

MEETING ABSTRACT

Open Access

The reverse genetics of HTLV-1 infected patients

Luiz C Alcantara Jr^{1,2,3*}, Izabela Bialuk^{1,4}, Maria F de Castro-Amarante¹, Cody Buchmann¹, Sebastien Chevalier^{1,5}, Risaku Fukumoto¹, Vibeke Andresen¹, Cynthia Pise-Masison¹, Steven Jacobson⁶, Bernardo Galvao-Castro^{2,3}, Antoine Gessain⁷, Genoveffa Franchini¹

From 15th International Conference on Human Retroviruses: HTLV and Related Viruses Leuven and Gembloux, Belgium. 5-8 June 2011

The HTLV-1 ORF-1-encoded p12 protein induces T-cell activation and proliferation, while the cleaved p8 protein downregulates TCR signaling. In this study, we investigated whether there is a correlation between genetic variation within ORF-1 and the clinical status or proviral load in HTLV-1 infected individuals. The ORF-1 gene was amplified by PCR from PBMCs of 163 HTLV-1-infected patients (85 carriers, 78 HAM/TSP) from different geographical regions and a total of 1,640 clones were sequenced. The majority of the patients (73%) carried mutations in ORF-1 that resulted in the expression of more p12 than p8 (50% Carriers and 50% HAM/ TSP). The highest genetic variability within ORF-1 was found in the two transmembrane domains of the protein. Of interest, a subclass of mutations was found more frequently in HAM/TSP patients compared to Carriers. While higher proviral loads were found in HAM/TSP patients compared to Carriers (p=0.0001), no correlation between proviral load and the ORF-1 isoform expressed was observed (mainly p12, both p12 and p8, or mainly p8). Currently experiments are aimed at determining the significance of these mutations in ORF-1 function in regard to T-cell activation and proliferation. In addition, mutations will be characterized for their role in viral infectivity and transmission rates ex vivo and in a rhesus macaque model. Determining the effects of ORF-1 mutants on viral replication, spread and latency will provide insight into the pathogenesis of HTLV-1 infection.

Author details

¹Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, 20892, USA. ²Oswaldo Cruz Foundation Salvador, Bahia, Brazil.

* Correspondence: lalcan@bahia.fiocruz.br

¹Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda. MD. 20892. USA

Full list of author information is available at the end of the article

³HTLV Center/ Bahia School of Medicine and Public Health, Salvador, Bahia, Brazil. ⁴Department of General and Experimental Pathology, Medical University of Białystok, Białystok, 15-222, Poland. ⁵Unité de Virologie Humaine, Département de Biologie, Ecole Normale Supérieure Lyon,Lyon, France. ⁶Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA. ⁷Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.

Published: 6 June 2011

doi:10.1186/1742-4690-8-S1-A193

Cite this article as: Alcantara *et al.*: The reverse genetics of HTLV-1 infected patients. *Retrovirology* 2011 **8**(Suppl 1):A193.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

