ORAL PRESENTATION **Open Access** # HIV control through a single nucleotide on the HLA-I locus H Kløverpris^{1*}, M Harndahl², J Carlson¹, A Leslie¹, M van der Stok³, G Huang¹, F Chen⁴, L Riddell⁵, D Steyn⁶, D Goedhals⁶, C van Vuuren⁶, J Frater¹, B Walker⁷, T Ndung'u'³, S Buus², P Goulder¹ From AIDS Vaccine 2012 Boston, MA, USA. 9-12 September 2012 #### **Background** In correlative studies HLA class I type is consistently found to have the strongest impact on HIV disease progression. However, the exact mechanism involved is complicated by several factors; many alleles are ligands for NK cells as well as CD8 T-cells, and strong linkage disequilibrium between Class I alleles makes it difficult to distinguish the effect of individual alleles from other HLAs or from other important loci found on the HLA haplotype, such as the recently described -35 SNP. #### **Methods** Here we study two recently diverged HLA alleles, B*4201 and B*4202, which only differ by a single amino acid. Crucially, they occur primarily on identical Class I haplotypes and do not act as NK cell ligands. Therefore, they represent a unique opportunity to study the impact of a single HLA allele on HIV immune control not confounded by other genetic factors in a large outbred cohort (n=2,093) of C-clade infected individuals. #### Results Here we show that the amino acid change in position 9 of the HLA-B molecule, is critical for peptide binding and significantly alters the Gag CTL epitopes targeted ($P=2x10^-10$), measured both directly ex-vivo by ELISPOT and indirectly through CTL escape mutation ($P=2x10^{-8}$). Strikingly, HLA-B*4201 is associated with significantly lower viral load setpoint than HLA-B*4202 (P=0.02). #### Conclusion This naturally controlled experiment represents perhaps the clearest demonstration of the direct impact of particular HIV Gag specific CTL on disease control. #### **Author details** ¹University of Oxford, Oxford, UK. ²University of Copenhagen, Copenhagen, Denmark. ³University of KwaZulu-Natal, South Africa. ⁴Royal Berkshire Hospital, Reading, UK. ⁵Northampton General Hospital, UK. ⁶University of Free State, Bloemfontein, South Africa. ⁷Ragon Institute of MGH, MIT and Harvard, Boston, USA. Published: 13 September 2012 doi:10.1186/1742-4690-9-S2-O47 Cite this article as: Kløverpris et al.: HIV control through a single nucleotide on the HLA-I locus. *Retrovirology* 2012 9(Suppl 2):O47. ## Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit ¹University of Oxford, Oxford, UK Full list of author information is available at the end of the article