

## **MEETING ABSTRACT**

**Open Access** 

# Neural bystander damage by infiltrating virusinfected T cells and the cytotoxic T lymphocytes in HTLV-I-associated neurological disease

Eiji Matsuura<sup>1\*</sup>, Ryuji Kubota<sup>2</sup>, Yuetsu Tanaka<sup>3</sup>, Hiroshi Takashima<sup>1</sup>, Shuji Izumo<sup>2</sup>

From 15th International Conference on Human Retroviruses: HTLV and Related Viruses Leuven and Gembloux, Belgium. 5-8 June 2011

We hypothesized that the cytotoxic T lymphocytes (CTLs) play a pivotal role in the pathogenesis of human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spasticparaparesis(HAM/TSP).

One of the most striking features of the cellular immune response in the patients with HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is the highly increased numbers of HTLV-I-specific cytotoxic T lymphocytes (CTLs) in the circulation of the blood and the cerebrospinal fluid, nevertheless HTLV-I proviral load in the PBMC remains high in the patients.

To determine the CTL's association with the pathogenesis of HAM/TSP in the CNS, we developed novel methods of in-situ detection for HTLV-I-specific CTL using HLA/antigen peptide tetramer and for the cells expressing HTLV-I viral protein. We visualized the HTLV-I specific CTLs and HTLV-I-infected cells in autopsied spinal cords of the patients with HAM/TSP.

We demonstrated that HTLV-I-specific CTLs expressing cytotoxic molecules accumulated in the spinal cords from three patients with HAM/TSP and that HTLV-I exclusively infected CD4 positive T lymphocytes but neither resident cells nor macrophages. The phenotype of apoptotic cells was HTLV-I infected CD4+ T lymphocytes or HTLV-I non-infected oligodendrocytes.

The findings suggest a unique pathogenesis for the neuroinflammatory disease that an inflammation of the central nervous system is attributed to the interaction between HTLV-I-infected CD4+ T cells and HTLV-I-specific CD8+ CTLs from the periphery.

#### **Author details**

<sup>1</sup>Department of Neurology and Geriatrics, Kagoshima University Graduate School, Kagoshima, Japan. <sup>2</sup>Center for Chronic Viral Disease, Kagoshima University Graduate School, Kagoshima, Japan. <sup>3</sup>Department of Immunology, University of the Ryukyus, Okinawa, Japan.

Published: 6 June 2011

### doi:10.1186/1742-4690-8-S1-A120

Cite this article as: Matsuura et al.: Neural bystander damage by infiltrating virus-infected T cells and the cytotoxic T lymphocytes in HTLV-I-associated neurological disease. *Retrovirology* 2011 8(Suppl 1): A120.

## Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit



Full list of author information is available at the end of the article



<sup>\*</sup> Correspondence: pine@m.kufm.kagoshima-u.ac.jp

<sup>&</sup>lt;sup>1</sup>Department of Neurology and Geriatrics, Kagoshima University Graduate School, Kagoshima, Japan