fig.  5a). Of these, 53 protein-encoding 
genes that could establish cell contact with CD4+ T-cells 
and potentially induce T-cell signaling were selected 

(Table  1, Additional file  2: Table  S1). Functionally these 
genes included; cellular adhesion (32 genes), antigen 
presentation (1 gene), T-cell activation (9 genes), immune 
checkpoints (5 genes), regulation of apoptosis (5 gene), 
and an unknown protein (1 genes). We further ana-
lysed the role of each gene in HIV-1 infection of DC and 
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CD4+ T-cells using a PubMed search for the interactions 
between DC and T-cells, and potential roles in the estab-
lishment of HIV-1 latency (Additional file 2: Table S1). 

We performed the same comparisons between selected 
APC subpopulations using our previously published micro-
array data [40] and found 27 genes that could potentially 

induce T-cell signalling (Additional file 4: Figure S2; Addi-
tional file 5: Table S2; [40]). Five of these genes were com-
mon between microarray and RNAseq analyses, seven 
genes shared protein family and thirteen genes fell outside 
of significance (cut off of p < 0.01), often with inconsistent 
replicates (n = 3). The common genes included C-type lec-
tin domain family 7 member A (CLEC-7A), endoglin, intra-
cellular adhesion molecule 3 (ICAM-3), sialic acid-binding 
immunoglobulin-type lectins (SIGLEC)-10 and CD1d. 
CD1d is involved in lipid antigen presentation to T-cells, 
while the other 4 surface expressed proteins are involved 
in cellular adhesion [41]. The common protein fami-
lies included the SIGLEC family, CLEC family, leukocyte 
associated immunoglobulin like receptor (LILRA) family, 
G-Protein coupled receptor (GCPR) family and the tumor 
necrosis factor (TNF) receptor superfamily.

Discussion
Latently infected cells are infrequent in HIV-1-infected 
patients on cART, and therefore robust in  vitro models 
are needed to better understand the establishment and 
maintenance of latent infection. We have now shown that 
multiple APCs, in addition to mDC, are able to induce 
HIV-1 latency in non-proliferating CD4+ T cells [14]. 
Here, we have shown that the myeloid lineage cells capa-
ble of producing latent T-cell infection include subpopu-
lations of blood derived mDC; CD1c+, SLAN+ DC and 
CD14+ monocytes, and confirmed that pDC are distinct 
in not generating latent infection. We have used RNA-seq 
analysis to define genes differentially expressed between 
APC subpopulations that could (CD1c+, SLAN+, CD14+ 
monocytes) and could not induce latent infection (pDC), 
and identified genes mediating cell adhesion, T-cell acti-
vation, immune checkpoints (IC) and regulation of apop-
tosis as important pathways differentially upregulated in 
the APC that are able to induce latent infection.

Our results show that multiple blood derived mDC 
subsets can induce latent infection in non-proliferat-
ing CD4+ T-cells, suggesting that this observation may 
extend to other DC and myeloid lineage cells, such as LC 
and dermal DC (DDC) though they may have different 
ontogeny [42–44]. It is likely that mDC and monocyte 
lineage cells in lymphoid tissue, skin, mucosal surfaces, 
gastrointestinal tract (GIT) and sites of inflammation 
could allow seeding of CD4+ T-cell viral reservoirs early 
following infection or during ART in tissue sites were 
cART penetration may not be optimal [45].

We observed a trend between the ability of the differ-
ent APCs to induce latent infection and efficient T-cell 
proliferation. This suggests that there may be a common 
mechanism for the induction of T-cell proliferation and 
induction of latent infection, even in non-proliferating 
cells, perhaps through a bystander mechanism. Efficient 
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Fig. 5  Comparison of gene expression between latency inducing 
and non-inducing antigen presenting cell subpopulations using RNA-
seq. a Gene expression profiles common to the latency inducing APC 
subpopulations (CD1c+ mDC, SLAN+ mDC and CD14+ monocytes) 
compared with non-latency inducing APC (pDC) were selected (fold 
change ≥2, p < 0.01). Using GeneCodis, these 754 genes were cat-
egorised according to cellular compartment expression. b Encoded 
proteins expressed on APC surface and membrane compartments 
were further analysed for ability to signal to T-cells and involvement 
in HIV-1 infection. Representative heat map with >twofold differential 
gene expression of genes able to signal to T-cells, which are dif-
ferentially expressed between latency inducing (CD1c+ mDC, SLAN+ 
mDC and CD14+ monocytes) and non-inducing APC subpopulations 
(pDC)
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Table 1  Effects on HIV infection of genes differentially expressed by latency inducing and non-inducing antigen present-
ing cell subpopulations using RNA-seq

Gene name Gene symbol Function

Antigen  
presentation

Apoptosis  
regulation

Cell proximity 
presentation

Immune  
checkpoint  
blocker

T-cell  
activation

Unknown

Number of genes 
expressed in 
each category

1 5 32 5 9 1

CD1d molecule CD1d –*,**

Lectin, galactoside-
binding, soluble, 
1

LGALS1 +

Vasoactive intes-
tinal peptide 
receptor 1

VIPR1 +*

EF-hand domain 
family, member 
D2

EFHD2 –

Tumor necrosis 
factor receptor 
superfamily, 
member 10a

TNFRSF10A +

Tumor necrosis 
factor receptor 
superfamily, 
member 10d, 
decoy with 
truncated death 
domain

TNFRSF10D +

Acid phosphatase, 
prostate

ACPP +

ADAM metal-
lopeptidase 
domain 15

ADAM15 +

Integrin, beta 2 
(complement 
component 3 
receptor 3 and 4 
subunit)

CD18 +*,**

Carcinoembryonic 
antigen-related 
cell adhesion 
molecule 4

CEACAM4 +

C-type lectin 
domain family 4, 
member G

CLEC4G –*,**

C-type lectin 
domain family 7, 
member A

CLEC7A +*

Cytotoxic and 
regulatory T cell 
molecule

CRTAM –**

Colony stimulating 
factor 3 receptor 
(granulocyte)

CSF3R +*

Ephrin-B1 EFNB1 –

Endoglin END +*

Endothelial cell 
adhesion mol-
ecule

ESAM +
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Table 1  continued

Gene name Gene symbol Function

Antigen  
presentation

Apoptosis  
regulation

Cell proximity 
presentation

Immune  
checkpoint  
blocker

T-cell  
activation

Unknown

G protein-coupled 
receptor 133

GPR133 +

Intercellular adhe-
sion molecule 3

ICAM3 +*

Leucine rich repeat 
containing 8 
family, member C

LRRC8C +

Multiple EGF-like-
domains 9

MEGF9 +

Membrane protein, 
palmitoylated 
7 (MAGUK p55 
subfamily mem-
ber 7)

MPP7 +

Macrophage scav-
enger receptor 1

MSR1 +

Osteoclast associ-
ated, immuno-
globulin-like 
receptor

OSCAR +

Plexin domain 
containing 2

PLXDC2 +

Syndecan 3 SDC3 +*

CD33 molecule CD33 – –

Sphingosine-
1-phosphate 
lyase 1

SGPL1 + +

Sialic acid binding 
Ig-like lectin 10

SIGLEC10 –* –

Sialic acid binding 
Ig-like lectin 7

SIGLEC7 +** +

Sialic acid binding 
Ig-like lectin 9

SIGLEC9 – –

Synaptojanin 2 
binding protein

SYNJ2BP + +

T-cell lymphoma 
invasion and 
metastasis 1

TIAM1 +* +

Transmembrane 
protein 2

TMEM2 + +

Tetraspanin 17 TSPAN17 – –

C-type lectin 
domain family 1, 
member A

CLEC1A + +

Sialic acid binding 
Ig-like lectin 14

SIGLEC14 + +

CD101 molecule CD101 –

CD52 molecule CD52 – –

Hepatitis A virus 
cellular recep-
tor 2

HAVR2/Tim-3 –**
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T-cell proliferation is favoured by the formation of an 
immunological synapse [46, 47] with cellular proximity 
[48], major-histocompatibility complex (MHC)-T-cell 
receptor (TcR) interaction and co-stimulation [49–52]. 
ICAM-1 interaction with leukocyte function-associated 
antigen (LFA)-1 can facilitate induction of latent infec-
tion in the DC-T-cell model [14], while in other mod-
els of in  vitro latency CD2 expression, a molecule that 
binds to LFA-3, was increased on latently infected cells 
[53]. A large portion (60  %) of genes identified in the 
gene expression analysis mediates cellular proximity and 
cell adhesion. Taken together these data suggest that cell 
adhesion/contact is important in the induction of latency. 
However, identification of a single specific adhesion mol-
ecule critical for the induction of latent infection is likely 
limited by functional redundancy in mediators of APC-
T-cells interactions.

Compared to the other DCs, the pDC were least effi-
cient for T-cell proliferation and induced significantly 
less productive and latent infection compared to mDC. 
The differences between mDC and pDC in induction of 
productive infection [54, 55] and suppression of virus 
production has been observed previously [14]. We have 
also previously shown that pDC were unable to induce 
HIV-1 latency, and that there was a more substantial 
suppressive effect on the establishment of latency com-
pared to productive infection. We and others have shown 
multiple differences between mDC and pDC that may 
reduce the ability of pDC to establish close interactions 
with T-cells [26, 40, 56, 57], which in combination with 
increased type-I IFN secretion from pDC may inhibit the 
capacity of pDC to establish latency in T-cells.

The ability of B-cells to induce latent infection in non-
proliferating CD4+ T-cells was also tested in this study as 

Table 1  continued

Gene name Gene symbol Function

Antigen  
presentation

Apoptosis  
regulation

Cell proximity 
presentation

Immune  
checkpoint  
blocker

T-cell  
activation

Unknown

Leukocyte 
immunoglobu-
lin-like receptor, 
subfamily A (with 
TM domain), 
member 6

LILRA6 –

Poliovirus receptor PVR +*

Neuropilin (NRP) 
and tolloid (TLL)-
like 2

NETO2 +

CD48 molecule CD48 0**

Interleukin 15 
receptor, alpha

IL15RA –**

Leucine rich repeat 
containing 25

LRRC25 +

NFAT activating 
protein with 
ITAM motif 1

NFAM1 +

Secreted and trans-
membrane 1

SECTM1 +

V-set and immuno-
globulin domain 
containing 2

VSIG2 +

CD300e molecule CD300e +
CD83 molecule CD83 0**

CD86 molecule CD86 0**

Ecotropic viral inte-
gration site 2A

EVI2A +

The functional category shown were determined by the description from the DAVID (http://david.abcc.ncifcrf.gov/) and GeneCards (http://genecards.org/) databases

+, increased latent infection; –, inhibition of virus expression, 0, undefined. Genes that were common to the RNA-seq and microarray generated gene lists are in italics. 
* represent a role in HIV infection of either DC (*) or T-cell (**). Data in Table 1 is presented with additional detail and references in Additional file 3: Supplementary 
references

http://david.abcc.ncifcrf.gov/
http://genecards.org/
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B-cells express MHC-II, circulate through LN, and have 
been reported to transfer HIV-1 infection to T-cells [58]. 
Induction of latency occurred only at low level and was 
only in the form of pre-integration latency suggesting 
that B-cells lack factors that facilitate efficient induction 
of post-integration latency.

Comparison of APC subpopulations that could and 
could not induce latent infection in non-proliferating 
CD4+ T-cells identified several functions that may be 
important in the establishment of latency, including cell 
adhesion, IC, T-cell co-stimulation, antigen presenta-
tion and regulation of apoptosis. The IC, programmed 
death receptor (PD)-1, is proposed to play a role in the 
establishment and/or maintenance of HIV-1 latency 
[59, 60]. Engagement of ICs, led to reduced T-cell acti-
vation by inhibition of signaling cascades, as well as 
physical inhibition of the formation of lipid rafts and 
cellular interactions [61]. In this study, we observed an 
up-regulation of the ICs; CD101, T-cell immunoglobulin 
mucin-3 (Tim-3, HAVR2), leukocyte immunoglobulin-
like receptor member 6 (LILR6) and CD52, on latency 
inducing APC subpopulations when compared to pDC. 
IC expression may be important for the establishment 
of HIV-1 latency in this model, but further work is 
required to confirm this.

Additionally, we identified differential expression of 
the SIGLEC family of proteins between APC subpopu-
lations that could and could not induce latent infection. 
We specifically found SIGLEC 5, 7, 9, 10 and 14 to be 
upregulated on latency inducing APCs. From this family, 
SIGLEC 3, 5-11 have all been implicated in the inhibition 
of T-cell activation [62–64]. SIGLEC 5 has been shown to 
inhibit T-cell activation in chimpanzees, where blockade 
of SIGLEC 5 led to increased T-cell activation, and trans-
fection of SIGLEC 5 into SIGLEC negative cells reduced 
T-cell activation [64–67]. SIGLEC 10 is hypothesized to 
have similar function in inhibition of T-cell activation 
[68, 69]. Together these data suggest that SIGLEC 5 or 
10 binding to its ligand on the CD4+ T-cell may reduce 
T-cell activation, reduce productive infection and poten-
tially promote latent infection. This is a novel association 
but further work will be required to explore any direct 
effects of SIGLEC proteins and the establishment of 
latency.

Conclusion
This study has established that multiple myeloid lineage 
APC subpopulations can facilitate latent infection in rest-
ing CD4+ T-cells. Particularly important is the observa-
tion that CD14+ monocytes can induce latent infection 
in resting CD4+ T-cells. The use of CD14+ monocytes 
will greatly enhance the utility of this model. In addi-
tion, through a comparative analysis of APC populations, 

we have identified new pathways that may potentially 
be involved in the establishment and/or maintenance of 
HIV-1 latency. Inhibition of key pathways involved in 
mDC-T-cell interactions and HIV-1 latency may provide 
novel targets to eliminate HIV-1 latency.

Methods
Isolation and preparation of resting CD4+ T‑cells 
and B‑cells
PBMC were isolated by Ficoll-Paque density gradient 
centrifugation (GE Healthcare, Chalfont St. Giles, UK) 
from healthy buffy coats obtained from the Australian 
Red Cross. PBMC were further separated into three pop-
ulations by counter-current elutriation using Beckman 
J-6M/E centrifuge equipped with a JE 5.0 rotor (Beck-
man Coulter, Pasedena, CA, USA; [70]). The three frac-
tions were isolated at rates of 12 (small lymphocytes), 16 
(large lymphocytes) and 20 (DC/Monocytes fractions) 
ml/min. Resting CD4+ T-cells, negative for the activation 
markers CD69 and HLA-DR, were sorted from the “small 
lymphocyte” fraction, as previously described [14], with 
a purity always >98 %. B-cells were isolated with a purity 
of ≥90 % from the “small and large lymphocyte” fractions 
using positive magnetic bead selection on an autoMACS 
(Miltenyi) using anti-CD19+ hybridoma (clone FMC63) 
and anti-IgG microbeads (Miltenyi, Bergisch Gladbach, 
Germany).

Isolation of DC and monocytes
The remaining elutriated fraction, containing the larger 
cells (20 ml/min), was used to isolate DC and monocytes. 
The large cell fraction was first stained with antibodies 
specific for the DC subsets, which included CD1c-APC 
(Miltenyi), CD141-VioBlue (Miltenyi), CD123-PE (BD 
BioSciences, Franklin Lakes, NJ, USA) and SLAN-FITC 
(Miltenyi), and labeled with anti-IgG beads (Miltenyi). 
DC were then isolated using an AutoMACS (Miltenyi) 
into positive and negative fractions. The positive frac-
tion (DC enriched) was further sorted into four DC 
subsets: CD1c+ mDC, SLAN+ DC, CD141+ mDC and 
CD123+ pDC, using a FACSAria (BD BioSciences). The 
negative fraction (DC depleted/mono) was stained with 
anti-CD14-FITC and anti-CD16-PE (BD Biosciences) 
antibodies, labeled with IgG beads (Miltenyi) and a posi-
tive selection performed using an AutoMACS (Miltenyi) 
to obtain a bulk monocyte population. These cells were 
further sorted to obtain the CD14+CD16− (CD14+) and 
CD16+CD14lo (CD16+) monocyte subsets using a FAC-
SAria. Cell populations with a purity ≥90 % were used, as 
determined by flow cytometry (LSR II or FACSAria; BD 
Bioscience). In the event of low yields of some APC sub-
population, the experiment was continued without that 
population. In these experiments the missing data was 
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omitted from the plots and therefore not every donor has 
data shown for all conditions tested.

Imaging antigen presenting cell subpopulations
After isolation, each antigen presenting cell (APC) sub-
population was cultured in RF10 media (RPMI 1640; Life 
Technologies, Carlsbad, CA, USA), supplemented with 
10  % fetal bovine serum (FBS; Interpath, Heidelberg, 
Australia), Penicillin–Streptomycin-Glutamine (PSG; 
Life Technologies) for 1–2  h at 37  °C in glass-bottom 
imaging plates (μ-slide, ibidi, Martinsried, Germany). 
Ten representative images were captured on a CCD 
camera through a 10 × 0.3 NA lens on a Olympus IX51 
microscope and annotated with ImageJ software.

Syngeneic mixed leukocyte reactions
Resting CD4+ T-cells were labeled with eFluor670 and 
co-cultured with decreasing concentrations of each APC 
subpopulation; log 1 (10:1), 2 (100:1) and 3 (1000:1), in 
the absence (syngeneic) or presence of superantigen SEB 
(10  ng/mL; Sigma). At day 5, cells were harvested and 
labeled with antibody against CD3 (V450, BD Biosci-
ence). Cells were analysed by flow for T-cells that prolif-
erated and therefore expressed low levels of eFluor670.

Viral plasmids, virus preparation and infection
In all experiments, we used HIV-1 NL4.3 plasmid back-
bone with an AD8 envelope and EGFP inserted in the nef 
open reading frame at position 75 (NL(AD8)ΔnefEGFP) 
[14], kindly provided by Damian Purcell, University of 
Melbourne (Melbourne, Australia). Viral stocks were 
generated by FuGene (Promega, Madison, WI, USA) 
transfection of 293T cells as previously described [14]. 
Cells were infected at an MOI of 0.5, as determined by 
limiting dilution in PHA-stimulated PBMC using the 
Reed and Muench method [71].

In vitro latency model
Resting CD4+ T-cells were labeled with the prolifera-
tion dye eFluor670 and cultured alone or with one of 
seven sorted syngeneic APC subpopulations at a ratio 
of 10:1 for 24  h in IL-2 (2U/mL, Roche Diagnostics, 
Basel, Switzerland) supplemented RF10 media. APC 
included monocyte subpopulations (CD14+CD16− and 
CD14loCD16+), DC subpopulations (pDC, CD1c+, 
CD141+ and SLAN+), and B-cells. Co-cultures were then 
infected with NL(AD8)ΔnefEGFP for 2  h, after which 
time excess virus was washed away and cells were cul-
tured for an additional 5 days. In order to compare APC 
stimulatory capacity between APC-T-cell co-cultures, at 
day 3 post-infection, cells were stained with anti-CD3-
V450 (BD Biosciences) to differentiate between T-cell 
and APC, and the proportion of proliferated (eFluor670lo) 

CD4+ T-cells were determined. Day 3 was used because 
this is when productive infection reached is maximum 
and remained high until day 5 (unpublished data). Addi-
tional APC-T-cell ratio’s were not used due to low APC 
yields. At day 5 post-infection, productive infection was 
determined by EGFP expression and non-proliferating, 
non-productively infected (eFluor670hi EGFP−) CD4+ 
T-cells were sorted using a FACSAria.

Reactivation of latency from resting T‑cells
Latent infection in the sorted, non-proliferating CD4+ 
T-cells (eFluor670hiEGFP−) was determined by com-
parison of stimulated with un-stimulated T-cells sorted 
from APC-T-cell co-cultures (control). 1x105 sorted 
CD4+ T-cells were stimulated with immobilized anti-
CD3 (7 μg/ml; Beckman Coulter), in RF10 media sup-
plemented with CD28 (5 μg/mL; BD Biosciences), IL-7 
(50  ng/mL; Sigma, St Louis, MO, USA), IL-2 (5U/mL; 
Roche), with (post-integrated latency) or without (total 
latency: pre- and post-integrated latency) integrase inhib-
itor L8 (1 μM; Merck, White House Station, NJ, USA). 
The concentration of L8 was determined previously by 
titration of L8 in phytohaemagglutinin (PHA; 10  μg/
mL) activated PBMC infected with R5-EGFP virus at an 
MOI of 0.5, same concentration usedin co-cultures, and 
showed productive infection was completely blocked at 
1 μM. This concentration used for all subsequent experi-
ments. Cells were harvested after 72 h of stimulation and 
EGFP expression was quantified on the FacsCalibur (BD 
BioSciences).

In some experiments PHA (10ug/mL) and IL-2 (10 U/
mL) stimulated feeder PBMC were used to activate 
T-cells as a measure of inducing virus replication form 
latency, as described previously [14].

Cell preparation for next generation sequencing 
and generation of gene lists
APC from 3 donors were sorted as described above to 
obtain mDC subpopulations CD1c+, SLAN+, CD14+ 
monocytes and pDC which were immediately stored 
in RLT buffer (Qiagen, Limburg, The Netherlands). 
Total RNA was isolated from low cell number samples 
(<500,000 cells) using Qiagen ALL prep micro kits (Qia-
gen), while RNA from samples with >500,000 cells were 
isolated using Qiagen RNA easy mini kits (Qiagen), 
according to the manufacturer’s instructions. Total RNA 
content varied from 270.0 to 1879.7 ng.

The Australian Gene Research Facility Ltd (AGRF, Mel-
bourne, Australia) prepared cDNA libraries, which were 
multiplexed on the Illumina HiSeq  2000 (Illumina, San 
Diago, CA, USA). For gene expression analysis, single 
reads were selected with 20 million reads of 50 bp read 
size gathered. The RNA-seq reads were aligned to the 
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human reference hg19 using the TopHat2 aligner [72, 73] 
and quantified using htseq-count [74]. Mapping rates for 
RNA seq are shown (Additional file 6: Table S3). Differ-
ential expression was calculated using Voom/Limma [75] 
and visualization performed using Degust [76] (http://
victorian-bioinformatics-consortium.github.io/degust/) 
and Vennt [77] (http://drpowell.github.io/vennt/). Genes 
with fewer than 10 reads across every sample were 
removed from the analysis.

APC subsets were categorized as latency-inducing and 
latency-non-inducing subsets. Using a fold change of 
greater than 2 and false discovery rate (FDR) of 0.01, we 
identified 754 genes that were significantly upregulated 
in latency inducing populations (CD1c+ mDC, CD14+ 
monocytes, SLAN+ DC) compared to latency non-induc-
ing populations (pDC; Fig.  4). As direct cell contact is 
required for the establishment of mDC induced latency, 
only protein encoding genes from APC implicated in 
cell contact were selected using the GeneCodis database 
(http://genecodis.cnb.csic.es). We identified 285 genes 
from the initial list that encode for proteins known to be 
expressed on the plasma-membrane, membrane, integral 
to the plasma-membrane/membrane and cell junctions 
[37–39]. Finally, we manually curated this list to identify 
53 genes known to be involved in T-cell signaling (Table 1; 
Additional file  1: Table S1). RNA-seq data is available 
through Gene Omnibus (GEO), serial number GSE70106.

As a comparison, we performed a similar analysis using 
our previously published microarray data using the same 
APC subpopulations [40]. Microarray data was kindly 
provided by Andrew Harman, Westmead Millennium 
Institute for Medical Research, Sydney University, Syd-
ney [40]. The RNA extraction, labeling, hybridization, 
data processing, and analysis procedures used by Har-
man et  al. are described previously for the cDNA gene 
array [78] and Illumina arrays [79]. Hybridization and 
data processing was performed by AGRF using sentrix 
human 6 v2 expression chips (Illumina).

Ethics approval
The use of blood samples from normal donors for this 
study was approved by the Alfred Hospital (HREC 
156/11) and Monash University (CF11/1888) Human 
Research and Ethics Committees. Donors were recruited 
by the Red Cross Blood Transfusion Service as normal 
blood donors and all provided written informed consent 
for the use of their blood products for the research.

Statistical analysis
Differences between experimental conditions were ana-
lyzed using Wilcoxon matched pairs signed rank test 
(n ≥ 5) or paired student T-test (n < 5) on GraphPad Prism 
(Version 6). P-values ≤0.05 were considered significant. 

Differentially expressed RNA-seq and microarray genes 
were found to be significant using ANOVA [40].
Additional files

Additional file 1: Figure S1. Multidimensional scaling (MDS) of 
sequenced APC subpopulations. RNA sequences were measured accord-
ing to two dimensions, 1 (x-axis) and 2 (y-axis). Each dot represents an 
antigen presenting cell (APC) subpopulation sequence, as labeled, n = 3. 
Clustering of dots is indicative of similar gene expression profiles.

Additional file 2: Table S1. Comparison of gene expression between 
latency inducing and non-inducing antigen presenting cell subpopula-
tions using RNA-seq. Using the bioinformatics databases DAVID [80], Gen-
eCards and GeneCodis, cell compartment gene function was determine 
of each gene. Genes expressed on antigen presenting cell (APC)-surface 
with the ability to signal to T-cells were shortlisted and their role in HIV-1 
infection and DC-T-cell interaction was further determined using PubMed. 
Genes that were common to the RNA-seq and microarray generated gene 
lists are in italics and underlined in Table 1. Acronyms used: intracellular 
adhesion molecules (ICAM), C-type lectin (CLEC), immunoglobulin (Ig), 
T-cell immune-receptor with Ig and tyrosine-based inhibition motif (ITIM) 
domains (TIGIT), DNAX accessory molecule-1 (DNAM-1), cytotoxic and 
regulatory T-cell molecule (CRTAM), junction adhesion molecules (JAMs), 
blood brain barrier (BBB), leukocyte function antigen (LFA), dendritic 
cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-
SIGN), galectin-1 (Gal-1), cysteine-dependent aspartate-directed proteases 
(caspase), factor for adipocyte differentiation 158 (FAD158), extracellular 
matrix (ECM), lymph node (LN), nuclear factor-kappa-B (NFkB), vascular 
endothelial growth factor (VEGF), major histocompatibility complex 
(MHC), T-cell receptor (TcR), cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4), TYRO protein tyrosine kinase-binding protein (TYROBP), 
interleukin (IL-), nuclear factor of activated T-cells (NFAT), vasoactive 
intestinal polypeptide receptor 1 (VIPR1), T-cell immunoglobulin mucin-3 
(Tim-3), monocyte derived dendritic cells (MDDC), natural killer cells 
(NK), human T-lymphotropic virus (HTLV-1), NFAT activating protein with 
immune-receptor tyrosine-based activation motif (NFAM1, CNAIP), cortical 
thymocyte-like protein (CTH, CTXC), B-cell receptor (BcR), HIV-associated 
neurocognitive disorder (HAND), antibody dependent cellular cytotoxicity 
(ADCC), Fc receptor (FcR), scavenger receptor class-A-1 (SRA-1), epidermal 
growth factor like domain, multiple/protein 5/9 (EGFL5).

Additional file 3: Supplementary references to Table 1. Included is 
the literature documenting the association of specific genes found in this 
study and changes in HIV infection and expression.

Additional file 4: Figure S2. Differential gene expression assessed 
by microarray analysis between latency inducing and non-inducing 
antigen presenting cells. A. Microarray gene expression profiles of antigen 
presenting cell (APC) subpopulations that could induce latency (CD1c+, 
SLAN+, CD14+ monocytes) in non-proliferating CD4+ T-cells were com-
pared with APC subpopulations that could not induce latency (plasma-
cytoid (p)DC). Genes that were expressed in all 3 latency inducing APC 
subpopulations, CD1c+, SLAN+, CD14+ monocytes, were categorized as 
candidate 3, genes expressed in only 2 APC subpopulations were catego-
rized as candidate 2 and genes expressed only in 1 APC subpopulation 
were categorized as candidate 1. B. Using the bioinformatics databases 
DAVID, GeneCards and GeneCodis, Candidate 2 and 3 gene lists were 
analyzed for cellular compartment and function. Genes expressed on the 
APC cell surface, with the ability to signal to T-cells were shortlisted. C. 
Heat map shows differentially expressed genes with ≥ twofold differences 
between latency inducing APC subpopulations (CD14+ monocytes, 
CD1c+ mDC and SLAN+ mDC) and non-latency inducing (pDC).

Additional file 5: Table S2. Comparison of gene expression between 
latency inducing and non-inducing antigen presenting cell subpopu-
lations using microarray. Using the bioinformatics databases DAVID, 
GeneCards and GeneCodis, gene expression compartment and function 
was determined. Genes expressed on the antigen presenting cell (APC)-
surface with the ability to signal to T-cells were shortlisted.

Additional file 6: Table S3. Sequence mapping rates in RNA-seq.

http://victorian-bioinformatics-consortium.github.io/degust/
http://victorian-bioinformatics-consortium.github.io/degust/
http://drpowell.github.io/vennt/
http://genecodis.cnb.csic.es
http://www.retrovirology.com/content/supplementary/s12977-015-0204-2-S1.pdf
http://www.retrovirology.com/content/supplementary/s12977-015-0204-2-S2.csv
http://www.retrovirology.com/content/supplementary/s12977-015-0204-2-S3.doc
http://www.retrovirology.com/content/supplementary/s12977-015-0204-2-S4.pdf
http://www.retrovirology.com/content/supplementary/s12977-015-0204-2-S5.csv
http://www.retrovirology.com/content/supplementary/s12977-015-0204-2-S6.csv
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Abbreviations
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