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Abstract

Background: Host SAM domain and HD domain-containing protein 1 (SAMHD1) suppresses reverse transcription
kinetics of HIV-1 in nondividing cells such as macrophages by hydrolyzing and nearly depleting cellular dNTPs,
which are the substrates of viral reverse transcriptase (RT). However, unlike HIV-1, HIV-2 and SIVsm encode viral
protein X (Vpx), which counteracts the dNTPase activity of SAMHD1 and elevates dNTP concentration, allowing the
viruses to replicate under abundant dNTP conditions even in nondividing cells.

Findings: Here we tested whether RTs of these Vpx coding and noncoding lentiviruses display different enzyme
kinetic profiles in response to dNTP concentrations. For this test, we characterized an extensive collection of RTs
from 7 HIV-1 strains, 4 HIV-2 strains and 7 SIV strains, and determined their steady-state kinetic parameters. The Km
values of all HIV-1 RTs were consistently low and close to the low dNTP concentrations found in macrophages.
However, the Km values of SIV and HIV-2 RTs were not only higher than those of HIV-1 RTs but also varied significantly,
indicating that HIV-2/SIV RTs require higher dNTP concentrations for efficient DNA synthesis, compared to HIV-1
RT. However, the kcat values of all eighteen lentiviral RTs were very similar.

Conclusions: Our biochemical analysis supports the hypothesis that the enzymological properties, particularly, Km
values, of lentivirus RTs, are mechanistically tied with the cellular dNTP availability in nondividing target cells,
which is controlled by SAMHD1 and Vpx.
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Findings
Lentiviruses such as HIV-1, HIV-2 and SIV infect both
activated/dividing CD4+ T cells and various nondividing
myeloid cell types including macrophages and microglia
during the course of their pathogenesis [1,2]. However, the
kinetics of HIV-1 replication in these nondividing cells is
significantly delayed, compared to activated CD4+ T cells
[2,3]. Nondividing cells maintain lower dNTP concentra-
tions than dividing cells that can activate cellular dNTP
biosynthesis at S phase [4]. Thus due to the limited dNTP
availability, nondividing macrophages are suboptimal for
supporting proviral DNA synthesis of lentiviruses as
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compared to the activated and constantly dividing CD4+ T
cells [2,5]. Indeed, cellular dNTP concentrations are ~200
times lower in macrophage (20? 40 nM) than activated
CD4+ T cells (1 ? 16 μM) [2]. A series of recent studies
showed that the host SAM domain and HD domain-
containing protein 1 (SAMHD1) protein has dNTP
hydrolase and RNase activities and serves as a restric-
tion factor that can delay the replication kinetics of
lentiviruses [6-10], and the dNTP hydrolase activity of
SAMHD1 is responsible for the poor dNTP availability
in the viral nondividing target cell types such as macro-
phages and dendritic cells (DCs) [11].
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Interestingly, unlike HIV-1, HIV-2 replicates more
rapidly in nondividing cells [12]. This phenotype is
directly linked to a viral accessory protein, called viral
protein X (Vpx), which is encoded by HIV-2 and many
SIV strains [13,14]. Recent studies revealed that Vpx
targets SAMHD1 for proteasomal degradation through
the E3 ubiquitination pathway [15,16], and the cellular
depletion of SAMHD1 leads to elevated dNTP con-
centrations and accelerated reverse transcription in
macrophages, resting CD4+ T cells, and DCs [17].
However, unlike HIV-2/SIV which rapidly replicate
under high dNTP concentration conditions even in the
nondividing cells, the proviral DNA synthesis of HIV-1
lacking Vpx is kinetically restricted in the nondividing
target cell types due to the limited dNTP pools estab-
lished by SAMHD1 [18].
Since Vpx-lacking HIV-1 replicates at extremely low

dNTP concentration environments in macrophages, we
tested whether RTs of HIV-1 strains display a higher
affinity for dNTPs and lower Km values close to the
dNTP concentrations found in macrophages as com-
pared with RTs of Vpx-encoding lentiviruses such as
HIV-1 94CY HIV-2 
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Figure 1 Effect of dNTP concentration on RNA-dependent DNA polym
primer (P) annealed to 40-mer RNA template. (B) The T/P was extended by 18
Procedures at different dNTP concentrations (lanes 1 ? 10: 50 μM, 25 μM, 1
strains used were HXB2, NL4-3, 94CY, 92RW, 93IN, 94UG, and 93BR. HIV-2 s
Mac239, Mne CL8, Mne 170, Agm155-4, Agm Gri-1, Agm 9063 ? 2, and Agm
primer extension as determined by 40 bp fully extended product (F) at th
reactions with HIV-1 94CY, HIV-2 ROD, and SIVagm 9063 ? 2 are shown in t
incorporations at lower dNTP concentrations. (−) no RT control. T: dNTP co
found in macrophages.
HIV-2 and SIV where the selective pressure to function
optimally at low dNTP concentrations is lifted by Vpx.
To test this, we cloned, overexpressed and purified RT

proteins from 7 HIV-1 strains of various subtypes (A, B,
C, D, F/H), 4 strains of HIV-2 and 7 strains of SIV [19].
The NIH AIDS Reagent Program and collaborators (Drs.
V.M. Hirsch and J. Overbaugh) generously offered the
near-full length molecular clones for the different HIV-1,
HIV-2 and SIV strains. Briefly, the RT genes were cloned
from these molecular clones into pET28a creating an
N-terminus six histidine tag with NdeI/ XhoI sites and
then overexpressed in E. coli BL21 (Novagen, WI) with
1 mM IPTG, lysed with sonication, and purified using a
HisBind Purification Kit (EMD Millipore) to greater than
95% purity. Protein yields were typically 8? 12 mg/ L bac-
terial culture and 1? 3 protein preps were used for each
experiment.
First we examined the effect of dNTP concentration

on RNA-dependent DNA polymerization activity of
these purified RT enzymes using a 40-mer RNA tem-
plate (T) annealed to a 5 ? -32P labeled 17-mer DNA
primer (P, Figure 1A) at dNTP concentrations observed in
ROD SIVagm 9063-2
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erization activity for lentiviral RT proteins. (A) 5? 32P-labeled 17-mer
purified RT proteins under the condition described in Experimental

0 μM, 5 μM, 1 μM, 500 nM, 250 nM, 100, nM, 50 nM, 25 nM). HIV-1
trains used were Ghana1, ST1, ROD, and ROD10. SIV stains used were
Tan-1. RT activity used in this assay generated approximately 50%

e highest dNTP concentration (lane 1). Among 18 RT proteins, the
his figure, ? * ? indicates pause sites produced by kinetic delays of dNTP
ncentrations found in activated CD4+ T cells, M: dNTP concentrations
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activated/dividing CD4+ T cells (? T? in Figure 1B) and
nondividing macrophages (? M? in Figure 1B) in a primer
extension assay previously described [20]. As shown in
representative gels with RTs from HIV-1, HIV-2 and SIV
groups (Figure 1B, other RT data not shown), upon the
use of an equal DNA polymerase activity measured at the
highest dNTP concentration (lane 1, 50 μM), all HIV-1
RTs (i.e. HIV-1 94CY in Figure 1B) were able to extend
the primer efficiently even at low dNTP concentrations
found in macrophages ( ? M ? ), while many HIV-2 and
SIV RTs (i.e. HIV-2 ROD and SIVagm 9063 ? 2 in
Figure 1B) failed to fully extend products at the low
dNTP concentrations found in macrophages. Signifi-
cant pause sites (see ? *? in Figure 1B), which are generated
by the kinetic delay of dNTP incorporation, are more
evident in HIV-2 and SIV RTs, compared to HIV-1 RTs.
This initial qualitative analysis shown in Figure 1 sug-
gests that RT proteins from the three groups of lentivi-
ruses (HIV-1, HIV-2 and SIV) have different dNTP
concentration dependent DNA polymerase activity
profiles.
Next, in order to quantitatively and mechanistically

differentiate the RT activity discrepancy among the 18
RT proteins, we determined their steady-state Km and
kcat values using the reaction conditions described in
Figure 1. As summarized in Figure 2A, we found that
the average Km value for RTs from HIV-1 strains
tested was 10 fold lower than those from HIV-2 and
SIV combined (0.179 vs. 1.79 μM). This suggests that
most Vpx encoding HIV-2 and SIV have RTs that re-
quire higher concentrations of dNTPs to reach half
maximal velocity as compared with RTs from HIV-1
strains. Of note, it has been previously reported that
Vpx from some HIV-2 and SIV strains fails to effi-
ciently degrade the host SAMHD1 which may explain
the low Km values for a few of the Vpx encoding
strains [21,22].
We found that the there was no statistically significant

difference in catalytic turnover (kcat) among the 18 RT
proteins tested (Figure 2B). This suggests that the turn-
over of substrate per enzyme is well conserved and
unaffected within lentiviruses regardless of Vpx. Next
we compared the overall steady-state catalytic efficiency
(kcat/ Km) of these RT enzymes. Given that the kcat
values were nearly identical for all RTs tested and the
Km values were 10 times lower for HIV-1, it was evident
that the catalytic efficiencies of HIV-1 RTs were signi-
ficantly higher than RTs from HIV-2 and SIV which
express Vpx (Figure 2C). This suggests that RTs from
HIV-1 strains are more capable of synthesizing proviral
DNA than RTs from HIV-2 or SIV particularly at low
dNTP concentrations.
Next, we tested whether the observations shown in

Figures 1 and 2 with RNA-dependent DNA polymerase
activity of the RT enzyme are also common in their
DNA-dependent DNA polymerase activity by employ-
ing a DNA template encoding the same sequence as
the RNA template used in Figures 1 and 2. As shown
in Figure 3A, HIV-1 94CY RT continues to extend at
low dNTP concentrations as compared with SIVagm
9063 ? 2 RT. Finally, we also tested whether the same
discrepancy between HIV-1 RTs and other RTs can be
observed in a template encoding a viral sequence, the
primer binding site (PBS), which is one of the most
conserved viral sequences among lentiviruses. As
shown in Figure 3B, again, HIV-1 94CY RT enzymes
are more capable of extending the primer, compared
to SIVagm 9063 ? 2 RT enzymes at the low macrophage
dNTP concentrations. Therefore, the data shown in
Figures 3A and 3B support that HIV-1 RTs are more effi-
cient than Vpx-encoding lentivirus RT enzymes regardless
of the types and sequences of template.
Terminally differentiated macrophages, which per-

manently lack chromosomal DNA replication, harbor
extremely low dNTP concentrations [2], and host
SAMHD1 protein, which is a dNTPase expressed at
high levels specifically in nondividing cells, contributes
to the dearth of dNTPs in macrophages [11]. There-
fore, viruses that replicate and synthesize DNA in mac-
rophages encounter the selective pressure generated
from low dNTP availability during viral replication.
We previously reported that HIV-1 RT has a uniquely
low Km value for dNTP substrates compared to RTs of
other retroviruses that exclusively infect dividing cells
such as oncoretroviruses (i.e. MuLV RT) [23,24]. It was
postulated that this low Km value and the ability to effi-
ciently synthesize DNA at low dNTP concentrations
could be an evolutionary outcome of the selective pres-
sure of low dNTP concentration found in macrophages.
However, other lentiviruses such as HIV-2 and many SIV
strains overcome the low dNTP selective pressure by
using another mechanism: they encode Vpx that counter-
acts the SAMHD1 mediated low dNTP availability by
elevating dNTP levels and enables these lentiviruses to
replicate in high dNTP environments in the nondividing
target cell types [13].
Indeed, when we conducted the most extensive en-

zyme kinetic analysis ever reported with 18 lentiviral RT
proteins, the data show that the Km values of the Vpx
containing lentivirus RTs, particularly SIV RTs, signifi-
cantly vary, unlike the Km values of HIV-1 RT enzymes,
which are consistently low and close to the low dNTP
concentration found in nondividing cells. As illustrated
in Figure 3C, lentiviruses expressing Vpx, which coun-
teracts the role of SAMHD1 providing a high dNTP
environment and removing the selective pressure,
may have higher Km values because they replicate in
environments with higher substrate concentrations.
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Figure 2 Comparison of the steady-state kinetic parameters for 18 lentiviral RT proteins. The Km (A) and kcat (B) values of the 18 different
RT enzymes (blue bars, HIV-1 RTs; purple bars, HIV-2 RTs; green bars, SIV RTs) were determined from the reactions described in Figure 1. dNTP
concentrations found in macrophages (grey), activated CD4+ T cells (pink), and macrophages exposed to Vpx (blue) were marked in (A) [17].
(C) The overall catalytic efficiency values (kcat / Km) were plotted with a 95% confidence interval and the efficiency difference between RTs of Vpx
coding and noncoding viruses were compared. The Vmax and Km values were determined by fitting the data to the Michaelis-Menten equation
using nonlinear regression with Kaleidagraph (Synergy Software). kcat was determined by dividing Vmax by molar enzyme concentration. Values
reported represent means and standard deviations of HIV-1 and the group HIV-2/ SIV. Two-tailed Student? s t tests were used for the two group
comparisons (Vpx + vs Vpx: p < 0.01; HIV-1 vs SIV: p < 0.01; HIV-1 vs HIV-2: p < 0.1; HIV-2 vs SIV: p = 0.12).
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Moreover, the catalytic efficiency of RTs from HIV-1
lacking Vpx is significantly increased compared with
RTs of HIV-2 or SIV coding for Vpx. Overall, this
extensive enzymological study with a total of 18 lenti-
virus RT enzymes supports a close mechanistic tie be-
tween lentivirus RT kinetics and cellular dNTP availability
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which is regulated by the Vpx-SAMHD1 network in non-
dividing viral target cells. Future studies will attempt to
identify key residues by sequence alignment that contrib-
ute to these differences in steady-state kinetics.
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