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Abstract

The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting
deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral
propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been
perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective
levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on
manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified
by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection,
reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic
potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent
studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it
has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution
towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of
A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has
evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light
historical overestimation of A3G’s standing as a strictly anti-viral agent. We discuss the limitations of experimental
systems used to assess its activities as well as caveats in data interpretation.
The role of APOBEC3G in HIV restriction
APOBEC3G (A3G) is a recently discovered primate-spe-
cific member of the apolipoprotein B mRNA-editing en-
zyme, catalytic polypeptide-like editing complex family of
cytidine deaminase enzymes with potential to inhibit
propagation of the human immunodeficiency virus (HIV)
[1,2]. The APOBEC family includes eleven members in
humans: activation-induced cytidine deaminase (AID),
APOBEC1, APOBEC2, APOBEC3A-H, and APOBEC4
[3,4]. These enzymes convert deoxycytidine (dC) to deox-
yuridine (dU) in single stranded DNA (ssDNA) or RNA of
human and viral genomes, thereby affecting a variety of
physiological functions [5–7]. A3G was discovered
through the study of heterokaryons generated between
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cells permissive and non-permissive to infection by virion
infectivity factor (Vif)-deficient HIV that were used to de-
termine the action of the HIV protein Vif [1,8,9]. A3G is
primarily expressed in CD4+ T lymphocytes, macrophages,
and dendritic cells, which are all the natural targets of HIV
infection [2,10–14]; although expression in other tissues
may be induced by interferon(s) [15–18]. A3G mutates dC
in nascent viral minus strand DNA generated by reverse
transcription [17–24] and preferentially deaminates dC in
signature trinucleotides (CCC, TCC) often referred to as
hotspots [6,19–21]. The resulting dUs can trigger DNA
degradation through the action of DNA repair pathways,
such as those involving uracil DNA glycosylase and apuri-
nic-apyrimidinic endonuclease [25,26]. For viral genomes
that evade destruction, the consequent deoxyguanosine
(dG) to deoxyadenosine (dA) substitutions in plus strand
DNA can alter reading frames, introduce premature transla-
tion termination codons, and/or produce mutated viral pro-
teins [7,20–25]. In addition, A3G can disrupt propagation
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of HIV by binding viral RNA, interfering with the DNA
strand transfer acrobatics of reverse transcription, physically
blocking reverse transcriptase (RT), and obstructing integra-
tion into the host cell genome [24,26–31]. A3G has been
shown to block RT activity by decreasing tRNA priming,
competing for binding to templates, restricting strand trans-
fer during reverse transcription, and direct binding
[28,32,33]. Beyond the reverse transcription stage, incorpor-
ation of dU into minus strand DNA of the HIV genome has
been shown to interfere with synthesis of the complemen-
tary plus strand [23]. These findings initially led to the no-
tion that A3G can inhibit viral propagation through
pathways dependent or independent of its deamination ac-
tivity; however, many studies supporting deaminase-inde-
pendent activities utilized A3G overexpression. It has
recently been appreciated that with low level A3G expres-
sion, which may be a more accurate representation of the
physiological case, deaminase activity is required for viral
restriction [34–39]. While the relative contribution of de-
amination independent activities to viral restriction remains
contentious, these may prove more relevant to the action of
A3G in restricting endogenous non-long terminal repeat
retrotransposons, such as long and short interspersed nu-
clear elements [40–45]. The anti-retroelement activity of
A3G may represent a host strategy to protect its genome
from the deleterious effects of transposable elements. A
possible mechanism could involve the binding of A3G to
retroelements resulting in blockage of their mobility [46].
The recent expansion of a single APOBEC3 gene in

mice to seven (APOBEC3A-H) in primates and the rela-
tively high divergence within APOBEC3 enzymes in pri-
mates are evidence for immense evolutionary pressure
on the locus suggested to possibly be concomitant with
the emergence of modern lentiviruses [3,4,47,48]. Con-
versely, the finding that the accelerated rate of A3G di-
vergence predates modern lentiviruses, together with the
lack of a clear correlation between human A3G poly-
morphisms and the progression of acquired immunodefi-
ciency syndrome (AIDS), suggest that lentiviral pressure
may be, at best, only partially responsible for expansion
of the APOBEC3 locus [49–52]. This manner of growth
in host defence capacity can reciprocally drive co-evolu-
tion of highly adaptable viruses. In this regard, we high-
light an emerging body of evidence suggesting that the
activity of A3G may be partially subverted by HIV for its
survival benefit. These data support a more complex sce-
nario in which the initial perception of A3G as a strictly
anti-viral agent may have been naïve.

Viral and cellular factors limiting APOBEC3G effectiveness
The view of A3G as a potent intrinsic anti-viral factor was
largely borne out of findings of high levels of dG to dA
hypermutated virus sequences in di- and tri-nucleotide
motifs targeted by A3G [53–57]. In stark contrast, the
previously recognized mutational machinery of HIV, RT,
only introduces approximately one mutation per viral gen-
ome during a replication cycle [58]. Supporting the po-
tency of A3G as a mutagenic agent is a wealth of
biochemical data showing that it is a highly processive en-
zyme able to mediate multiple mutations on a given
stretch of ssDNA. Accordingly, A3G significantly
diminishes viral propagation in several cell culture experi-
mental systems of HIV infection [7,20,22,42,47].
To counteract these activities, lentiviruses have evolved

several strategies, primarily in the form of auxiliary pro-
teins such as Vif, which binds and targets newly synthe-
sized A3G for degradation via a ubiquitin-dependent
proteosomal pathway [59–69]. A3G is packaged into vir-
ions in infected virus-producing cells and it has been
shown that it is largely this virion-packaged fraction of
A3G rather than the pool of cytoplasmic A3G that is most
active on the viral genome in newly infected cells [70–74].
The number of A3G molecules incorporated into each vir-
ion is dependent on the level of A3G expression in the
producer cell [75]. On average, 3 to 11 molecules of A3G
are sufficient for effective viral restriction in the target cell
[76]. Besides lowering A3G levels through degradation, Vif
has also been suggested to directly interfere with A3G en-
capsidation and may impair its translation [66,74,77–80].
Vif utilizes other co-factors present in the target cell to
ubiquitinate A3G and it was recently shown that Core
binding factor (CBF)-β, a cellular transcription factor, is
required for Vif-mediated degradation of A3G [81,82]. As
a result, when Vif is present, the mutation levels induced
by A3G and its effectiveness in viral restriction are dimin-
ished. That Vif is essential for HIV replication in A3G-
expressing cells, and that the sole function of Vif was
thought to be A3G inactivation, lent credence to the no-
tion that A3G is a potent restrictor of HIV propagation
[83]. On the other hand, it is now appreciated that even in
the presence of Vif, A3G can still cause sub-lethal levels of
dG to dA mutations [19,84]. It is possible that the prefer-
ential targeting of newly synthesized A3G by Vif leaves a
fraction of previously synthesized A3G intact [85]. In
addition, it appears that Vif expression does not com-
pletely abolish A3G activity and the correlation between
the levels of viral infectivity and A3G inhibition by Vif is
not absolute [62,78]. Other functions for Vif and Vif-
mediated ubiquitination, besides A3G degradation, are
also coming to light. For instance, along with the auxiliary
protein Vpr, Vif can induce G2 cell-cycle arrest, which
may contribute to CD4+ T lymphocyte depletion [86–89].
Vif thus mediates several functions that are independent
of its interaction with A3G and is a variable negative regu-
lator of A3G activity rather than a complete inhibitor.
A3G action is further limited by its entrapment in

high-molecular-mass ribonuclear complexes (HMM) that
may reach megadaltons in size, mediated by non-specific
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binding of cellular and/or viral RNA and proteins
[12,71,90–97]. The shuttling of A3G into newly synthe-
sized virions depends on binding viral RNA and/or pro-
teins [98–101]. The requirement for high affinity
interactions with RNA/DNA substrates may explain the
evolution of A3G (and other APOBEC enzymes, e.g.
AID) to contain an unusually high number of charged
residues on its surface [102–104]. Ironically, this same
attribute necessary to enact the anti-viral function of
A3G may also be a key contributor to limiting its anti-
viral function through HMM formation. Reversion of
HMM to low-molecular-mass (LMM) A3G can be ex-
perimentally mediated by treatment with RNase A/H
[70,71,105]. The RNase H activity of RT is thought to re-
lease viral RNA-bound A3G, allowing it to act on the
proximal minus strand DNA during its synthesis
[2,19,75]. Enzymatically active A3G able to be incorpor-
ate into newly synthesized virions is strictly found out-
side of the HMM complexes in the LMM fraction
[73,106]. The LMM form primarily resides in peripheral
blood-derived resting CD4+ T cells and monocytes [12];
however, upon activation of CD4+ T cells or differenti-
ation of monocytes into macrophages, a higher propor-
tion of A3G is shuttled to HMM complexes [2,91].
Although this was suggested to be a mechanism that
restricted the infection of resting T cells by HIV, subse-
quent knockout studies of LMM A3G in resting CD4+ T
cells did not render these cells permissive to HIV infec-
tion, thus indicating that the difference in the LMM-
versus HMM-bound proportion of A3G is not the sole
mechanism for resistance of resting CD4+ T cells to HIV
infection [107,108]. Beyond the induction of HMM for-
mation by HIV through cellular activation processes, Vif
has been shown to directly promote HMM production
[109]. Remarkably complex co-evolution is evident con-
sidering the intimate linkage between HIV infection and
HMM formation and the notable level of mechanistic in-
tegration between A3G function and the viral replication
machinery. The RNase H activity of RT is at once both
necessary and detrimental to viral propagation due to its
role in the release of active A3G.
The complexities surrounding regulation of Vif activity

and HMM formation notwithstanding, it is clear that both
result in diminished A3G efficacy. It is possible that muta-
tions introduced by A3G only succeed in restricting viral
replication at a sub-optimal level and conversely may assist
the virus by generating sequence variation [35,39,84]. Con-
sequently, an alternative view that A3G activity can con-
tribute to viral fitness has recently gained strong support.
In the following sections, we highlight evidence for the
pro-viral activities of A3G. At the same time, we discuss
caveats of experimental systems and data interpretation
that must henceforth be considered in development of a
revised and better-informed picture of A3G function.
The role of APOBEC3G in generation of anti-viral drug
resistant HIV
Gain of resistance to drug(s) used in the treatment of
HIV is a major determinant of viral evolution during the
course of disease. To date, almost a hundred drug resist-
ance mutation sites have been identified in the HIV gen-
ome [110]. These induce resistance to common anti-HIV
drugs acting as nucleoside/nucleotide analogue RT inhi-
bitors, such as 2',3'-dideoxy-3'-thiacytidine (3TC), abaca-
vir (ABC), and 2',3'-dideoxyinosine (DDI), as well as
non-nucleoside/nucleotide analogue RT inhibitors, in-
cluding Nevirapine (NVP), Delavirdine (DLV), and Efa-
virenz (EFV) [110]. Drug resistance mutations function
directly by altering drug targets or indirectly by modify-
ing pathways that contribute to drug escape. Many drug
resistance mutations have been shown to reside in A3G
hotspots [111].
A bioinformatics study assessed the probability of A3G

mutations in known drug resistance sites taking into con-
sideration the double-crested gradient of A3G-induced
mutational levels throughout the HIV genome. Out of
52,000 G to A mutations, only 695 (1.3%) were located in
drug resistance sites [112]. In this context, the investigators
reported a modest correlation between A3G activity and
the generation of drug resistance mutations relative to the
overall footprint of A3G on the HIV genome [19,112,113];
however, recent experimental evidence more strongly
implicates A3G in the generation of drug resistance muta-
tions. For example, the very common M184I(V) mutation
of RT that causes resistance to 3TC and, to a lesser extent,
ABC and DDI, is located in an A3G hotspot (TCCAT to
TCUAT) and is produced by A3G in vitro during HIV rep-
lication in cell culture systems [114]. Intriguingly, this was
observed in the absence of 3TC in as many as 40% of
sequenced proviruses, reflecting a pre-treatment pool of
resistant viruses poised for propagation after drug exposure
[29,115–118]. Because this mutation may in fact reduce
viral replication fitness in the absence of 3TC [119–122], it
is likely that this measurement actually underestimates the
role of A3G in the generation of this mutation. In support
of this notion, the M184I mutation emerges at significantly
higher rates when the virus is grown in A3G-expressing as
compared to A3G non-expressing host cells, indicating
that A3G activity is the major source of this mutation
[123]. This is a striking example of the parallel role of A3G
in simultaneously aiding host and virus: in the same man-
ner that it acts as a pre-existing innate immune factor that
fortifies host defenses prior to viral exposure, A3G boosts
the inherent ability of HIV to gain resistance even before
drug treatment. That this mutation is associated with a de-
cline in viral fitness may indicate that drug resistance pre-
sents a significant source of pressure in viral evolution
resulting in the gain or maintenance of A3G hotspots in
key positions in the viral genome.
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If the contribution of A3G action to drug resistance
and survival of HIV is a biologically considerable one,
the evolution of HIV during disease could involve active
relaxation of A3G inhibition. Indeed, direct evidence for
this phenomenon was provided by the prevalence of the
Vif K22H mutation in patients failing drug treatment, as
compared to treatment-naïve patients [124,125]. Vif K22
is a key residue for interaction with A3G, and Vif K22H
exhibits reduced effectiveness in neutralizing A3G [115].
Ex vivo infection of peripheral blood mononuclear cells
(PBMCs) with viral stocks harboring various other Vif
mutations that are unable to deactivate A3G (e.g. Vif
K22E) yielded a significant increase in the generation of
M184I mutants [114]. In addition, several drug resistance
mutations, including M184I in RT and G16E/M36I in
the protease, are significantly more common in patients
harboring elevated relative levels of K22H-mutated
viruses [125]. Like the M184I mutation, both G16E and
M36I mutation sites are located in A3G hotspots. Thus,
not only does HIV benefit from spontaneous pre-drug
treatment A3G-induced mutations in a passive, some-
what random manner, it appears that resistance sites for
some of the most commonly used drugs arose in A3G
hotspots. This in no way implies viral sentience, but
merely indicates a selective advantage derived from the
overlap of sites more susceptible to mutation (A3G hot-
spots) being able to confer drug resistance.

The contribution of APOBEC3G to the evasion of adaptive
immunity by HIV
Restrictions imposed on the activity of A3G by Vif and
HMM limit its effectiveness as an innate immune agent;
however, following the first weeks of HIV infection, devel-
opment of B and T cell mediated adaptive immunity par-
tially controls viremia [116–118,126]. A central facet of
the adaptive immune response is elimination of infected
target cells by cytotoxic T cells (CTL), as highlighted by
the close inverse association between robustness of the
CTL response with viremia levels and disease progression
[127–129]. Thus, evasion of the CTL response is thought
to be a powerful driving force for the evolution of HIV
during disease, as confirmed by several studies showing
the prevalence of CTL escape in HIV infection [130,131].
CTL evasion may result from alterations in CTL access to
infected cells. For instance, the auxiliary HIV protein Nef
modulates class I MHC expression to decrease the recog-
nition and killing of infected cells [132]. Alternatively,
CTL evasion may result from alterations in the interac-
tions between the CTL and infected target cell. Mutations
in CTL recognition epitopes have been shown to mediate
CTL evasion through modulating the efficacy of CTL acti-
vation [133–135].
As in the case of drug resistance, it is possible that

HIV can exploit the limited non-lethal action of A3G to
generate CTL escape mutants. In support of this model,
a study examining CTL escape during early infection
found that approximately a third of the rapidly mutating
sites mediating CTL escape were embedded in A3G hot-
spots, with more highly mutating sites being relatively
enriched in A3G hotspots [136]. Twenty-four rapidly di-
versifying sites were identified at which G to A muta-
tions were 2–3 fold more frequent than the overall G to
A mutation rate across the entire HIV genome (29 versus
12%). Fourteen of these sites located in or near CTL epi-
topes. These data suggest that it may be advantageous
towards immune escape for HIV to maintain A3G hot-
spots in areas where mutations can affect processing,
presentation or recognition of T cell epitopes, or con-
versely to establish T cell epitopes near A3G hotspots.
In contrast, another study reported that A3G muta-

tions enhance the virus-specific CTL response through
the introduction of premature stop codons into the HIV
genome that cause the generation of truncated or mis-
folded proteins [137]. In this study, Vif+ or Vif- HIV was
produced in the presence or absence of A3G in a cell
line and subsequently used to infect PBMCs followed by
assessing their susceptibility to MHC-matched peptide-
specific CTL clones. It is possible that the finding of
enhanced target cell killing as a result of A3G activity
reflects an inherent bias of the specificity of the CTL
clones examined. In addition, given the numbers, diver-
sity, and relative scarcity of CTL specific for each par-
ticular peptide in vivo, the general biological relevance of
this work remains to be determined. Therefore, although
A3G appears to play a role beyond innate immunity and
modulate adaptive immunity, further work is required to
elucidate the nature and extent of this activity.

Manipulation of APOBEC3G effectiveness: implications
and challenges for the design of therapeutic approaches
To date, multiple avenues have been suggested and/or
pursued towards exploitation of A3G as an antiviral ther-
apy. These approaches include the development of small
molecules that inhibit the interaction between Vif and
A3G and/or inhibit interactions with cellular factors that
act downstream of Vif, enhancement of LMM formation
over HMM formation, and increasing A3G levels by treat-
ment with interferons or gene-therapy delivery of A3G
along with the restriction factor Trim 5α [70,138–140].
Strategies to down-regulate the action of Vif and

HMM that were initially suggested as therapeutic
approaches have recently been questioned in light of the
increasingly apparent pro-viral activities of A3G [35,141].
Disturbing the Vif-APOBEC interaction presents a deli-
cate challenge because subtle adjustments to Vif activity
have been shown to modulate levels of A3G activity. For
instance, naturally occurring patient-derived virions har-
boring Vif mutations selectively exhibit viral genome
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sequence variations consistent with survival advantage
under their environmental pressures [25,54,125]. Incom-
plete Vif inhibition might increase effective A3G concen-
trations and in so doing actually accelerate viral evolution
by only modestly increasing non-lethal mutation rates
[22,111]. On the other hand, complete Vif inhibition may
result in A3G activity levels high enough to tip the balance
towards immunity through mutation loads capable of dis-
abling viral replication. The isolation of viral sequences
harboring Vif mutants significantly diminished in their
ability to neutralize A3G challenges this scenario as it
brings into question the ability of A3G to fully abrogate
the propagation of Vif-deficient viruses [124,125]. Further-
more, it may also be important to consider the involve-
ment of Vif inactivation in the generation of drug
resistance as a cautionary note against therapies designed
for complete elimination of Vif activity.
Studies of the effect of A3G expression levels on HIV

disease progression rates in both humans and other pri-
mates have yielded conflicting results. One investigation
reported an inverse correlation between A3G expression
levels and disease progression [142,143], while another
noted no such association [144]. A third study conducted
on SIV-infected rhesus macaques reported an inverse cor-
relation between A3G expression levels and disease pro-
gression [145]. Further work will be required to
conclusively define any association between A3G expres-
sion patterns or levels and HIV disease progression. In
addition, it is not clear whether A3G expression levels can
influence the relative extent of its pro- versus anti-viral ac-
tivities. If indeed there is any correlation, it remains to be
determined where the threshold level of A3G activity lies
and whether it varies during the course of infection. What-
ever the pivotal point, the underlying premise that regulat-
ing A3G activity by modulating Vif/HMMs can alter viral
mutation levels to the detriment of HIV may be flawed in
viewing HIV as an acquiescent canvas for mutational activ-
ity. Examination of the spectrum of A3G-induced muta-
tions during the viral life cycle paints a different picture in
which there is a high level of mutation in viral DNA, an
intermediate level in cellular RNA, and a low level in viral
RNA. Non-advantageous or detrimental mutations are
serially filtered out during the transcription, nuclear-cyto-
plasmic transport, translation and assembly phases of the
viral life cycle, resulting in a pool of virions emerging from
the host cell that bear a suppressed footprint of total A3G
mutational activity – a process termed purifying selection
[146]. Although at first glance it ought to decrease viral
variation, purifying selection is balanced in favour of HIV
by other diversification processes, such as recombination
between mutated and wild-type viral genomes [147,148].
This is a sophisticated mechanism of protection for
the virus as it enhances the potential for beneficial muta-
tions to propagate quickly and represents a heretofore
unappreciated layer of complexity when considering thera-
peutic strategies centered around modulating the activity
and/or levels of A3G.

The relative contribution of APOBEC3G in the context of
other viral factors to HIV evolution
Formulating therapeutic strategies also requires a careful
assessment of the relative contributions of non-A3G fac-
tors to the sequence variation of HIV. In general, retro-
viral genomes are prone to a high frequency of mutation
[149–153]. The elevated error rate of the HIV RT, altera-
tions in the nucleoside triphosphate (NTP) and deoxynu-
cleotide triphosphate (dNTP) levels that affect
polymerase accuracies, and the lack of proofreading ma-
chinery during viral genome replication all contribute to
the highly mutagenic nature of viral genomes [58,151].
In addition to mutations, HIV exhibits a notably high
rate of genomic recombination amongst retroviruses,
possibly due to its cellular transmission properties result-
ing in frequent co-infection by genetic variants [154–
157]. Unlike in humans, recombination in retroviruses
does not result from breakage and rejoining of DNA, but
is instead mediated by the ability of RT to switch tem-
plates between the two encapsidated proviral RNAs
[158–160].
Distinguishing between the actions of RT versus A3G

is essential in determining the relative contribution of
each to HIV pathogenesis given that its genome is pre-
dominated by dA nucleotides, and dG to dA changes are
key to the generation of many drug resistance variants
[111,161,162]. Prior to the discovery of A3G, RT was
viewed as the main generator of genetic diversification in
the HIV genome throughout the course of infection;
however, both RT and A3G most frequently induce dG
to dA transition mutations on the plus viral DNA strand
[163]. Although a degree of uncertainty arises in assign-
ing the source of hypermutations in the HIV genome,
the fact that A3G preferentially deaminates dC nucleo-
tides in signature trinucleotide hotspots (CCC, TCC) can
be used to assign mutations [6,19–21]. In contrast to RT,
which is capable of introducing one to two mutations in
each viral genome per replication cycle [58], A3G is a
highly processive and robust deaminase enzyme [164].
The rate of dG to dA hypermutation found in HIV gen-
omes is approximately 1000 fold higher than RT alone
would be expected to introduce [71]. Furthermore, A3G-
expressing cells support significantly more HIV hyper-
mutation than their A3G-deficient counterparts. While
the impact of A3G on mutational load is tempered dur-
ing wild-type HIV infection by factors such as Vif and
HMM, and potentially obscured from the circulating
virus pool by purifying selection, these and other obser-
vations provide evidence that A3G can and does make
substantial contributions to HIV sequence variation
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(See figure on previous page.)
The complexities of the pro- and anti-HIV actions of APOBEC3G. Cross section into the cytoplasm of an infected CD4+ T cell is shown, with
A3G (yellow) bound to the minus strand ssDNA of the viral genome (white). Virus is shown as green (fit virus) or red (unfit virus) circles forming
within and budding out of the infected T cell. Each viral particle contains two copies of the RNA genome and multiple copies of A3G (rods). On
the outside of the infected T cell, a cytotoxic CD8+ T cell (CTL) is shown recognizing a viral epitope in the context of MHC class I on the surface
of the infected T cell. Arrows depict several possible outcomes of A3G action: (1) the classic mode of A3G action as an innate host defense agent
whereby it generates mutations in the viral genome resulting in less fit or deactivated virions (red); (2) some low level mutations by A3G that may
result in the production of more fit virions (green); (3) A3G may induce mutations in the viral genome that result in drug resistance, as shown by
the emergence of more fit virions (green) through the pool of cytoplasmic drug (yellow dots); (4) the process of purifying selection wherein a
heavy mutation load on the viral genome is filtered out throughout various stages in the viral life-cycle, resulting in selection for a final pool of
viruses with low level mutations that may enhance viral fitness; (5) the mutations generated by A3G may result in the alteration of MHC class
I-restricted viral peptide epiotpes such that recognition by CTL is abboragated (A3G-mutated CTL escape epitopes that result in the cloaking of
the infected cell from the CTL response are shown in green while wild-type CTL epitopes that result in the recognition and killing of the infected
cell are shown in red); (6) the virion infectivity factor (Vif) of HIV (purple) binds cytoplasmic A3G marking it for degredation; and (7) cytoplasmic
A3G is trapped in high-molecular-mass (HMM) ribonuclear complexes and consequently rendered ineffective.
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[123]. Somewhere between the unfettered A3G activity
that causes a lethal mutational load and complete A3G
inhibition by Vif and other cellular factors lies a level of
activity with the potential to favor drug resistance, im-
mune escape and viral fitness. Given the demonstrated
ability of HIV to adapt to its host, it would be surprising
if adaptations deriving benefit from some level of A3G
activity have not occurred.

Conclusions
Figure 1 illustrates the various topics discussed herein with
respect to the dual role of A3G in aiding the host or virus.
As shown, there are clear instances when HIV can take ad-
vantage of A3G-induced mutation across a range of activ-
ity levels. Low mutation rates do not inactivate the viral
genome and may in fact contribute to both drug resistance
and immune escape. Conversely, HIV genomes suffering
high mutation rates may be filtered out during viral repli-
cation to favor viral progeny with better fitness. Therefore,
an ominous picture emerges wherein regardless of the ac-
tion of A3G, HIV gradually gains the upper hand as a re-
sult of its fast replication rate and purifying selection
processes that allow it to essentially optimize A3G muta-
tion loads in progeny virions and better adapt to host
defences and other selective pressures.
On the other hand, interpretation of studies examining

the effect of A3G on the drug and CTL escape mutations in
the HIV genome is subject to a major caveat. To date, stud-
ies identifying CTL escape or drug resistance mutations
have been conducted using two general approaches: firstly,
by searching for such mutations in clinical isolates; and sec-
ondly, by analyzing mutations in cell culture infection sys-
tems where A3G is expressed. We suggest that these types
of studies are inherently biased towards generating the
observed results and missing the bigger picture. In the first
case, the virus pool obtained from infected individuals will
inevitably be enriched for CTL and drug escape mutants as
these have a replication advantage wherein virions harbor-
ing CTL or drug target motifs modified by A3G in a way
that supports the opposite outcome (i.e. enhanced CTL
recognition or increased drug susceptibility) would have
been efficiently eliminated. Therefore, A3G could poten-
tially create new or more immunogenic epitopes that have
not yet been characterized. Furthermore, any suggestion
that CTL escape is merely serendipitous neglects the point
that a limited number of high quality escape epitopes are
selected, as opposed to a large quantity of epitopes with low
immune evading potential or substantial negative effects on
viral fitness. HIV features a very economical propagation
process in that the cost of having some genes manipulated
is in-turn compensated for by a net effect favoring evasion
of composite selective pressure. In the case of cell culture
systems examining the role of A3G in generating drug re-
sistance variants, the same caveat stands. That is, multiple
drug resistance mutations have been identified and well
characterized due to their prominence in patients. A3G-
induced mutations that may conversely enhance drug sus-
ceptibility have not been identified because of their scarcity
caused by more rapid elimination. Accordingly, we suggest
that instances where A3G may in fact bestow the upper
hand upon the host by generating mutations that enhance
CTL recognition or drug susceptibility have likely been
underestimated because of their inevitable transience. It is
probable that the pro- and anti-viral activities of A3G are
not mutually exclusive and that, at different points through-
out HIV infection and in different patients, both scenarios
unfold; however, the principles of purifying selection are ac-
tive at the level of individual cells and that of the entire host
organism, which buries the evidence of maladaptive A3G-
imposed mutations beneath an avalanche of fast replicating
adapted variants. While new experimental approaches are
required to identify the relative proportion of both categor-
ies of A3G-induced mutations in an unbiased manner, the
final outcome following multiple selection processes will
determine the global impact of A3G mutations. Even if
thousands of A3G-induced mutations favoring the host
occur for a single mutation that favors HIV, the net advan-
tage will be to HIV as long as one favorable mutation
becomes incorporated into the circulating viral pool. Thus,
the overall context within which A3G acts is probably just
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as relevant as the ratio of pro- versus anti-viral mutations.
Resolution of this bigger picture will be critical in order to
guide future therapeutic strategies centered on altering
A3G activity.
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