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hyperactivation in HIV/AIDS
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Abstract 

The restoration of the immune system prompted by antiretroviral therapy (ART) has allowed drastically reducing the 
mortality and morbidity of HIV infection. However, one main source of clinical concern is the persistence of immune 
hyperactivation in individuals under ART. Chronically enhanced levels of T-cell activation are associated with sev-
eral deleterious effects which lead to faster disease progression and slower CD4+ T-cell recovery during ART. In this 
article, we discuss the rationale, and review the results, of the use of antimalarial quinolines, such as chloroquine and 
its derivative hydroxychloroquine, to counteract immune activation in HIV infection. Despite the promising results 
of several pilot trials, the most recent clinical data indicate that antimalarial quinolines are unlikely to exert a marked 
beneficial effect on immune activation. Alternative approaches will likely be required to reproducibly decrease 
immune activation in the setting of HIV infection. If the quinoline-based strategies should nevertheless be pursued in 
future studies, particular care must be devoted to the dosage selection, in order to maximize the chances to obtain 
effective in vivo drug concentrations.
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Background
The quest for clinical candidates to counteract immune 
activation has become a “hot topic” in AIDS research, 
because HIV infection is characterized by malignant 
immune hyperactivation which correlates with disease 
progression and poor response to antiretroviral therapy 
(ART) [1–5]. Moreover, immune hyperactivation is also 
regarded as a major obstacle to a cure for AIDS [6].

In the beginning of the millennium, an article authored 
by one of us launched chloroquine as a tool to inhibit 
viral replication and the related malignant immune acti-
vation associated with some viral diseases [7]. This arti-
cle sparked a new wave of studies, in that it extended a 
theory, previously designed for HIV/AIDS [8], to other 
viral diseases characterized by excessive immune activa-
tion. As will be discussed below, by accumulating in the 

acidic organelles, chloroquine exerts both direct antiviral 
effects on enveloped viruses and decreases activation of 
several cell types involved in the immune response. Chlo-
roquine has since shown promise in preclinical studies 
(both in vitro and in vivo), as a therapeutic agent against 
emerging viruses such as MERS CoV [9]. Of note, chlo-
roquine has been indicated as a promising candidate 
for filovirus treatment [10], especially during the lat-
est Ebola epidemic [11, 12]. In two studies out of three, 
chloroquine showed antiviral activity in mice at the 
maximum tolerated dose [10, 13, 14], thus rendering this 
drug an interesting agent for further testing of combina-
tion anti-Ebola therapies. However, the effects of chloro-
quine and its hydroxyl analogue hydroxychloroquine, on 
HIV infection, i.e. the initial target for the repurposing 
of these drugs, have remained controversial. On the one 
hand, based on the results of some earlier clinical trials, 
chloroquine/hydroxychloroquine has been recently re-
suggested as a promising candidate to restrict the HIV-
related immune activation [15, 16]. On the other hand, 
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the results from the latest clinical trials indicate that 
chloroquine/hydroxychloroquine has no beneficial effect 
on immune activation [17, 18].

We here provide a state of the art of the studies inves-
tigating the use of chloroquine/hydroxychloroquine as a 
therapeutic tool for HIV/AIDS and suggest the possible 
biological grounds for the clinical results obtained. More-
over, we describe the reasons why our group decided to 
proceed further with strategies based on another drug, 
i.e. auranofin, which shares with chloroquine an anti-
rheumatic effect [19].

Immune activation in HIV/AIDS
Several reviews have recently been published on immune 
activation in HIV infection [6, 16, 20, 21]. Briefly, immune 
hyperactivation, commonly measured as the expres-
sion levels on peripheral blood lymphocytes of markers 
such as HLA-DR, CD38, or CD69 correlates with, and 
also predicts, disease progression (reviewed in [22, 23]). 
Immune activation gradually decreases following therapy 
initiation [24] and is maintained high in immunological 
non-responders, who are individuals maintaining low 
CD4 counts despite prolonged exposure to ART [3, 4]. 
While the initial studies were focused on the relation-
ship between disease progression and activation of CD8+ 
T-cells [1], later studies better concluded that there is a 
broader relationship between disease progression and 
immune hyperactivation, involving also CD4+ T-cells [5, 
25] and innate immunity [26].

Immune activation and viral replication are believed 
to be mutually enhanced in a vicious circle. The virus, 
recognized by the immune system as non-self, induces 
immune activation, which, in turn, fuels viral replica-
tion by furnishing to the virus material to synthesize the 
different viral components. For example, lymphocyte 
activation increases the cytoplasmic levels of deoxyribo-
nucleotides necessary for viral DNA synthesis by reverse 
transcriptase [27]. This vicious circle may still persist in 
anatomical compartments incompletely penetrated by 
ART.

HIV-induced immune activation is not limited to spe-
cific immunity, but exerts its effects on innate immu-
nity as well. HIV-1 was shown to activate plasmacytoid 
dendritic cells (pDCs), which, differently from myeloid 
dendritic cells (the most potent antigen-presenting cells 
in the body), induce innate antimicrobial immunity by 
producing type I interferons (Figure 1) [26]. pDCs inter-
nalize HIV-1 through viral envelope/CD4 interactions, 
and the internalized virus activates these cells mainly 
through toll-like receptor 7 (TLR-7) signaling (Figure 1). 
Comparative pathology corroborates the hypothesis that 
over-stimulation of this pathway may be associated with 
deleterious effects. Sooty mangabeys (Cercocebus atys), 

which can be infected by a simian homolog of HIV (i.e. 
simian immunodeficiency virus, SIV) but do not develop 
AIDS, display weak IFN-α production upon stimula-
tion with TLR-7 antagonists [28]. On the contrary, rhe-
sus macaques (Macaca mulatta), which do progress to 
AIDS, produce high amounts of IFN-α when their pDCs 
are subjected to the same stimuli [28]. Moreover, another 
species displaying nonpathogenic SIV infection, i.e. the 
African green monkey (Chlorocebus aethiops), is char-
acterized by an efficient control of IFN-α production fol-
lowing acute infection [29].

pDCs decrease in peripheral blood during progression 
to AIDS, because, upon activation, they migrate to the 
lymphoid tissue [30]. As a huge number of cells reside in 
the gut-associated lymphoid tissue (GALT), according to 
the microbial translocation theory, the intestinal mucosa 
damaged by the consequent inflammation may become 
permeable to products of the gut microbiome which fur-
ther enhance HIV-related immune hyperactivation [31, 
32].

Finally, immune activation is one primary driver of 
both generation and maintenance of the viral reservoir, 
which is mainly constituted by latently infected, central 
and transitional memory CD4+ T-cells (henceforth TCM 
and TTM, respectively) [33]. Also in this case, compara-
tive pathology has provided clues for understanding this 
phenomenon. It was shown that CD4+ TCM cells from 
sooty mangabeys express, upon activation, low levels of 
CCR5, the main coreceptor for virus entry into cells, thus 
limiting infection of this important cellular compartment 
[34]. Instead, activated TCM cells from AIDS-developing 
species, such as humans and rhesus macaques, up-regu-
late the levels of CCR5 to a higher extent than cells from 
sooty mangabeys, thus facilitating the generation of a 
consistent viral reservoir [34]. After these cells become 
quiescent, viral replication switches off, and latently 
infected, HIV-reservoir cells proliferate through low-level 
antigenic stimulation (TCM) or IL-7-driven homeostatic 
proliferation (TTM) [33]. Both processes are enhanced by 
generalized immune activation.

Mechanisms of action of chloroquine
Multiple in vitro effects of chloroquine could support 
its possible use as a modulator of immune activation in 
HIV/AIDS:

1.	 Chloroquine and its hydroxyl analogue hydroxy-
chloroquine were shown in several studies to inhibit 
HIV-1 replication (reviewed in: [7]). The effects of 
these quinolines, mainly due to the induction of a 
defect in the maturation of the viral envelope glyco-
protein gp120 [35, 36], might mimic the effects of 
broadly neutralizing antibodies directed against the 
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viral envelope, although the effects of these antibod-
ies are weaker than those directed against the CD4-
binding site [37]. These effects are additive to those 
of non-nucleosidic reverse transcriptase inhibitors 
(NNRTIs) and synergistic to those of protease inhibi-
tors (PIs) [38]. As quinoline drugs accumulate in lym-
phoid tissues [39], they might decrease ongoing viral 
replication during ART in anatomical sanctuaries 
and, consequently switch off one of the main drivers 
of immune activation. Chloroquine is also an inhibi-
tor of P-glycoprotein (P-gp) and multidrug resist-
ance proteins (MRPs) [40, 41], cell surface glycopro-
teins which extrude several antiretroviral drugs to 
the extracellular medium. In line with this evidence, 
chloroquine was shown to increase the intracellular 
levels of PIs [38]. The effects of chloroquine in com-

bination with NRTIs are instead controversial: some 
reported an additive effect [42], while others did not 
detect it [43]. The combined effects of chloroquine 
and integrase inhibitors are as yet unknown.

2.	 Chloroquine accumulates in phagosomes of pDCs 
and inhibits their HIV-induced activation [44]. It 
might therefore impact on innate immunity-induced 
immune hyperactivation.

3.	 A recent study showed that hydroxychloroquine 
selectively induces apoptosis in the memory T-cell 
compartment (CD45RA− CD45RO+) [45]. As, upon 
activation, naïve T-cells (CD45RA+ CD45RO−) 
acquire a CD45RA− CD45RO+ phenotype, the “anti-
memory” effect should limit immune activation (Fig-
ure  2) [46]. There is growing consensus that induc-
tion of apoptosis in the memory T-cell compartment 

Figure 1  Mechanistic model of HIV-induced persistent immune-activation. a HIV enters CD4-expressing plasmacytoid dendritic cells (pDCs); b the 
virus is endocytosed, decapsided and its RNA is recognized by toll-like receptor 7 (TLR-7); c stimulation of TLR-7 prompts a signaling cascade induc-
ing IFN-α transcription in the nucleus; d production of IFN-α favors activation of several cell subsets such as T, B and natural killer (NK) lymphocytes. 
Chloroquine (CQ) is postulated to reduce the efficiency of this mechanism by accumulating in endosomes and decreasing HIV-mediated TLR-7 
signaling [44].
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might have a detrimental effect on the viral reservoir 
[47–49]. In this light, chloroquine/hydroxychloro-
quine should have an anti-reservoir potential. This 
view is supported by another recent study which 
shows that chloroquine sensitizes to apoptosis the 
latently infected cells upon viral reactivation, likely by 
removing the anti-apoptotic effect of the virus struc-
tural gag gene products [50]. These effects are poten-
tially interesting, since it has been well demonstrated 
that viral reactivation from latency does not neces-
sarily result in cell death [51].

In vivo effects of chloroquine/hydroxychloroquine: 
preclinical models
The macaque AIDS model is an important tool for pre-
clinical assessment of strategies aimed at treating HIV/

AIDS [52]. To our knowledge, chloroquine has been 
tested in this model on two occasions.

In a first study, chloroquine (25  mg every other day 
for 30 days, i.e. a cumulative dosage comparable to that 
administered to humans with rheumatioid arthritis) 
was administered to three Chinese rhesus macaques 
infected with the simian HIV-homologue, SIVmac251 
[53]. Although a decrease in activated pDCs was shown, 
no effects were seen on viral load and CD4+ and CD8+ 
T-cell activation (measured as CD38 expression) [53].

As the immune activation set point is established dur-
ing acute infection [4], Vaccari et  al. [54] treated with 
chloroquine (18.7  mg/day for 112 consecutive days) 
seven SIVmac251-infected rhesus macaques during the 
viral load peak that characterizes acute infection. Apart 
from an unexpected, although transient, increase in the 

Figure 2  Comparison of the susceptibility to chloroquine/hydroxychloroquine and auranofin of the cellular subsets involved in HIV production and 
persistence. Shown in the figure is a schematic depiction of a activation and b differentiation stages of CD4+ T-lymphocytes and their correlation 
with viral production, latency and viral reactivation. Both chloroquine/hydroxychloroquine and auranofin can influence these transitions by exerting 
a pro-apoptotic effect, the efficacy of which is graphically exemplified by the intensity of the blue color in the corresponding rectangles. Efficacy 
gradients are based on data derived from Refs. [45, 48, 50].
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expression of interferon-regulated genes (perhaps not 
population-relevant as possibly driven by only one ani-
mal), no significant differences were reported in viral 
load and T-cell activation and proliferation (measured as 
expression of CD69 and Ki67, respectively) [54]. A trend 
was however noticed for maintenance of decreased levels 
of Ki67, CD69 and CCR5 in the gut of the chloroquine-
treated animals, although the differences with values 
from the control group did not reach statistical signifi-
cance. The effect of chloroquine in this simian model in 
the presence of ART is still unknown.

In vivo effects of chloroquine/hydroxychloroquine: 
clinical trials
Chloroquine and hydroxychloroquine have so far been 
tested in several HIV clinical trials. The results summa-
rized in Figure 3 support the hypothesis that the chloro-
quine/hydroxychloroquine dosage may be an important 
driver of at least partial clinical success.

Suppressive effects on immune activation by chloro-
quine were shown in the trial conducted by Murray et al. 
[55]. However, in this trial, the dosage administered was 
not the same for all individuals, some of them receiving 
500 mg/die instead of 250 mg/die. It is thus possible that 
the statistical significance of the effects reported in this 
study was driven by the higher dosage of the drug. This 
view is supported by a later study which tested chloro-
quine at 250 mg/die and failed to show any effect of the 
drug [18].

In two clinical trials conducted in the 1990s, Sperber 
et al. reported suppressive effects on immune activation 
(measured at that time as IL-6 production) and viral load 
in individuals treated with 800  mg of hydroxychloro-
quine/day (bioequivalent to 500 mg/day of chloroquine) 
[56, 57]. The other clinical trials testing hydroxychloro-
quine at a lower dosage (i.e. 400 mg/day) led to conflict-
ing results. Earlier studies [58, 59] and the more recent 
study of Piconi et al. [60] reported significant effects on 
viral load [58], CD4 counts [59], and immune activation. 
[60]. Instead, a more recent clinical trial, randomized and 
double blind, showed disappointing results, even hinting 
at possibly deleterious effects of hydroxychloroquine on 
viral load and CD4 counts [17]. This trial was conducted 
in the absence of ART, and this might explain differences 
between this study and the study of Piconi et al., which 
was conducted on individuals under ART [60]. Another 
trial in ART-treated patients is currently ongoing and will 
provide more information on the effects of hydroxychlo-
roquine (ClinicalTrials.gov identifier: NCT01232660).

The hydroxychloroquine levels show high inter-subject 
variability and, although individuals receiving the higher 
hydroxychloroquine dosages (800 and 1,200  mg/day) 
also showed significantly higher blood levels of the drug 

than those receiving 400 mg/die, the range of the blood 
concentrations was in part overlapping in the different 
dosage groups [61]. Chloroquine has similar pharma-
cokinetics [62]; therefore, not only the dosage but also 
individual differences in drug metabolism and distribu-
tion may explain the different conclusions of the afore-
mentioned studies. A large clinical trial has recently been 
completed (ClinicalTrials.gov Identifier: NCT00819390) 
and its results can help to better represent the response 
of a population, thus abolishing the bias due to limited 
sample size. In this trial, however, chloroquine has been 
tested at 250 mg/day in the absence of ART; thus, in light 
of the results of the aforementioned clinical trials and 
considerations derived from basic science (see next par-
agraph), it is not surprising that the preliminary results 
released so far for this trial (https://clinicaltrials.gov/ct2/
show/NCT00819390) do not show any significant effect 
of chloroquine on immune activation, viral load and CD4 
counts.

Lessons learnt from chloroquine/
hydroxychloroquine use in HIV infection
Chloroquine/hydroxychloroquine-treated individu-
als display blood concentrations that are highly vari-
able and only rarely exceed 10 or 20  µM, respectively 
[61, 62]. Therefore, at the steady state levels, these blood 
concentrations only in part overlap those at which a 
therapeutic effect is expected. For example, the EC50 of 
chloroquine on PBMC proliferation upon activation is, 
in general, ≥10  µM [63], and this value can explain the 
varying results obtained in the different clinical trials, 
with clearer effects associated with the higher drug dos-
ages. Similarly, the pro-apoptotic effect of hydroxychlo-
roquine on the memory T-cells is only moderate at the 
concentrations reachable in blood, especially in the lower 
range [45, 61]. The pro-apoptotic effect of chloroquine 
described by Li et al. on latently infected cells upon viral 
reactivation is instead more marked, although still par-
tial, at the upper range of clinically achievable blood con-
centrations (5–10 µM) [50]. This effect could therefore be 
visible in vivo in terms of viral reservoir reduction, but 
only treating with high chloroquine dosages in the pres-
ence of suppressive ART. Moreover, to maximize the 
chances to obtain viral reservoir reduction in vivo, chlo-
roquine treatment should be prolonged, as the events of 
virus reactivation from latency are rather rare (estimated 
as one event of transition from latency to productive 
infection every 10 mL of blood each day) [64].

The effect of chloroquine on pDC activation (see Fig-
ure  1) was initially observed in vitro by pre-incubating 
pDCs with 100 µM of chloroquine for 1 h [44]. This treat-
ment results in intracellular concentrations comparable 
to those observed during chronic in vivo administration 

https://clinicaltrials.gov/ct2/show/NCT00819390
https://clinicaltrials.gov/ct2/show/NCT00819390
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STUDY DESIGN
NMR. OF STUDY 

SUBJECTS DOSAGE
THERAPY

DURATION
MAIN RESULTS

Sperber et al. 
Clin Ther 1995

[56]

Randomized, double 
blind, placebo-

controlled trial (HCQ 
monotherapy).

38 HIV+ asymptomatic
ART naïve or off-ART 

for 4 weeks 
(19 received HCQ)

800 mg/die 8 weeks
Decrease in VL and serum 
IL-6 levels. No change in 

CD4 counts.

Sperber et al. 
Clin Ther 1997

[57]

Randomized parallel  
trial (HCQ vs 
zidovudine)

72 HIV+  asymptomatic 
ART naïve or off-ART 

for 4 weeks
(35 received HCQ)

800 mg/die 16 weeks
Decrease in VL and serum 
IL-6 levels. No change in 

CD4 counts.

Paton et al.
Lancet 2002 & 
HIV Med. 2005

[58,59]

Open-label single arm 
study (HCQ + 
hydroxyurea + 

didanosine)

HIV+ ART naïve: 16 
subjects evaluated at 48 
weeks and 14 subjects 
evaluated at 144 weeks

200 mg/bis in 
die 48 or 144 weeks

Decrease in VL. Increasing 
trend in CD4 counts at 

week 144.

Murray et al.J. 
Vir. 2010 [55]

Randomized, double 
blind, placebo-
controlled (CQ 
monotherapy)

13 HIV+ ART naïve or 
off-ART for >16 months

(9 received CQ)

250mg/die (6 
subjects);

500mg/die (3 
subjects)

2 months

No change in VL and cell-
associated vDNA. 

Reduction of 
activation/proliferation in 
memory CD8+ (HLA-DR, 
CD38 and Ki67) and CD4+  

(Ki67) T-cells. Decrease of 
plasma LPS levels.

Piconi et al.
Blood 2011 [60]

Prospective single arm 
study (HCQ + ART)

20 HIV+ VL suppressed 
immunologic non 

responders
400mg/die 6 months

Increase in the percentage 
of CD4+  T-cells. Reduction 
of activation/proliferation 
in CD14+ cells (CD69+) 

and CD4+ T-cells (Ki67+). 
Decrease of plasma LPS 

levels.

Paton et al.
JAMA 2012 [17]

Randomized, double 
blind, placebo-

controlled (HCQ 
monotherapy)

83 HIV+ asymptomatic 
ART naïve or off-ART 

for >22 months.
(42 received HCQ)

400mg/die 48 weeks

Increase in VL. Faster 
decline of CD4+ T-cell 
counts. No change in 

activation/proliferation 
levels (HLA-DR, CD38 
and Ki67) in CD8+ and 

CD4+  T-cells. No change 
in IL-6 levels.

Routy et al. HIV 
Med. 2014 [18]

Open label single arm 
study

(CQ + ART)

19 HIV+ VL-suppressed 
immunologic non 

responders
250mg/die 24 weeks

No change in CD4+ T-cell 
counts or percentage. No 

change in the levels of 
activation or inflammation 
markers (HLA-DR, CD38, 

IL-6 et al.).

Figure 3  Published clinical studies evaluating the effects of chloroquine/hydroxychloroquine administration, alone or in combination with other 
drugs, in HIV infected subjects. Highlighted in blue, red or white are the studies that have reported a positive, negative, or neutral outcome of the 
therapy respectively. CQ chloroquine, HCQ hydroxychloroquine.
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[65]. In this case, the in vitro effect is in line with the 
results of two in vivo studies [53, 60]. The use of chlo-
roquine-related compounds with increased potency 
is yielding promising results in vitro [66], and it will be 
interesting to test the best-performing candidates in the 
simian AIDS model.

The effects of chloroquine/hydroxychloroquine on viral 
replication have been repeatedly shown in vitro at lower 
drug levels than those inducing the cellular effects [35, 36, 
63, 65]. The blood concentration/EC50 ratio is however 
much narrower than those shown by antiretroviral drugs 
[63]. The antiretroviral effects of chloroquine/hydroxy-
chloroquine may though become visible in anatomical 
sanctuaries of those individuals treated with PI-containing 
antiretroviral regimens. In any case, we recommend that 
chloroquine/hydroxychloroquine be tested at the highest 
recommended dosages in future HIV clinical trials.

Alternative/complementary interpretations of the 
results so far obtained are possible. For example, the 
effectiveness of the ART regimen employed may play a 
role in determining the magnitude of the effects (if any) 
observed following chloroquine/hydroxichloroquine 
addition. The study of Piconi et  al. [60], showing some 
benefit in immunological non responders, may indi-
cate that the effects of chloroquine may be visible only 
in some subsets of individuals with peculiar immuno-
logical characteristics, and that these effects can be hin-
dered when immunologically non homogeneous cohorts 
are studied. In this regard, larger studies, with cohorts 
stratified according to immunological responsiveness to 
ART, could provide further information on the effects of 
chloroquine/hydroxychloroquine.

Another open question remains the influence of the 
duration of drug exposure, as it has been shown that 
chloroquine/hydroxychloroquine has cumulative effects 
[67]. As a proportion of HIV-infected patients in Africa 
may already be on chloroquine medication to prevent 
malaria, it might be worth examining the long-term 
effects of this treatment. In this regard, an ongoing phase 
III clinical trial will assess the long-term effects of chloro-
quine and trimethoprim-sulfamethoxazole phrophylaxis 
on survival and disease control in HIV-infected individu-
als with suppressed viral load and good clinical response 
to ART [68].

Current and future directions: another approach 
based on antirheumatic therapy
Given the aforementioned problems in the pharmacoki-
netics of chloroquine/hydroxychloroquine, our group 
chose to follow a different, yet partly similar, approach 
to corroborate treatment of HIV/AIDS. Based on the 
feedback received from basic science studies and clinical 

trials that have been published throughout the years, 
we decided to use drugs the desired effects of which be 
striking in vitro at concentrations lower than the trough 
plasma concentrations in vivo. We also decided to re-
direct our research on the basis of the plasma concentra-
tions rather than on whole-blood concentrations (widely 
used for chloroquine/hydroxychloroquine), because we 
thought that the former might better mimic the tissue 
culture concentrations. The drug that we selected is the 
gold-based compound auranofin, the pharmacodynamics 
and pharmacokinetics of which are well known, due to 
its decade-long employment for treatment of rheumatoid 
arthritis [69].

The main rationale for the use of auranofin in our stud-
ies was its ability to target the central/transitional mem-
ory CD4+ T-cell compartment (Figure 2) [48, 70], which 
is known to harbor the main viral reservoir in patients 
receiving ART [33]. Auranofin is drastically active at sub-
micromolar (i.e. ≤250  nM) concentrations, which are 
below those readily achievable in human plasma [71]. The 
administration of auranofin ultimately led to a reduction 
of the viral reservoir in ART-treated SIVmac251-infected 
macaques [70]. A review on our preclinical studies has 
recently been published [46] and the reader is addressed 
to it for further detail. Not surprisingly for a drug effec-
tive against an autoimmune disease such as rheumatoid 
arthritis, auranofin may as well be beneficial in terms of 
reduction of cell activation. In particular, the downregu-
lation of the CD28 molecule induced by auranofin can 
disrupt the co-stimulatory signal often crucial for lym-
phocyte activation [48]. Moreover, apart from memory 
CD4+ T-cells, auranofin also targets the memory CD8+ 
T-cell compartment [48], i.e. a cellular subset known to 
be hyperactivated during HIV infection [2]. Interestingly, 
as described for hydroxychloroquine [60], auranofin was 
shown to disrupt in various cell lines the TLR-4 signal-
ing [72], which is activated by bacterial lipopolysaccha-
rides and likely constitutes another source of immune 
hyperactivation. In vitro data indicate that the impact of 
auranofin on lymphocyte activation may be mediated, 
at least in part, by modulation of oxidative stress [48]. 
Of note, the addition of a potent pro-oxidant drug, such 
as buthionine sulfoximine (BSO), increases the potency 
of auranofin, decreasing phytohemagglutinin-induced 
activation and expression of the α-chain of the IL-2 
receptor [73]. This is in line with our preliminary data 
in SIVmac251-infected macaques, in which a combined 
regimen of ART, auranofin and BSO induced a functional 
cure-like condition following suspension of all therapies 
[74]. These observations provide proof of concept that 
drastically decreasing immune hyperactivation arrests 
SIV disease progression and turns the virus/immune 



Page 8 of 10Savarino and Shytaj. ﻿Retrovirology  (2015) 12:51 

system balance in favor of the latter. Clinical trials will be 
required to assess the potential of auranofin to decrease 
immune activation in ART-treated subjects.

Finally, other drugs used or proposed for treatment 
of rheumatoid arthritis might find a place in the treat-
ment of HIV/AIDS. For example, the janus kinase inhibi-
tors tofacitinib and ruxolitinib have shown a promising 
in vitro activity against HIV replication [75]. The ongo-
ing in vivo studies on these compounds could provide an 
opportunity to analyze the effects of this treatment on 
viral replication and immune activation.
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