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Abstract

Background: Human T lymphotropic virus type-1 (HTLV-1) and type 2 (HTLV-2) are closely related human
retroviruses, but have unique disease associations. HTLV-1 is the causative agent of an aggressive T-cell leukemia
known as adult T-cell leukemia (ATL), HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), and
other inflammatory diseases. HTLV-2 infection has not been clearly associated with any disease condition. Although
both viruses can transform T cells in vitro, the HTLV-1 provirus is mainly detected in CD4+ T cells whereas HTLV-2 is
mainly detected in CD8+ T cells of infected individuals. HTLV-1 and HTLV-2 encode accessory proteins p30 and p28,
respectively, which share partial amino acid homology and are required for viral persistence in vivo. The goal of this
study was to identify host proteins interacting with p30 and p28 in order to understand their role in pathogenesis.

Results: Affinity-tag purification coupled with mass spectrometric (MS) analyses revealed 42 and 22 potential
interacting cellular partners of p30 and p28, respectively. Of these, only three cellular proteins, protein arginine
methyltransferase 5 (PRMT5), hnRNP K and 60 S ribosomal protein L8 were detected in both p30 and p28 fractions.
To validate the proteomic results, four interacting proteins were selected for further analyses using immunoblot
assays. In full agreement with the MS analysis two cellular proteins REGy and NEAF-interacting protein 30 (NIP30)
selectively interacted with p30 and not with p28; heterogeneous nuclear ribonucleoprotein H1 (hnRNP HT) bound
to p28 and not to p30; and PRMTS interacted with both p30 and p28. Further studies demonstrated that reduced
levels of PRMT5 resulted in decreased HTLV-2 viral gene expression whereas the viral gene expression of HTLV-1
was unchanged.

Conclusion: The comparisons of p30 and p28 host protein interaction proteome showed striking differences with
some degree of overlap. PRMT5, one of the host proteins that interacted with both p30 and p28 differentially
affected HTLV-1 and HTLV-2 viral gene expression suggesting that PRMT5 is involved at different stages of HTLV-1
and HTLV-2 biology. These findings suggest that distinct host protein interaction profiles of p30 and p28 could, in
part, be responsible for differences in HTLV-1 and HTLV-2 pathobiology. This study provides new avenues of
investigation into mechanisms of viral infection, tropism and persistence.
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Background

Human T lymphotropic virus type 1 (HTLV-1) and type
2 (HTLV-2) are complex deltaretroviruses that are
closely related with approximately 70% nucleotide se-
quence similarity [1]. HTLV-1 was the first retrovirus
linked to human malignancy [2,3]. HTLV-1 can infect
T cells, B cells, fibroblasts and macrophages; however,
the provirus is predominantly detected in CD4+ T cells
[4-6]. HTLV-1 infection causes adult T-cell leukemia
(ATL) in approximately 1-5% of infected individuals [7].
In addition, HTLV-1 infection has also been associated
with a neurodegenerative disease, HTLV-1 associated
myelopathy/tropical spastic paraparesis (HAM/TSP) and
other immune-mediated inflammatory diseases [8].
Despite being a closely related retrovirus, HTLV-2
unlike HTLV-1, has no clear disease association with the
exception of a few cases of HAM/TSP-like neurodegen-
erative disease [9]. HTLV-2 shows selective tropism to-
wards CD8+ T cells, both in vitro and in vivo [10-13].
Furthermore, although both viruses are capable of trans-
forming T cells in vitro, it is intriguing that they exhibit
sharply distinct target cell and transformation tropisms,
and only HTLV-1 is associated with malignancy and
chronic inflammatory conditions [14,15].

The genome organization of the HTLV-1 and HTLV-2
provirus is very similar with 5" and 3’ LTRs. Both viruses
encode regulatory and accessory proteins apart from the
typical structural and enzymatic proteins Gag, Pol and
Env. Two key regulatory gene products are Tax-1/Tax-2
and Rex-1/Rex-2 corresponding to HTLV-1/HTLV-2,
respectively.

The Tax proteins encoded by both viruses are consid-
ered the primary oncoproteins [16,17] required for T cell
transformation. However, Tax is not sufficient for the
malignant process; additional proteins encoded by the
virus are suggested to play a role as well [18]. For
instance, HTLV-1 and HTLV-2 encode HZB and APH-2
proteins from the antisense strand of the proviral
genome respectively [19,20], and growing evidence indi-
cates a role for HBZ in the transformation process [21].

HTLV-1 p30 and HTLV-2 p28 are accessory proteins
involved in the regulation of viral replication and persist-
ence and could therefore affect the pathogenic outcome
[22-27]. Both proteins are encoded by the corresponding
viruses from a doubly spliced mRNA from the ORFII of
the pX region and are dispensable for in vitro viral infec-
tion and T cell transformation. Interestingly, both p30
and p28 are required for the establishment of viral per-
sistence in the rabbit model, underlining the importance
of these proteins in vivo [25,27,28]. In addition, p30 has
been shown to be required for infection of dendritic cells
and non-human primates [26]. Both p30 and p28 are nu-
clear/nucleolar localizing proteins [29,30]. The nucleolar
retention of p30 is linked to RNA transcription and
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binding to the 60 S ribosomal subunit [31]. Both p30
and p28 are post-transcriptional negative regulators of
viral gene transcription that act by retaining tax/rex
mRNA in the nucleus [22,30]. However, evidence indi-
cates that p30 also regulates viral gene expression at a
transcriptional level by competing with Tax for binding
to CBP/p300 [23]. In addition, p30 and Rex may be a
part of the nuclear retention mechanism by forming a
ribonucleoprotein complex with tax/rex mRNA [32].
Microarray studies and genome-wide screens have
shown that p30 differentially modulates cellular gene ex-
pression [33,34]. Expression of p30 activates the G2/M
cell cycle checkpoint to promote cell survival, and delays
entry into S-phase [35,36]. Under genotoxic stress, p30
promotes cell survival by binding and modulating levels
of ATM possibly through binding to REGy [37]. The
ability of p30 to bind to the Myc-Tip60 complex and to
also promote non-homologous end joining DNA repair
support its role in cellular transformation [38,39].
Comparative studies of host protein interactions with
HTLV-1 and HTLV-2 proteins have been largely focused
on Tax-1 and Tax-2 [18,40-42]. Studies comparing host
protein interactions of HTLV-1 and HTLV-2 accessory
proteins have not been performed. Herein, we compared
the cellular interacting protein profiles of p30 and p28
to better understand their roles in viral infection, persist-
ence and cellular transformation. To this end, we used
affinity tag purification of p30 and p28 coupled to mass
spectrometry to identify potential interacting cellular
proteins. We have confirmed the interaction of p30
with REGy and identified a new p30 binding partner,
NEAF-interacting protein 30 (NIP30). These cellular
proteins copurified with p30 and not p28. In contrast,
heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1)
interacted with p28 and not p30. Our data also reveal that
arginine methyl transferase 5 (PRMT5) can interact with
both p30 and p28. Knockdown studies of PRMT5 have
indicated that this protein is important for effective gene
expression of HTLV-2 and not HTLV-1. Our data provide
new insights into the comparable host cell protein inter-
actions used by these closely related human retroviruses.

Results

Host protein interaction profiles of HTLV-1 p30 and
HTLV-2 p28

In order to sample the p30 and p28 cellular proteome,
we employed S-tag affinity purification [43] of ectopi-
cally expressed HTLV-1 p30 and HTLV-2 p28 in HEK
293T cells. An amino terminal S-tag and a HA and AU1
tag on the carboxy terminus were added to a CMV
driven pTriEx4-Neo plasmid. S-tag affinity pull-down
was performed on the lysates of cells, transfected with
either empty vector (mock control) or p30 or p28,
using S-beads. We analyzed p30- and p28-associated
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Table 1 HTLV-1 p30-interacting host proteins
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Name of the protein Molecular function Unweighted % coverage
spectrum count
Proteasome activator complex subunit Cell cycle and protein degradation 21 54
Heat shock protein 90 beta Protein folding 14
Heat shock protein 90 alpha Protein folding 7 8.2
Methylosome subunit plCin Methylosome component 5 37
Reticulocalbin-2 Calcium binding 5 20
Succinate dehydrogenase [ubiquinone] flavoprotein subunit Electron transport 5 9.2
Elongation factor Tu Translation 5 17
Clathrin heavy chain 1 Vesicular transport 5 54
Protein arginine N-methyltransferase 5 Methyltransferase activity 4 16
Cofilin-1 Cytoskeleton organization 4 27
Malate dehydrogenase Citric acid cycle 4 14
Protein phosphatase 1 G Phosphatase activity 4 11
Importin-5 Nuclear import 3 3
Ubiquitin Post translation modification 3 174
14-3-3 protein zeta/delta Signaling pathways 3 17
Complement component 1 Q subcomponent-binding protein Immune response 3 25
L-lactate dehydrogenase A chain Glycolysis 3 13
Methylosome protein 50 Methylosome component 2 76
NEFA-interacting nuclear protein NIP30 Unknown 2 9.8
Fatty acid synthase Fatty acid metabolism 2 0.68
Transgelin-2 Predicted muscle development 2 15
Alpha-1-antiproteinase Serine protease inhibitor 2 77
DNAJ homolog subfamily A member 1 Chaperon activity 2 13
Ubiquitin-conjugating enzyme E2 L3 Ubiquitination activity 2 24
F-box only protein 22 Ubiquitination activity 2 6.2
Phosphoglycerate mutase 1 Glycolysis 2 13
Peptidyl-prolyl cis-trans isomerase Protein folding 2 11
60 S ribosomal protein L3 Component of ribosome 2 8.7
60 S ribosomal protein L8 Component of ribosome 2 16
Hydroxyacyl-coenzyme A dehydrogenase Fatty acid metabolism 1 9.6
Nucleosome assembly protein 1-like 1 Predicted nucleosome assembly 1 74
Arginyl-tRNA synthetase Arginine tRNA ligation 1 2
Glucose-6-phosphate isomerase Glycolysis 1 2.7
Apoptosis-inducing factor 1 Apoptosis 1 18
Mesencephalic astrocyte-derived neurotrophic factor Neuronal growth factor 1 6.1
Inorganic pyrophosphatase 2 Inorganic phosphatase activity 1 4.8
Tetratricopeptide repeat protein 4 Predicted binding activity 1 26
Myosin-9 Cytoskeletal organization 1 0.82
Heterogeneous nuclear ribonucleoprotein K mRNA processing 1 26
14-3-3 protein epsilon Signaling pathways 1 11
Profilin-1 Cytoskeletal organization 1 10
60 S ribosomal protein L30 Component of ribosome 1 10

List of host proteins identified by shotgun proteomics that co-purified with p30 after eliminating non-specific and contaminating proteins. The molecular processes in
which these proteins participate are indicated. The numbers of unweighted spectrum counts and the percentage of coverage of each protein are shown.
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proteins using shotgun proteomics. The proteins that
were unique to p30 and p28 purification fractions after
subtracting the mock control proteins were considered
as their potential interacting partners. The data were
further refined by eliminating contaminants and highly
abundant proteins, such as keratin, that were detected
in controls. Duplicate experiments resulted in the iden-
tification of 42 and 22 potential interacting partners of
p30 and p28, respectively (Tables 1 and 2). Of these,
only three cellular proteins, PRMT5, hnRNP K and 60 S
ribosomal protein L8 were detected in both p30 and
p28 fractions. In order to validate the results of mass
spectrometry-based proteomic experiments, we selected
the following four cellular proteins for immunoblotting
assays: two proteins REGy and NEFA-interacting nuclear
protein NIP30 (NIP30), which were exclusively found in
p30 fractions (Table 1); heterogeneous nuclear ribonu-
cleoprotein H1 (hnRNP H1) that purified with p28 and
not with p30; and protein arginine methylate transferase
5 (PRMT5), which was found in both p30 and p28 frac-
tions (Tables 1 and 2). An additional negative control of
amino terminal S-tag GFP (S-GFP) expressed from the

Table 2 HTLV-2 p28-interacting host proteins
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same expression vector was also tested in the immuno-
blotting assays.

REGy and NIP30 interact with p30 and not with p28

We previously identified the interaction of p30 and
REGY using proteomic and molecular biology techniques
[37]. However, the interaction of p28 and REGy was not
investigated previously. The proteomic data reported
here indicate that REGy selectively interacts with p30
and not with p28 (Tables 1 and 2). Similarly, we detected
NIP30 in p30 (Table 1) and not in p28 (Table 2) frac-
tions. To further evaluate these observations, 293T cells
were transfected with mock, S-GFP, S-p30-HA and
S-p28-HA. The cell lysates were subjected to S-tag
affinity purification and immunoblotted with anti-REGy
and NIP30 antibodies. As shown in the Figure 1A, co-
purification of REGy and NIP30 with p30 and not p28
indicates the specific interaction of these proteins with
p30. The expression and S-tag enrichment of p28 and
p30 was tested by immunoblotting with anti-HA anti-
bodies, whereas the expression and S-tag enrichment of
GFP was evaluated with anti-GFP antibodies (Figure 1A).

Name of the protein

Molecular function

Unweighted
spectrum count

% coverage

Heterogeneous nuclear ribonucleoprotein H1
Heterogeneous nuclear ribonucleoprotein K
Serine/threonine-protein phosphatase 6 catalytic subunit
Serine/threonine-protein phosphatase 6 regulatory subunit 3
Protein arginine methyl transferase 5

Poly (A) binding protein 1 or 4

Inorganic pyrophosphatase

Peroxiredoxin-2

60 S ribosomal protein L29

60 S ribosomal protein L8

Nucleolin

Glutathione S-transferase P

Serine/threonine-protein phosphatase 2A regulatory subunit B
Nascent polypeptide-associated complex subunit alpha-2
Cyclic nucleotide gated channel 3

Obg-like ATPase 1

Elongation factor Tu (Mitochondrial)

Triosephosphate isomerase

Heparan sulfate proteoglycan 2

Heterogeneous nuclear ribonucleoprotein F

40 S ribosomal protein S8

Chaperonin 10

mMRNA processing 43
mMRNA processing 52
Protein phosphatase 5 89
Phosphatase regulator 3 5.1
Arginine methylation 3 64
Poly (A) RNA binding 3 12
Inorganic diphosphatase activity 2 9
Antioxidant 2 15
Component of ribosome 2 9.3
Component of ribosome 2 52
RNA,DNA and nucleotide binding 1 14
Glutathione transferase activity 1 13
Phosphatase regulator 1 33
Protein transport 1 7
Predicted ion channel activity 1 1.7
Predicted ATP hydrolysis 1 38
Translation elongation 1 29
Phosphate isomerase 1 9.6
Predicted extracellular matrix binding 1 034
RNA processing 1 4.1
Component of ribosome 1 54

Protein folding

1

11

List of host proteins identified by shotgun proteomics that co-purified with p28 after eliminating non-specific and contaminating proteins. The molecular
processes in which these proteins are involved are mentioned next to the proteins. The number of unweighted spectrum counts and percentage coverage of

each protein are indicated.
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Figure 1 Validation of p30 interaction with REGy and NIP30. A) S-tag affinity purification with Mock, S-GFP, S-p30-HA and S-p28-HA
transfected 293T cell lysates. The purified product was analyzed by immunoblotting using indicated antibodies. The expression of individual
protein and S-tag purification was confirmed using the indicated antibodies. B) 293T cells were transfected with S-p30-HA and S-p28-HA and
immunoprecipitated with non-specific IgG (NSIgG) or anti-REGy antibody and probed with anti-HA antibody. Immunoblotting of input using
anti-REGy and anti-HA antibodies confirmed the expression of the interacting proteins. C) 293T cells lysates expressing S-p30-HA and S-p28-HA
were immunoprecipitated with non-specific IgG (NSIgG) or anti-NIP30 antibody and probed with anti-HA antibody. The expression of p30, p28
and NIP30 was confirmed with indicated antibodies.

] Thed :)nt(.eraction of p30 V-VithRIé]éGYf wasl ful;therfcoH— A Mock  S-GFP S-p30-HA S-p28-HA
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i ipitate p30 but not p28 (Fi 1B). Th
immunoprecipitate p30 but not p (Figure ). ese Anti-hnRNP H1
results are fully consistent with our proteomic data

(Tables 1 and 2). Similarly, we confirmed the interaction B IP
of NIP30 with p30 by immunoprecipitating NIP30 from p30 p28
S-p30-HA and S-p28-HA transfected cell lysates. The NSIgG hnRNP NSIgG hnRNP

results shown in Figure 1C indicate that NIP30 can select-

H1 H1
ively co-immunoprecipitate p30 but not p28. Immuno- Anti-HA_

blotting of the cell lysate with anti-REGy, anti-NIP30 and
anti-HA antibodies confirmed the expression of endogen-

ous REGYy and NIP30 along with transfected p30 and p28 In pUt
(Figure 1B, C). To evaluate the functional significance of p30 p28
these interactions we knocked down REGy and NIP30 Anti-H A_
using siRNA, then transfected HTLV-1 molecular proviral :
clone plasmid, and measured p24 production. We Anti-hnnRNP H1 -

observed that reduced levels of REGy and NIP30 had no

effect on p24 levels (Additional file 1: Figure S1). Figure 2 Validation of p28 interaction with hnRNP H1.

A) Ectopically expressed Mock, S-GFP, S-p30-HA, S-p28-HA in 293T
cells were S-tag affinity purified and probed with anti-hnRNP H1
antibodies. Endogenous expression of hnRNP H1 was confirmed by
immunoblotting with anti-hnRNP H1 antibody. B) The
immunoprecipitation assay was performed on cell lysates

p28 exclusively interacts with hnRNP H1
To confirm the interaction of p28 with hnRNP HI,

lysates from cells with transient expression of mock, | transfected with S-p30-HA and S-p28-HA. Non-specific IgG (NSIgG)
S-GFP, S-p30-HA and S-28-HA were S-tag affinity puri- or anti-hnRNP H1 antibodies were used for immunoprecipitation
fied and immunoblotted with anti-hnRNP H1 antibody. and subsequently probed with anti-HA antibody. Immunoblotting

using anti-HA and anti-hnRNP H1 was used to validate the

The presence of hnRNP H1 only in the p28 purification X '
expression of all proteins.

and not in GFP or p30 purifications (Figure 2A)
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indicates that hnRNP H1 specifically binds to p28.
Immunoblotting with anti-GFP and anti-HA to evalu-
ate the expression and affinity purification of trans-
fected GFP, p30 and p28 is shown in Figure 1A. In
order to further confirm the interaction between p28
and hnRNP HI, lysates from cells transfected with
S-p30-HA and S-p28-HA were immunoprecipitated
with anti-hnRNP H1 antibodies and probed with
anti-HA antibodies. Selective co-immunoprecipitation
of p28 and not p30 by hnRNP H1 (Figure 2B) indicates
that only p28 interacts with hnRNP H1.

p30 and p28 interact with PRMT5

The mass spectrometry-based proteomic data indicate
that both p30 and p28 interact with PRMT5. It should
be noted that these experiments were conducted using
S-tag affinity purification of lysates of 293T cells trans-
fected with mock, S-GFP, S-p30-HA or S-p28-HA.
While it has been reported [44] that PRMT5 can non-
specifically associate with Flag-beads, our data show
that with the S-tag affinity pull-down approach PRMT5
was detected in p30 and p28 fractions but not with
mock or GFP purification. In order to confirm this
interaction, S-tag affinity purification was performed on
cell lysates from empty, S-GFP, S-p30-HA or S-p28-HA
transfected 293T cells and analyzed by Western blotting
using PRMTS5 antibody. The ability of both p30 and p28
to co-purify PRMT5 (Figure 3) indicates that PRMT5
interacts with both p30 and p28. Immunoblots
(Figure 1A) probed with anti-GFP and anti-HA anti-
bodies confirmed the expression and S-tag purification
of GFP, p30 and p28. To further validate the interaction
of PRMT5 with p30 and p28, Flag tagged PRMT5
(Flag-PRMT5) was cotransfected with p30 or p28.
Immunoprecipitation of Flag-PRMT5 using anti-Flag
antibodies was able to co-immunoprecipitate p30
(Figure 3B). However, Flag-immunoprecipitation of
Flag-PRMT5 was not able to co-immunoprecipitate p28
(Figure 3B). It is possible that the structural features of
p28 allow the detection of PRMTS5 binding only by S-tag
affinity purification and not by immunoprecipitation.
Looking at p30 proteomics data, it is also possible that
interaction of p30 with PRMT5 binding proteins such as
methylosome subunit pICln and methylosome 50 facili-
tate co-immunoprecipitation of p30 with PRMT5. The
expression of Flag-PRMT5, p30 and p28 was confirmed
using anti-Flag and anti-HA antibodies (Figure 3B).

PRMTS5 is required for HTLV-2 gene expression

To investigate a potential role of PRMT5 in HTLV
biology, we downregulated the protein levels in 293T
cells using the shRNA approach. Cells were then trans-
fected with either HTLV-1 or HTLV-2 molecular clone
plasmids, and viral gene expression was measured by
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Figure 3 Validation of p30 and p28 interaction with PRMTS5.
Mock, S-GFP, S-p30-HA and S-p28-HA expressed in 293T cells were
purified by S-tag affinity purification and immunoblotting with
anti-PRMTS antibody. The expression of PRMT5 was confirmed by
immunoblotting the cell lysates with anti-PRMT5 antibody. B) 293T
cells co- transfected with p30 or p28 or Flag PRMT5 as indicated in
the figure. Immunoprecipitation was performed using anti-Flag
antibodies and subsequently probed for p30 and p28 using anti-HA
antibodies. The expression of Flag-PRMT5, p30 and p28 was

validated by immunoblotting as shown in the figure.

immunoblotting for intracellular p24 and by ELISA for
p19 production. The levels of PRMT5 had little effect
on HTLV-1 gene expression in terms of intracellular
p24 and p19 production as shown in Figure 4A. How-
ever, lower levels of PRMTS5 resulted in a significant re-
duction in intracellular HTLV-2 p24 (Figure 4B).
Consistent with this result HTLV-2 p19 measured by
ELISA was also reduced 3 fold in PRMT5 knockdown
cells (Figure 4B). These results indicate that PRMT5
plays a role in HTLV-2 gene expression, but has no
measurable effect on HTLV-1 gene expression.

Discussion

HTLV-1 and -2 are closely related human retroviruses
with HTLV-1 being pathogenic whereas a clear correl-
ation between HTLV-2 and pathogenesis has not been
established. HTLV-1 and HTLV-2 have different patho-
logical outcomes that cannot be attributed to a single
viral protein, but are likely due to the contribution of
viral proteins and their interactions with the host cellu-
lar machinery. Both viruses encode accessory proteins
that are required for viral persistence in vivo. We
hypothesize that differences in viral infection, tropism
and pathological outcome may result in part from how
these accessory proteins interact with host proteins. Re-
cently host-pathogen interactome study comparing
HTLV-1 and HTLV-2 was reported to propose novel
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Figure 4 PRMT5 knockdown and HTLV gene expression.

A) 293T cells expressing normal and knockdown levels of PRMT5
were transfected with HTLV-1 molecular clone. Immunoblotting was
performed using anti-PRMT5 antibodies to confirm the knockdown
and with anti-HTLV p24 antibodies to monitor p24 levels. The
amount of p19 Gag production was analyzed by p19 ELISA. B) 293T
cells transduced with scrambled shRNA or shRNA against PRMT5
were transfected with HTLV-2 molecular clone. Knockdown of
PRMTS5 was confirmed by immunoblotting with anti-PRMT5
antibodies. The intracellular p24 and extracellular p19 Gag
production was analyzed by immunoblotting with anti-HTLV p24
antibodies and with p19 ELISA respectively. Student t-test resulted in
a p value of 0.011 (+) indicating that decrease in p19 production
with lower levels of PRMT5 is significant. Immunoblotting with

anti-Actin antibodies was used to validate equal loading.

hypothesis to explain differential pathobiology of these
closely related viruses [45]. However, in this study yeast-
two hybrid screening did not result in any p30 or p28
interacting proteins. In our study we conjugated over ex-
pression and mass spectrometry to compare the host
protein interaction proteome of HTLV-1 p30 and
HTLV-2 p28 accessory proteins. There is approximately
77% homology between the last and first 49 amino acids
of p30 and p28, respectively, whereas the remaining
amino acid sequences of p30 and p28 differ markedly.
Therefore, it is logical to propose that these two viral
proteins may exhibit some similarities and differences in
their interactions with cellular proteins.

We adapted S-tag purification of p30 and p28 and
combined it with mass spectrometry to identify poten-
tial host protein interactions. The approach yielded the
list of proteins (Table 1 and 2), with the number of host
proteins interacting with p30 being higher than p28.
These findings are consistent with the observation that
p30 is a multifunctional protein regulating transcription
and post transcriptional gene expression, cell cycle/cell
survival and DNA damage [35-39,46]. In contrast, p28
has only been implicated in post transcriptional gene
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regulation [30]. However, both proteins are important for
high proviral loads and persistence in the rabbit model.

Detailed analysis of differences and similarities be-
tween p30 and p28 host protein-interacting profiles was
performed in this study. For the analysis of host proteins
that interact with p30, we combined the proteins identi-
fied in this study (Table 1) and previously identified pro-
teins (Table 3). We then analyzed the molecular
processes in which these interacting proteins are directly
or indirectly involved. The graphical representation of
molecular processes in which the host proteins interact
with p30 (Figure 5A) and p28 (Figure 6A) suggests that
p30 is involved in a wider variety of molecular processes
than p28. The p30 pie graph (Figure 5A) indicates that
32% of p30 interacting proteins are involved in protein
processes such as post translational modification (phos-
phorylation, ubiquitination and methylation), folding,
and transport. Proteins involved in DNA damage repair
and cell cycle constitute 14%, whereas proteins that are
involved in energy metabolism contributed to 14% of the
p30 interactome. Transcriptional proteins accounted for
4%, and only 2% of the proteins are involved in mRNA
processing.

The distribution of p28 interacting processes from
Table 3 resulted in a lower number of molecular pro-
cesses. The major molecular processes (23%) are RNA
processing, while 27% of the proteins are involved in
regulation of protein phosphorylation, folding and trans-
portation. Translation contributes to about 10 and 18%
of the p30 and p28 interactome, respectively. Binding of
both p30 and p28 to phosphatases suggests that both
proteins might be phosphorylated or modulate the phos-
phorylation status of their binding partners. The ability
of p30 to interact with ubiquitin and with proteins
having ubiquitin conjugation activity suggests that p30

Table 3 Previously identified HTLV-1 p30 host interacting
proteins

Reference
[23,47]

Name of the protein Molecular function

Histone acetyltransferase p300 Transcription factor

60 S ribosomal protein L18a Ribosomal component  [31]

Transcription and DNA  [38]
damage repair

Tat interacting protein 60 (TIP60)

Ataxia telangiectasia
mutated (ATM)

DNA damage repair 37

Nijmegen breakage
syndrome protein 1(NBS1)

DNA damage repair [39]

RAD 50 DNA damage repair [39]
Cyclin E Cell cycle [36]
Cyclin dependent Cell cycle [36]

kinase 2 (CDK2)

List of host proteins that were previously identified. The molecular processes
in which these proteins are involved are indicated. The references to the
studies that identified these interactions are also indicated.
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Figure 5 Analysis of p30 interacting host proteins. A) Functional distribution of HTLV-1 p30-interacting proteins summarized in the pie chart
graph as percentages. B), C) and D) Ingenuity pathways analysis results in three network pathways with broad cellular functions with the
involvement of p30-interacting proteins. The proteins that were identified in this study to interact with p30 are indicated in bold, and previously
identified p30-interacting proteins are indicated in bold italics. The interaction between two proteins is indicated with a straight line; arrows
indicate action upon in the direction of the arrow; and dashed lines indicate indirect interactions.
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might be ubiquitinated. p30 is involved in DNA damage
repair mechanisms, and regulation of phosphorylation
and ubiquitination play a critical role in DNA damage
repair. A large number of p30-interacting proteins are
involved in energy metabolism like electron transport,
glycolysis and fatty acid synthesis, and further investiga-
tion should be carried out to understand the functional

significance of these interactions.

Furthermore, we evaluated indirect involvement of
p30 and p28 interacting host proteins in various cellular
processes using Ingenuity Pathways Analysis (Ingenuity
Systems, www.ingenuity.com). The analysis of all pro-
teins that interact with p30 from Table 1 and with previ-
ously known p30-interacting proteins (Table 3) yielded
three networks with high scores. The first network
(Figure 5B) suggests significant involvement of p30-
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Figure 6 Analysis of p28 interacting host proteins. A) Functional distribution of HTLV-2 p28-interacting proteins summarized in the pie chart
graph as percentages. B) and C) Ingenuity pathways analysis results in two network pathways with broad cellular functions with the involvement
of p28-interacting proteins. The proteins that were identified in this study to interact with p28 are indicated in bold. The interaction between two

proteins is indicated with a straight line; arrows indicate action upon in the direction of the arrow; and dashed lines indicate indirect interactions.
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interacting proteins with DNA recombination, repair,
cell cycle and cancer with pathways clustering around
ATM, cyclin E, cyclin A and CDK2. It is consistent with
various studies indicating the role of p30 in DNA damage
repair, cell survival and cell cycle alteration. The second
network (Figure 5C) revealed the influence of p30-
interacting proteins on cancer, gastrointestinal disease

and drug metabolism. The major convergence of the
pathway was on ERK 1/2, Hsp 90 and 14-3-3 family
proteins (YWHAZ). The last pathway (Figure 5D) is
involved in neurological disease, developmental and her-
editary disorders with central proteins being UBC, p38
MAPK and Akt, which are involved in various patho-
logical conditions.
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Similar analysis was performed using the list of
p28-interacting proteins (Table 3) that resulted in two
network pathways with high scores. The first pathway
(Figure 6B) with histone proteins and hnRNP K at the
center of the pathway suggested the involvement of
p28-interacting proteins in RNA post transcriptional
modification, amino acid metabolism and post transla-
tional modifications. The second pathway (Figure 6C)
suggested the involvement of p28-interacting protein in
neurological disease, skeletal muscle and development
disorders. The central molecules of the second pathway
were UBC and TNEF, which are important for protein
regulation and immune responses, respectively. The
analysis suggests that p30 influences various pathways
involved in processes such as cell cycle regulation, cell
signaling and cancer biology. Interestingly, these path-
ways are also modulated by Tax and/or HBZ oncopro-
teins during cellular transformation. On the other hand,
p28 has limited involvement in the kinds of cellular
process that facilitate transformation.

We previously reported that p30 interacts with REGy
[37], which binds and activates the 20 S proteasome
[48]. While REGy targets a number of cellular proteins
to proteasome degradation [49-52], we have shown that
the levels of p30 correlate with the levels of REGy indi-
cating that p30 is not targeted to degradation via its
interaction with REGy [37]. We propose that the cell
survival effect of p30 under naive and genotoxic condi-
tions is likely to be mediated through its interaction with
REGy to allow the viral infected cell to proliferate. Fur-
thermore, our previous studies suggest that p30, ATM
and REGy are part of a multiprotein complex, and
reduced levels of ATM under genotoxic stress might be
due to REGy binding to promote cell survival [37].
siRNA knockdown of REGy had no effect on HTLV-1
viral gene expression (Additional file 1: Figure S1A) sug-
gesting that interaction of p30 with REGy could play a
role at other stages of the virus life cycle such as viral
spread. In contrast with p30, p28 does not interact with
REGy. This difference between p30 and p28 could have
possible long term effects during latency and clonal ex-
pansion of infected cells leading to the fully transformed
or malignant state.

Another cellular protein NIP30, which selectively
interacted with p30 and not with p28, is predicted to
bind the DNA binding/EF hand/Leucine zipper protein
(NEFA). NEFA was initially thought to bind DNA; how-
ever, it has been shown to be a Golgi localized calcium-
binding protein [53,54]. The existence of NIP30 has
been confirmed at the protein level and was initially
identified by ¢DNA screens. It is localized to the
nucleus, which is also the cellular compartment of p30
[55]. The biological role of NIP30 is not yet clear;
however, based on its NEFA interaction it might play a

Page 10 of 14

role in calcium homeostasis. As calcium plays a crucial
role in the immune response, the binding of p30 to
NIP30 might influence the immune response to facili-
tate viral infection or replication [56]. Similarly to
REGy, NIP30 siRNA knockdowns had no effect on
HTLV-1 viral gene expression (Additional file 1: Figure
S1B) suggesting that NIP30 might be involved in viral
biology other than gene expression.

Although both p30 and p28 specifically bind tax/rex
mRNA (potentially at exon 2/exon 3 spice junction) and
retain it in the nucleus and thus regulate viral gene ex-
pression at the post transcriptional level, our findings in
Figure 2 reveal that p28 and not p30 interacts with
hnRNP H1, which is a part of spliceosome and involved
in regulating splicing of mRNAs [57]. At the same time,
the proteomics data show that both p30 and p28 bind to
another host protein, hnRNP F, which is not only
involved in mRNA processing but also has the ability to
bind DNA [58,59]. Thus there is some degree of conver-
gence and divergence in the mechanisms of action of
p30 and p28. The processing of mRNA plays a critical
role in viral infection and spread. The data suggest that
p28 is more closely associated with mRNA processing
compared to p30. However, both proteins interact and
retain tax/rex mRNA in the nucleus as a part of the spli-
ceosome to regulate viral gene expression. Further stud-
ies should provide insights into the mechanism of p30
and p28 function and avenues to develop novel thera-
peutic targets.

Both p30 and p28 interact with PRMT5, a type II
PRMT enzyme that symmetrically dimethylates argi-
nines [60]. The interaction of PRMTS5 is of particular
interest because it is up-regulated in B cell leukemia
[61]. In the nucleus, PRMTS5 is recruited to various tran-
scription repressor complexes and also methylates his-
tones H2A, H4R3 and H3R8 [62-65]. The methylation
preference of PRMT5 is shifted to H4R3 upon binding
to cooperator of PRMT5 (COPR5) [66]. A correlation
between symmetrical methylation of H4R3 and H4R8
and transcription repression indicates the role of PRTM5
in transcription repression. PRMT5 also promotes cell
survival via regulating p53 expression [67]. Upon DNA
damage PRMT5 is known to methylate p53 through
Strap co-factor to affect gene specificity of p53 [68]. In
addition, PRMT5 functions in spliceosome formation
and mRNA processing. PRMT5 is required for proper
methylation of the mammalian cleavage factor 1
(mCF1), which is responsible for RNA 3’end processing
[69]. PRMTS5 is also required for Sm U snRNP methyla-
tion, which is important for in vivo for SMN complex
formation to join proteins and RNA [70].

To investigate the possible role of PRMT5 interaction
with p30 in transcriptional regulation, we performed
PRMT5 knockdowns. HTLV-1 gene expression did not
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change significantly under low levels of PRMT5
(Figure 4A). The expression of p30 has been linked to
increased cell survival and cell cycle deregulation.
PRMT5 also has been linked to increased cell survival
and to altering p53 function. Therefore, we posit that
p30 and PRMTS5 interaction might be relevant for cell
survival to facilitate either viral spread or transform-
ation. However, p28 interaction with PRMT5 might be
relevant at transcriptional level by modulating the inter-
action of PRMT5 with transcription machinery. In
addition p28 and PRMT5 interaction could also play a
role at the post-transcriptional level in spliceosome for-
mation, protein-mRNA recruitment or RNA processing.
In both cases, PRMT5 would be affecting viral gene
expression. This notion is consistent with our findings
showing that downregulation of PRMT5 resulted in the
reduced levels of HTLV-2 gene expression (Figure 4B).
The interaction of p28 with PRMT5 might be regulating
PRMT5 to modulate viral gene expression at either a
transcriptional or post-transcriptional level. Furthermore,
it is noteworthy that PRMT5 levels are up-regulated in
B cell leukemia suggesting that PRMT5 might have a
role to play in T cell transformation of HTLV-1 infected
T cells. The study of the interaction of p30 and p28 with
PRMTS5 would provide a molecular model to understand
the role of PRMT5 in cellular transformation.

Conclusion

In summary, we identified 42 and 22 potential cellular
proteins interacting with HTLV-1 p30 and HTLV-2 p28,
respectively. Of these, only three cellular proteins over-
lapped indicating markedly different interacting profiles
for these two viral proteins. PRMT5 interacted with
both p30 and p28, but had a differential effect on the
gene expression of HTLV-1 and HTLV-2 indicating that
PRMT5 might have different roles in HTLV-1 and
HTLV-2 viral biology. The differences in protein and
cellular processes with which p30 and p28 engage could
be one reason for the difference in viral infection out-
comes. Elucidating the role of PRMT5 in HTLV-1 viral
biology would provide insights into how HTLV-1 and
HTLV-2 are utilizing a host protein differently to poten-
tially result in different pathological outcomes. Further
investigation to understand the functional relevance of
these interactions is warranted to better understand the
HTLYV life cycle and its role in T-cell transformation in
order to develop new therapeutic drug targets.

Methods

Cell culture and plasmid transfection

HEK 293T cells were cultured in DMEM containing 10%
FBS, 2 mM L-glutamine, 100 mg/ml streptomycin, and
100 units/ml penicillin. Plasmids were transfected using
SuperFect (Qiagen, Valencia, CA) according to the
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manufacturer’s instructions. Briefly 2x10° cells were pla-
ted in 100 mm dishes and after 24 hr, cells were trans-
fected with 10 pg of pTriEx4-Neo (Mock), 10 pg of
pTriEX-Neo-S-GFP (S-GFP), 10 pg of pTriEx4-Neo-S-
p30-HA (S-p30-HA), 10 pg of pTriEx4-Neo-S-p28-AU1
or 4 pg of pTriEx4-Neo-S-p28-HA(S-p28-HA) from
Novagen, Madison, WI. For Flag-PRMT5 immunopreci-
pitation 5 pg of pBabe (empty vector) or 5 pg of Flag-
PRMT5 (generous gift from Dr. Robert Baiocchi’s
laboratory, Ohio State University) was co-tranfected with
5 pg of S-p30-HA or S-p28-HA. The cells were har-
vested and lysed in 1x passive lysis buffer after 24 hr
(Promega, Madison, WI). 293T cells treated with siRNA
or lentiviral particles expressing scrambled shRNA or
PRMT5 shRNA were transfected with the HTLV-1 mo-
lecular clone, Ach (1.8 pg/well) and HTLV-2 molecular
clone, Phéneo (1.8 pg/well) of a six well plate using
SuperFect (Qiagen, Valencia, CA). Oligofectamine (Invi-
trogen, Grand Island, NY) was used to transfect 293T
cells with 100 nM of control siRNA or smart pool siRNA
against REGy and NIP30 (Dharmacon, Lafayette, CO).
Stable knockdowns were produced by transducing 293T
cells with lentiviral particles expresssing scramble or
PRMTS5 shRNAs (generous gift from Dr. Robert Baiocchi,
Ohio State University) and selected for puromycin
resistance.

HTLV-1 and HTLV-2 gene expression

Molecular proviral clones of HTLV-1 and HTLV-2 were
transfected 24 hrs after siRNA treatment and incubated
for 24 hrs. Supernatant was collected for measure of p19
Gag by ELISA (Zeptometrix, Buffalo, NY) and cells were
lysated and immunoblotted for p24 production.

S-tag affinity purification and immunoprecipitation

Cell lysates were prepared with 1X passive lysis buffer
(Promega, Madison, WI) in the presence of protease
inhibitor mixture (Roche Applied Science, Indianapolis, IN).
S-tag purification was performed by rocking cell lysates
with S-beads (Novagen, Madison, WI) overnight at 4°C.
The S-beads were washed once with high salt (1 M NaCl)
containing radioimmunoprecipitation buffer (150 mM
NaCl, 0.01 M Sodium pyrophosphate, 10 mM EDTA,
10 mM sodium fluoride, 50 mM Tris, 0.1% SDS,
12.8 mM deoxycholic acid, 10% glycerol and 1% Noni-
det P-40 (pH 8.0)), three times with radioimmunopre-
cipitation buffer and once with PBS. The beads were
suspended in ddH,O and subjected to shotgun proteo-
mics. For subsequent immunoblotting the proteins were
eluted by boiling the beads in SDS loading buffer.
Immunoprecipitation was performed by rocking cell
lysates overnight with specific antibody at 4°C and then
with Sepharose protein A beads for 2 hrs (GE Sweden).
Sepharose protein A beads were washed twice with high
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salt (1 M NaCl) containing radioimmunoprecipitation
assay buffer and thrice with low salt (150 nM NaCl)
radioimmunoprecipitation assay buffer and once with
PBS. For western blotting proteins were eluted by boiling
the beads in SDS loading buffer.

Shotgun proteomics

Capillary-liquid chromatography-tandem mass spec-
trometry (Capillary-LC/MS/MS) for global protein iden-
tification was performed on a Thermo Finnigan LTQ
Orbitrap mass spectrometer equipped with a microspray
source (Michrom Bioresources Inc, Auburn, CA) oper-
ated in positive ion mode. Samples were separated on a
capillary column (0.2X150 mm Magic C18AQ 3 p 2004,
Michrom Bioresources Inc, Auburn, CA) using an
UltiMate™ 3000 HPLC system from LC-Packings A
Dionex Co. (Sunnyvale, CA). The scan sequence of the
mass spectrometer was based on the data dependant
TopTen™ method. The resolution of a full scan was
set at 30000 to achieve a high mass accuracy MS
determination.

The RAW data files collected on the mass spectrom-
eter were converted to mzXML and MGF files by use of
MassMatrix data conversion tools (version 1.3, http://
www.massmatrix.net/download). The resulting MGF
files were searched using Mascot Daemon by Matrix
Science version 2.2.2 (Boston, MA) and the database
searched against the full SwissProt database version 57.5
(471472 sequences; 167326533 residues) or NCBI data-
base version 20091013 (9873339 sequences; 3367482728
residues). Considered modifications (variable) were me-
thionine oxidation and the presence of carbamidomethyl
cysteine. Three missed cleavages for the enzyme were
permitted with a peptide tolerance of 1.2 Da, and the
MS/MS ion tolerance was 0.8 Da. Mock transfected
(empty pTriEx4-Neo) cell lysates treated similarly
served as negative control. Search results were compiled
and visualized using the Scaffold 3 sofware. Unweighted
spectrum count and percent coverage provided semi-
quantitative data analyses. Protein identifications were
assigned using PeptideProphet. Proteins with 80% confi-
dence were accepted with a minimum of one peptide
displaying 95% threshold confidence level.

Immunoblotting and antibodies

To confirm the MS/MS data of selected p28- and
p30-interacting proteins we performed immunoblotting
analysis. Cell lysate-derived proteins and proteins from
S-Tag purification or immunoprecipitation assays were
resolved by 4-20% gradient SDS-PAGE and transferred
to nitrocellulose membranes prior to immunoblotting
using the following primary and secondary antibodies:
mouse anti-HA monoclonal antibodies (1:1000) (Covance
Research Products, Princeton, NJ); rabbit anti-hnRNPH1
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monoclonal (1:1000), mouse anti-hnRNPH1 (1:1000),
mouse anti-HTLV p24 (1:1000) (Abcam, Cambridge,
MA); Rabbit anti-NIP30 monoclonal (1:1000), rabbit anti-
REGy (1:1000) (Proteintech Group, Chicago, IL); mouse-
anti pB-actin (1:2000) (Sigma-Aldrich, St. Louis, MO); rat
anti-Flag (1:1000) horse anti-mouse (1:2000), and goat
anti-rabbit antibodies (1:2000) anti-rat (1:2000) (Cell
Signaling, Danvers, MA).

Additional file

~

Additional file 1: Figure S1. Effects of REGy and NIP30 knockdown
on HTLV-1 gene expression. A) Two independent experiments (labeled
1 and 2) of control and REGy siRNA treated 293T cells were transfected
with Ach (HTLV-1T molecular clone). The knockdown of REGy was
confirmed by immunoblotting with anti-REGy. The expression of HTLV
p24 was monitored by immunoblotting. B) Negative siRNA and NIP30
SIRNA treated 293 T cells were transfected with HTLV-1 molecular clone
(Ach). The levels of NIP30 were tested by immunoblotting with
anti-NIP30 antibodies. The expression of HTLV-1 p24 was monitored

by anti-HTLV-1 p24 antibody. Equal loading of samples was confirmed
by anti-actin antibodies.
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