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Abstract

Background: Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes
Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with
conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis.
HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All
ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in

Tax"Wip1™* counterparts.

Tax-induced tumors in mice.

their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein.

Results: Using genetically altered mice, we report here that Tax expression does not achieve a functional
equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53™~ genotype). Thus, we find
statistically significant differences in tumorigenesis between Tax*p53"* versus Tax'p53~~ mice. We also find a role
contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably,
Tax*Wip1™~ mice show statistically significant reduced prevalence of tumorigenesis compared to

Conclusions: Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of

Background
Human T-cell Leukemia Virus type 1 (HTLV-1) is the first
identified human retrovirus. The virus belongs to the deltare-
trovirus family and is the etiological agent of a highly aggres-
sive neoplastic disease, Adult T-cell Leukemia/Lymphoma
(ATLL), and inflammatory diseases including HTLV-1
Associated Myelopathy (HAM)/Tropical Spastic Para-
paresis (TSP), uveitis, infective dermatitis and myositis
[1-9]. HTLV-1 infects approximately 20 million individuals
world-wide, and 1-5% of infected individuals will develop
ATLL after a long latency period of 20 to 60 years [1].
HTLV-1 encodes a viral Tax oncoprotein. The singular
expression of Tax is sufficient to transform primary ro-
dent cells [10] and potentially human embryonic stem
cells [11], immortalize human primary T lymphocytes
[12,13], and induce tumors in transgenic mice [14-17].
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Tax confers pro-proliferative and pro-survival properties to
HTLV-1 infected cells [18-20] by pleiotropically activating
effector proteins including the Cyclic AMP Responsive
Binding Protein (CREB) and CBP/p300 [21-24], Nuclear
Factor kappa-B (NF-kB) [25-29], Cyclin-Dependant Kinases
(CDKs) [30-33], and Akt [34-36] amongst others. Tax also
triggers DNA damage [37-42]. In transforming a nor-
mal T-cell into a leukemic cell, it is believed that Tax
must also neutralize cellular checkpoints (e.g. p53 and
mitotic spindle assembly checkpoint) that act to censor
DNA damage [43,44] and aneuploidy [45,46].

p53 is a DNA-binding transcription factor that plays a
key role in cell cycle regulation, apoptosis, and DNA re-
pair [47]. The p53 gene is recognized as one of the most
important tumor suppressor genes and is frequently
mutated in human tumors including hematologic malig-
nancies [48-50]. In many human malignancies, the fre-
quency of p53 genetic mutation is =50% [51,52];
however, the frequency of mutated p53 in ATL patients
is reported to be around 15% [53-58], suggesting that
loss of p53 activity in ATL may largely arise through a
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mechanism other than genetic mutation. Several in vitro
studies in different cell types have shown that Tax
represses p53 activity [59-65]. Various mechanisms have
been proposed for Tax-inactivation of p53. Indeed, it has
been suggested that Tax inactivates p53 by acting
through either the CREB [62] or the NF-«B [66,67] path-
way; however, it has also been noted that neither mech-
anism satisfactorily explains Tax-p53 interaction [65],
leaving the question of how Tax effectively disables p53
function incompletely answered.

Here, we have conducted in vivo experiments in mice to
address two questions. First, we have assessed the effect-
iveness of Tax mediated inactivation of p53 versus inacti-
vation of p53 by genetic mutations. Second, we have
characterized Wip1 as a cooperating in vivo Tax co-factor
in p53 inactivation. Using various genetically altered mice,
we show that Tax inactivation of p53 is functionally less
stringent than p53 inactivation by genetic mutation, and
we report that the cellular Wip1 phosphatase protein col-
laborates functionally with Tax in inhibiting p53 activity.

Results

Tax*p53™~ mice show reduced tumor free survival
compared to Tax"p53*/*

In ATLs, p53 genetic mutations are less frequent than
those seen in many other cancers [53,54,58]. It has been
reasoned that the ability of Tax to inacti-vate p53 func-
tion [55] explains why ATL cells may not need to
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inactivate p53 by genetic mutation. Nevertheless, it has
not been clearly characterized whether Tax inactivation
of p53 is quantitatively equivalent to inactivation of p53
by genetic mutation. We sought to investigate this issue
using gene-tically altered mice. Accordingly, we crossed
Tax transgenic mice [15] with 53”7 mutant mice [68]
to generate Tax*p53~", Tax"p53*~ and Tax*p53™* pro-
genies. We analyzed the genotypes (Figure 1) of the off-
springs and monitored the animals over >300 days for
tumor development (Figure 2). Tumor-free survival for
Tax*p53~~ mice (Figure 2A) was significantly worse
compared to Tax*p53™~ and Tax'p53** counterparts
(p < 0.0001; Gehan-Breslow-Wilcoxon test). There
were no statistically significant differences in the levels of
Tax expression between these two categories of Tax" mice
supporting that the difference in tumor-free survival was
not due to levels of Tax expression (Additional file 1:
Figure S1). Interestingly, no significant difference in
tumor-free survival between Tax*p53*~ and Tax'p53
** mice was found (p = 0.7093; Gehan-Breslow-
Wilcoxon test); this finding agrees with our previous
tumorigenesis study of p53*~ and p53** mice [69]
that, in the context of our mice, we find no significant
functional difference between homozygosity versus
heterozygosity in wild type p53. Thus, our finding of a
distinct difference in tumor-free survival of Tax'p53~~
compared to Tax*p53*'* mice indicates that Tax inactiva-
tion of p53 (ie. Tax*p53™*) is qualitatively less stringent
than genetic inactivation of p53 (i.e. Tax*p53™").
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Figure 1 Genotyping of p53KO/Tax Tg mice. p53 primers distinguish between WT and mutant p53 alleles with PCR products of 450 and 650
bp in size (top), respectively. Middle panel shows the detection of Tax DNA (534 bp), and the bottom panel shows PCR control detecting cell
endogenous GAPDH gene (220 bp). Mut, mutant ; WT, wild type. Tax, p53, and GAPDH signals are as indicated.
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Figure 2 Statistically significant reduction of tumor-free survival in Tax*p53~~ mice compared to Tax*p53**. (A) Tumor-free survival
curves show decreased tumor free survival in Tax'p53~ mice compared to Tax'p53™~ or Tax'p53™* animals. Statistical significance (*: p<0.0001)
between Tax" p53 and either Tax'p53* or Tax'p53""* mice was determined using Gehan-Breslow-Wilcoxon test. (B) A Tax transgenic mouse
with an ear tumor is shown for illustration. (C) Examples of tumor histology [hematoxylin and eosin (H&E) staining] from Tax"p53™* mice are
shown. Example of a pleomorphic ear sarcoma from a Tax*p53™* mouse; (left): expansive soft tissue tumor located in peripheral connective
tissue of the ear beneath the supportive cartilage; example of a hind leg pleomorphic histiocytic sarcoma and glandular adenocarcinoma with
squamous hyperkeratosis from a Tax'p53*" mouse (right): the sarcoma consisted primarily of histiocytic tumor cells with dispersed round cells,

sparse spindle cells and neutrophilic granulocytes. Similar tumors are also seen in Tax"p53™~ mice.

Wip1 phosphatase modulates p53 activity

We wished next to understand how other non-genetic
means of inactivating p53 might cooperate with Tax in
cellular transformation. Wipl (Wild-type p53-induced
phosphatase 1) is a human protein phosphatase that has
been shown to be amplified and over-expressed in mul-
tiple human cancers and has been suggested to exhibit
oncogenic potential [70]. A plausible mechanistic scenario
could be that Wipl acts to inhibit p53 activity, thereby
contributing to tumorigenesis. Through its ability to in-
hibit p53 tumor suppressor function, Wip1, like Tax, may
reduce the selective pressure for p53-inactivating muta-
tions during cancer progression [71,72]. To check the
effect of Wipl on p53, we assessed how its over-expression
affects p53’s transcriptional activity. Accordingly, we trans-
fected human HCT-116 cells with a luciferase reporter
plasmid containing 13 copies of a p53 consensus binding
site (pG13-Luc; [73]) together with a Wipl expression
plasmid (Figure 3A and B), or we transfected pG13-Luc
with a Tax expression plasmid-alone, or we transfected
pG13-Luc with both Wipl and Tax expression plasmids
(Figure 3A and B). Under our transfection conditions, both
Wipl-alone and Tax-alone with pG13-Luc robustly
repressed the expression of the reporter plasmid by more
than 40% (p=1.496 x 10 for Wipl-alone; p=7.62x107 for
Tax-alone; t-test) (Figure 3A). Of note, the co-transfection
of Wipl with Tax repressed pG13-Luc expression by an
additional 20% and 15% over that achieved with Tax-alone

(p=0.0025; t-test) or Wipl alone (p=0.019; t-test)
(Figure 3A). When the transfections were performed in
the presence of co-introduced exogenous p53, we again
observed a statistically significant repression of p53 tran-
scriptional activity; here, we saw >60% repre-ssion of pG13-
Luc expression after transfection with Wip1l-alone (p=3.27
x107; t-test) or Tax-alone (p=2.22 x10°; t-test) (Figure 3B).
In the presence of exogenously introduced p53, the co-
transfection of Wipl and Tax repressed pG13-Luc expres-
sion by more than 50% over that achieved with Tax-alone
(p:7.43><10'5; t-test) or Wipl-alone (p:1.25><10’4 t-test)
(Figure 3B). In Figure 3C, the expression of the transfected
plasmids used in Figures 3A and 3B was checked by Western
blotting. Taken together, these findings support that Wipl
and Tax cooperate in overall p53 inactivation.

Transient over-expression assays generally are imper-
fect reflections of physiological regulation. To ask in a
more physiological manner how endogenous Wipl ex-
pression regulates p53 activity, we independently isolated
several primary MEF clones from Wipl™~ knock-out mice
[74] and their WipI™* wild type siblings (genotyping
examples of MEFs are shown in Figure 3D, top). We then
compared cell endogenous p53 activity in several inde-
pendently isolated Wipl™~ MEFs to other independently
isolated control WipI** MEFs employing either the
pG13-Luc reporter assay (Figure 3D, bottom) or by deter-
mining the mRNA expression levels of a known p53-
responsive target gene, p21~*F/“’"1 (Figure 3E). Notably,
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Figure 3 Wip1 phosphatase attenuates p53 activity. Wip1 and/or Tax expression reduces p53 transactivation of a pG13Luc-reporter in
HCT-116 cells in the absence (A) or in the presence (B) of exogenous p53 (0.8 pg). HCT-116 cells were transfected with 0.2 ug of Tax
and/or 0.75 ug of Wip1 expression plasmid (*: 0.01<p<0.05; **: p<0.05; t-test). (C) Cell lysates from a representative experiment were subjected to
immunoblotting using anti-p53, anti-Tax, anti-Flag and anti-a-tubulin as indicated. The lane numbers of the samples in each case corresponds to
the lane numbers indicated in panels (A) and (B). (D) Analysis of cell endogenous p53 activity was conducted using the pG13-Luciferase plasmid
in Wip1~”~ and Wip1** Mouse Embryonic Fibroblasts (MEF). Top panel shows PCR genotypic characterizations of two independent Wip1*/*
(60, 63) and two independent Wip1~~ (7, 12) MEFs; each was assayed twice in pG13Luc-reporter assays. Bottom graph shows the luciferase
assays. All luciferase activities were normalized to a co-transfected (3-galactosidase reporter. Statistical significance was determined using t-test
(*: p=0.0076). (E) Analyses of cell endogenous p21 and (F) p53 mRNAs in 5 independent Wip]“+ (left) and 4 independent Wipr/’ MEFs.
Real-time RT-PCR analyses of p53 and p21 and GAPDH (internal standard) transcripts were performed in Wip1™~ and Wip1™" MEFs. There was no
statistically significant difference in p53 mRNA levels, while p21 mRNA levels were significantly different between Wip1"* and Wip1™~ MEFs
(*: p=0.0425; t-test).

the Wipl~~ MEFs showed statistically significant higher
levels of pGl13-Luc expression (p=0.0076; t-test) and
higher levels of p21 mRNA (p=0.0425; t-test) than the
Wipl™* MEFs, suggesting that cell endogenous Wipl
does physiologically reduce p53 function in primary cells
(Figures 3D and E). This regulation of p53 by Wip1l, how-
ever, does not occur at the level of transcription because
there was no statistically significant difference in the
amounts of p53 mRNA in WipI** versus Wipl™~ MEFs
(Figure 3F).

Wip1 deficiency reduces Tax-tumorigenesis
The above results show that both Wipl and Tax inacti-
vate p53 function. Next, we asked how the two events

might cooperate in tumorigenesis. To address their func-
tional collaboration, we crossed Tax transgenic mice
with Wipl™* or Wipl~”~ mice. Various genotypic off-
springs were obtained from these crosses (genotyping
examples are shown in Figure 4A), and the animals were
monitored for tumorigenesis over 300 days (Figure 4B).
Interestingly, WipI™~ and WipI~~ mice that express
Tax showed significantly better tumor-free survival than
Wipl™* animals that express Tax (Figure 4B). Indeed,
tumor-free survivals were statistically different between
Tax* Wip™~ (p=0.0319; Gehan-Breslow-Wilcoxon test) or
Tax*WipI*~ mice (p=0.0396; Gehan-Breslow-Wilcoxon
test) compared to Tax*WipI** mice. In view of findings
above that p53 activity is higher in Wipl™~ MEFs
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compared to Wipl™* MEFs; one interpretation of these
in vivo tumor results is that homozygous loss of Wipl
(i.e.Tax*Wipl™") reduces the level of p53-inactivation
in Tax expressing cells compared to counterpart cells
that expresses both Wipl and Tax (i.e. Tax*WipI*'™*);
this reduced inactivation of p53 could explain the
increased tumor-free survival observed in the Tax*Wipl ™~
over the Tax* WipI*’* mice.

Tax expression does not increase Wip1 transcription

Figure 4B shows that when Tax and Wipl are expressed
together overall in vivo transforming potential is
increased. Tax is known to activate or repress the tran-
scription of various genes [75-80]; thus a possibility is
that Tax expression affects Wipl transcription. To
address this possibility, RNA was isolated from Tax-
expressing HTLV-1-transformed MT2, MT4, C8166

cells and compared to RNAs from HTLV-1-negative
CD4* T-cell lines, CEM, Jurkat and H9; specific tran-
scripts were quantified by real-time RT-PCR (Figure 5A).
The real-time RT-PCR results showed no correlation be-
tween Tax expression and Wipl expression in these cells.
To check in a different way that Tax has no effect on
Wipl transcription, we transiently transfected p53
“"HCT116 (Figure 5B), p53**HCT116 (Figure 5C), or
HeLa cells (Figure 5D) with various amounts of a Tax ex-
pression plasmid and measured Wipl mRNA. p53~/~
HCT116 and p53** HCT116 cells [81] have been com-
monly used to study p53 function. In these cells, we
observed no statistically significant change in Wipl
mRNA upon Tax expression. We also transfected MEFs
and HCT-116 cells with a Tax expression plasmid and
immunostained the cells for Tax and Wipl proteins. Based
on visualization by confocal microscopy, no difference in
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Figure 5 Analysis of Wip7 mRNA expression in Tax-expressing and Tax-non-expressing cells. (A) Total RNAs from HTLV-1-transformed
MT-2, MT4, C8166 T-cell lines and HTLV-1-negative CD4" control T-cell lines (Jurkat, CEM, and H9) were extracted and reverse transcribed. The
cDNAs were used for real-time RT-PCR analyses of WipT, Tax, and GAPDH (internal standard) transcripts. The mRNA relative expression levels of
WipT and Tax mRNA were determined and normalized as multiples of the GAPDH mRNA. The columns represent the average results from 3
experiments; the error bars are mean errors. (B) Real-time RT-PCR analyses of WipT and GAPDH (internal control) transcripts were performed in
p53~7 HCT116, (C) p53** HCT116 and (D) Hela cells after transfection with a control vector or a Tax-expression vector. To detect Tax protein,
immunoblots were stained using Tax and a-tubulin specific monoclonal antibodies. Tubulin was used as a loading control.

Wipl signal intensity was seen in Tax-expressing cells versus
Tax-negative cells (Figure 6A and Additional file 2: Figure
S2A). These findings demonstrate that Tax expression does
not change ambient Wip1 protein level and agree with the
RNA measurement results that Tax expression does not
alter Wipl mRNA expression (Figure 5).

In our immunostainings, we did note that Tax and
Wipl colocalize in the nucleus (Figure 6A and Additional
file 2: Figure S2A). Moreover, additional immunostainings
also show that Wipl and p53 colocalize in the nucleus
(Figure 6B and Additional file 2: Figure S2B). Thus, con-
ceivably, Tax, p53, and Wipl interaction occurs through
intranuclear contacts. Currently, we do not have sufficient
data to fully understand whether the colocalization of Tax,
Wip1, and p53 manifests in direct protein-protein interac-
tions or the proteins interact through bridging by
additional factors. Experiments are in progress to define
better these mechanistic interactions.

Discussion
Colloquially known as the guardian of the genome, p53
is an important player in cancer biology, as exemplified

by its ubiquitous loss of function in cancers. Thus,
approximately 50% of human cancers are genetically
mutated in p53 [29,82-85], and the other 50% show atte-
nuated or abrogated p53 activity through means other
than mutation [86]. In the case of ATLL, the frequency
of p53 gene deletion and mutation is lower than in many
other types of cancers and has been reported to approxi-
mate 15% [54]. Indeed, our own anecdotal findings are
consistent with this low prevalence; in a recent survey of
7 primary ATLL cells, we found no evidence for any of
the 11 most frequent p53 somatic gene mutations that
have been described for lymphoid neoplasms (Zane, data
not shown).

Cancers that retain wild-type p53 gene, nevertheless,
can have attenuated p53 activity via other mechanisms.
For example, Mdm2, an E3 ubiquitin ligase that pro-
motes p53 degradation, is a major negative regulator of
p53 [87-89]. Another example of negative regulation
arises from the Twistl protein. Twistl accumulates in
sarcomas that are genotypically p53 wild-type; it dysre-
gulates p53 phosphorylation promoting its degradation
[90]. Additional examples come from DNA tumor
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Figure 6 Confocal analyses of p53, Wip1 and Tax in MEF cells. (A) Analysis of cell endogenous Wip1 and Tax expression and localization by
immunofluorescence staining in MEF cells transfected with a Tax expression plasmid for 48 hours. Cells were stained with anti-Tax (red) and
anti-Wip1 (green) antibodies. The nuclei were stained with DAPI (blue). Arrows point to cell that expresses Tax (red) and a neighboring cell that
does not express Tax. The same two cells are shown to express equal intensities of Wip1 (green). DAPI (blue) stains cellular nuclei. (B) The
colocalization of cell endogenous p53 and Wip1 in MEF cells. Cells were stained with anti-p53 (red) or anti-Wip1 (green) antibodies, and DAPI

p53 Merge

viruses; some encode proteins that repress p53 activity.
Hence, SV40 large T-antigen stabilizes, but inactivates,
p53; adenovirus E1B-55-kDa protein, and the E6 onco-
protein of human papilloma virus (HPV) types 16 and
18 target p53 for ubiquitinylation and degradation
[91-93]. In the case of HTLV-1, our work here reaffirms
previous findings that Tax indeed attenuates p53’s tran-
scriptional activity in cultured cells (Figure 3). However,
a perhaps more important implication to arise from our
study is that we compare for the first time the impact of
Tax inactivation of p53 versus p53 inactivation by
genetic mutation for their relative contributions to
in vivo tumorigenesis in mice. To date, it generally has
been believed that Tax stringently inactivates p53 activity
reducing the need for ATL cells to acquire p53 inactivat-
ing mutations. Our results are, however, incongruent
with this notion. Thus, we found that Tax induces
tumorigenesis in mice much more robustly in a p53™~
setting than in a p53** context (Figure 2A), suggesting
that Tax inhibition of p53 in the latter context is signifi-
cantly less complete than p53 inactivation via gene
mutation. Our findings differ somewhat from those
reported by Portis et al. [94]. The differences may be

due to variances in the mouse numbers, the mouse
strains, and the criteria used to determine tumor-free
survival and when euthanasias of mice are performed.
To date, in the published literature, only cross-sectional
findings are associated between p53 genetic mutations
and human ATLLs [54]. These findings do not offer clar-
ity on when p53 mutations occurred relative to HTLV-1
infection, Tax expression, and the onset of transform-
ation of ATLL cells. Our results in mice provide prospect-
ive analyses of the contribution of a p53™~ genotype to the
initiation of in vivo tumorigenesis by Tax. Accordingly, ex-
trapolating our mouse findings to humans suggests that
early loss of p53 through a p53™ genetic mutation in cells
infected by HTLV-1 foretells a worse prognosis compared
to a corresponding infection in a counterpart p537*
setting.

In our investigation of p53 inactivation, we report for
the first time a contributory role by Wipl in Tax-
tumorigenesis. Our insight into the role of Wipl arose
from the observation that loss of Wip1 (i.e. Wipl™") sig-
nificantly reduced the frequency of tumor development
in Tax transgenic mice (Figure 4B). We linked this ob-
servation to a Wipl-mediated p53 effect because we
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found that Wipl~~ MEFs have significantly increased
p53 activity over their Wipl™* counterparts. Thus, a
parsimonious interpretation of the collective findings is
that loss of Wipl phosphatase (ie. WipI™") increases
cell endogenous p53 activity (Figures 3D and E), and this
increase in p53 function reduces Tax-tumorigenicity in
Tax*Wipl™~ mice (Figure 4B). Hence, the magnitude of
p53 activity is important in regulating the extent of
in vivo Tax tumorigenesis, and this view is further con-
sistent with the tumor-free survival results comparing
Tax'p53™* and Tax*p53~ mice (Figure 1).

The potential value of inhibiting Wipl in moderating
cancer progression is not only limited to Tax—induced
tumors because a Wipl effect has also been suggested in
mammary gland tumors [95], lymphomas [96], colorectal
cancers [97], and other spontaneous tumors [98]. Going
forward further clarification is needed to understand
whether Wipl’s effect on many cancers and its impact
on Tax-driven tumor formation are primarily due to its
effect on p53 signaling or may also arise from its known
effects on other pathways, such as ARF, ATM, and p38
MAPK signaling [96,99]. Studies that compare the in vivo
tumorigenesis frequencies seen in Tax'Wipl - ’p53’/ -
versus Tax" Wipl™*p53~~ mice (two genotypes currently
being bred in our laboratory) may help to address whether
Wipl has important substrates other than p53 that con-
tribute to Tax-mediated transformation. In other models
of carcinogenesis, it has been shown that the singular
over-expression of Wip1 is insufficient to initiate oncogen-
esis [100] and that Wipl mostly promotes tumors by
cooperating with known oncogenes [100]. Nevertheless,
amplification of the Wipl gene has been described for
numerous human primary tumors [101-112], with virtu-
ally all such tumors being genetically p53 wild-type
[71,72,113]. Based on this observation, one wonders if the
low selective pressure for p53 mutations in ATLL could
be due to Wipl gene amplification in these cells. To our
knowledge, this important question has not yet been
investigated in ATLLs.

Conclusions

In summary, despite much progress in HTLV-1 research
over the past three decades [114], a salient finding to
emerge from this work is the new identification of Wip1
as a cooperating cellular co-factor of Tax in p53-
inactivation and in vivo tumorigenesis. Currently, our
confocal imaging results suggest a colocalization be-
tween Tax, Wipl, and p53 within the nucleus (Figure 6
and Additional file 2: Figure S2), but we still lack suffi-
cient data to decipher mechanistically how Tax and
Wipl cooperate to inactivate p53. Amongst several
plausible mechanisms, we remain unable to conclude
whether Tax can increase Wipl dephosphorylation of
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p53 and/or MDM2, a major inhibitor of p53 that has
been reported to also be a target of Wipl [99]. Nonethe-
less, the functional delineation here of a contribution by
Wipl to Tax tumorigenesis (Figure 4B) does raise the
possibility that future uses of small molecule Wipl
phosphatase-inhibitors [115] may benefit ATLL treatment.

Methods

Animals and genotyping

The Tax and Wipl+/- transgenic mice were previously
described [15,74]. The p53-mutant mice were purchased
from the Jackson lab (strain:B6.129S2-Trp53tm1Tyj/])
[68]. The Wipl and p53 knockout and 7ax transgenic
mice were all generated in C57BL/6 x 129/sv back-
grounds [15,68,74]. Genotypes of the mice were determined
by polymerase chain reactions (PCRs) using primers: Tax
(Tax-F-7511-7530: 5'-tcggctcagctctacagttc-3; Tax-R-8044-
8025: 5'-tgagggttgagtggaacgga-3'), p53 (wt: 5'-acagcgtggtgg
taccttat-3, mutant: 5'-ctatcaggacatagcgttgg-3’ and com-
mon: 5'-tatactcagagccggect-3') and Wipl (Wipl Exon4
F: 5'-gtggagctatgatttcttcagtgg-3; Wipl Exon4 R: 5'-g
atacgacacaagacaaacctcc-3’; Wipl intron 3: 5'-acaagcttg
cagggctgtttgtgg-3’; PGK promoter: 5'-cttcccagectctgage
ccagaaagc-3'). Experimental research on mice follows
NIH approved animal study protocols and guidelines.

Analyses of pathologies

Mice were necropsied and examined by mouse patholo-
gists. All of the internal organs (spleen, liver, pancreas,
kidney, stomach, intestine, lung, heart, brain, lymph node,
thyroid gland) were fixed, paraffin embedded, sectioned
and stained with H&E for analyses. Tissues that were
found to be grossly abnormal at time of necropsy were
multiply sectioned and stained by H&E (hematoxylin and
eosin) for microscopic histological analyses.

Cells and reagents

Human cervical cancer cell line HeLa and human colorec-
tal carcinoma cell lines p53*/*HCT116 and p53~/"HCT116
[81] were cultured in Dulbecco’s modified Eagle’s medium
containing 10% fetal bovine serum (FBS) and antibiotics.
Human T cell lines MT2, MT4, C8166, Jurkat, A301, CEM,
and H9 were maintained in RPMI 1640 with 10% FBS.

Antibodies

Mouse monoclonal anti-Tax (NIH AIDS Research and
Reference Reagent Program) was used to detect Tax pro-
tein in immunoblotting and by confocal microscopy.
Anti-Flag monoclonal antibody (M2; mouse; Sigma), anti-
Wipl polyclonal antibody (rabbit; Santa Cruz), anti-p53
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monoclonal antibody (mouse; Cell Signaling) and anti-
tubulin monoclonal antibody (DM1A; mouse; Sigma)
were purchased.

Plasmids and transfections

pG13-Luc, p53 (human wild type) (gifts from B. Vogelstein)
and Wipl (gift from L.A. Donehower) expression plasmids
were previously described [73,116,117]. HeLa or p53*/*
HCT116 or p53~7 "HCT116 cells were seeded into twelve-
well tissue culture plates for the luciferase assays and into
10 cm-dishes for Tax transfections. Transfections were per-
formed 24 h later, using Lipofectamine and Plus reagent
(Invitrogen) as described by the manufacturer. At 24 h after
transfection of the reporters, cell lysates were subjected to
luciferase assay. Total amounts of DNA to be transfected
were adjusted by the addition of empty vectors. To detect
luciferase and -Gal activity, luciferase substrate (Promega)
and the Galacto-Star assay system (Applied Biosystems)
were used. Relative values of luciferase activity were calcu-
lated using P-Gal activity as an internal control for
transfection.

Real-time PCR

For real-time quantitative reverse transcriptase—polymerase
chain reaction (QRTPCR), total cellular RNA from samples
was isolated using TriZol reagent according to the manu-
facturer’s instructions (Invitrogen Life technologies). Before
reverse transcription, RNA was treated by DNase (Invitro-
gen) to prevent DNA contamination. First-strand cDNA
was synthesized from 1 pg RNA using oligodT and Super-
script 111 reverse transcriptase (Invitrogen). RNA concentra-
tion and purity were determined by UV spectrophotometry
(nanodrop). The primer pairs were designed using the Uni-
versal Probe Library website (Roche diagnostics) (Wipl-L
hs: 5'-cccatgttctacaccaccagt-3; Wipl-R hs: 5'-tggtccttagaatt
cacccttg-3; p53-L hs: 5'-ccccagecaaagaagaaac-3’; p53-R
hs: 5'-aacatctcgaagcgctcac-3; p21-L hs: 5'-cgaagtcagttcct
tgtggag-3'; p21-R hs: 5'-catgggttctgacggacat-3'). The primers
of each pair were located in different exons to avoid gen-
omic amplification. Primer and probe sequences to detect
Tax in human T-cells [118] and Tax-SK43: 5'-cggata
cccagtctacgtgt-3" and Tax-SK44: 5'-gagccgataacgegtccatcg-3'
to detect Tax in mouse spleens. GAPDH was used as
the reference gene for he normalization of results
(GAPDH-R: 5'-agtgggtgtcgctgttgaag-3; GAPDH-F: 5'- tgg
tatcgtggaaggactca-3'). PCRs were performed using iQSu-
permix (Bio-Rad) (for quantification of Tax cDNAs in
human T-cells) and iQSYBR Green Supermix (for
quantification of other ¢cDNAs) on a CFX96 system
(Bio-Rad). A large amount of ¢cDNA was prepared
from the MT2, C8166, and MT4 cell lines prior to the
experiment. This cDNA was 10 fold-diluted, aliquoted
and used as a calibrator for Tax and other RT-PCR runs, re-
spectively. For relative quantification and normalization,
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the comparative Ct (or Eff-DDC) method was used
[119].

Immunofluorescence

Cells were cultured on glass coverslips, and fixed in 4%
paraformaldehyde at 24 h after transfection. After block-
ing of nonspecific reactions with 1% bovine serum albu-
min (BSA), cells were then incubated with the indicated
primary antibodies, followed by a subsequent incubation
with the secondary antibodies conjugated with Alexa
Fluor 488 or 594 (Molecular Probes). DNA was counter-
stained with 0.1 pg/ml Hoechst 33342. Coverslips were
mounted in Prolong Antifade (Molecular Probes), and
cells were visualized with a Leica TCS SP2 confocal
microscope.

Statistical analyses

The statistical analysis of tumor numbers, survival
curves, and spleen weights were computed using the
PRISM software (version 5.03).

Additional files

<
Additional file 1: Figure S1. Analyses of Tax mRNA expression in Tax"
p537" and Tax" p53** mouse spleen tissues. Total RNAs from mouse
spleen tissues were extracted and reverse transcribed. The cDNAs were
used for real-time RT-PCR analyses of Tax and GAPDH (internal standard)
transcripts. The mRNA relative expression levels of Tax mRNA were
determined and normalized as multiples of the GAPDH mRNA. There was
no statistically significant difference in Tax mRNA expression levels
between Tax" p53~~ and Tax" p53** mice (p=0.2758; unpaired

t-test). Each circle or square represents an independent mouse spleen
tissue.

Additional file 2: Figure S2. Confocal analyses of p53, Wip1 and Tax in
MEF cells. (A) Analysis of cell endogenous Wip1 and Tax expression and
localization by immunofluorescence staining in HCT-116 cells transfected
with a Tax expression plasmid for 48 hours. Cells were stained with anti-
Tax (red) and anti-Wip1 (green) antibodies. The nuclei were stained with
DAPI (blue). Arrows point to cell that expresses Tax (red) and a
neighboring cell that does not express Tax. The same two cells are
shown to express equal intensities of Wip1 (green). DAPI (blue) stains
cellular nuclei. (B) The colocalization of cell endogenous p53 and Wip1 in
HCT-116 cells. Cells were stained with anti-p53 (red) or anti-Wip1 (green)
antibodies, and DAPI was used to stain the nuclei (blue).
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