Salgado et al. Retrovirology 2011, 8:97
http://www.retrovirology.com/content/8/1/97

RETROVIROLOGY

RESEARCH Open Access

Prolonged control of replication-competent
dual- tropic human immunodeficiency virus-1
following cessation of highly active

antiretroviral therapy

Maria Salgado', S Alireza Rabi', Karen A O'Connell’, Robert W Buckheit lll", Justin R Bailey', Amina A Chaudhry’,
Autumn R Breaud?, Mark A Marzinke?, William Clarke?, Joseph B Margolick®, Robert F Siliciano'* and

Joel N Blankson'

Abstract

eventually experience a rebound in plasma viremia.

Background: While initiation of highly active antiretroviral therapy (HAART) during primary HIV-1 infection
occasionally results in transient control of viral replication after treatment interruption, the vast majority of patients

Results: Here we report a case of a patient who was started on HAART during symptomatic primary infection and
who has subsequently maintained viral loads of < 50 copies/mL for more than nine years after the cessation of
treatment. This patient had a high baseline viral load and has maintained a relatively high frequency of latently
infected CD4" T cells. In addition, he does not have any known protective HLA alleles. Thus it is unlikely that he
was destined to become a natural elite controller or suppressor. The mechanism of control of viral replication is
unclear; he is infected with a CCR5/CXCR4 dual-tropic virus that is fully replication-competent in vitro. In addition,
his spouse, who transmitted the virus to him, developed AIDS. The patient’s CD4™ T cells are fully susceptible to
HIV-1 infection, and he has low titers of neutralizing antibodies to heterologous and autologous HIV-1 isolates.
Furthermore, his CD8" T cells do not have potent HIV suppressive activity.

Conclusion: This report suggests that some patients may be capable of controlling pathogenic HIV-1 isolates for
extended periods of time after the cessation of HAART through a mechanism that is distinct from the potent
cytotoxic T lymphocyte (CTL) mediated suppression that has been reported in many elite suppressors.
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Background

HIV-1 infection results in extensive viral replication and
progressive CD4" T cell depletion in the vast majority
of patients. However, rare subjects, known as elite con-
trollers or suppressors (ES), spontaneously control viral
replication without antiretroviral treatment [1]. The
mechanisms involved in elite control are not fully
understood, but some ES appear to be infected with
fully replication-competent virus [2-5] that continues to
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evolve during chronic infection [6-8]. Thus infection
with attenuated virus does not appear to be a common
cause of elite control. In contrast, many studies looking
at host factors have shown that the HLA-B*27 and 57
alleles are overrepresented in ES [9-14]. This has
strongly suggested a role for CD8" T cell responses in
elite control, and indeed, potent HIV-specific CD8" T
cell responses [15-17] that are capable of inhibiting viral
replication [18,19] have been documented in many ES.
It is not clear whether it will be possible to elicit simi-
lar levels of immune control in patients with progressive
HIV-1 disease. However, some studies have suggested
that rare individuals who are treated early in primary
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infection with highly active antiretroviral therapy
(HAART) are able to control viral replication when
therapy is discontinued. Rosenberg and colleagues
demonstrated that five of eight patients who were trea-
ted before or shortly after seroconversion were able to
suppress HIV RNA levels to below 500 copies/mL for a
median of 6.5 months after therapy was interrupted
[20]. However, a follow up study showed that this con-
trol was of limited duration as only three of 14 patients
who started HAART during primary infection main-
tained viral loads of < 5000 copies/mL two years after
treatment interruption [21]. In another study, a patient
who was started on HAART a month after seroconver-
sion was treated for four years prior to a treatment
interruption which resulted in a rapid rebound in vire-
mia. HAART was reinitiated and ultra-low doses of
interleukin-2 (1.2 mIU/m?/day) were added to the regi-
men. Interestingly, he maintained viral loads of < 50
copies/mL for 14 months after both HAART and IL-2
were discontinued [22]. In a recent study, five of thirty-
two patients treated during primary HIV-1 infection
maintained control of viral replication for more than six
months after treatment was interrupted [23]. While this
phenomenon is not routinely seen with early treatment
[24-26], these cases strongly suggest that the immune
system can be manipulated to control HIV-1 replication
in some patients. Thus, this could be the basis for the
design of a successful therapeutic vaccine.

We present a case of a patient infected with a replica-
tion-competent, dual-tropic HIV-1 isolate who was
started on treatment during primary infection. He has
maintained stable CD4+ T cell counts and viral loads of
< 50 copies/ml for more than nine years since HAART
was discontinued. To our knowledge, this represents the
longest period of control of HIV-1 replication in a
patient after the cessation of treatment. We performed
detailed analyses of the patient’s viral isolates and looked
at multiple aspects of his HIV-specific immune
response. While no clear mechanism of immune control
was identified, this case suggests that long term control
of pathogenic HIV-1 isolates is possible in some patients
who were destined to become chronic progressors (CP).

Results

Patients

Patient 169 is a 57 year old male who was diagnosed
with primary HIV-1 infection when he admitted to the
intensive care unit at Johns Hopkins Hospital in 1999
with severe HIV-1 meningoencephalitis that resulted in
intubation for airway protection [27]. He was found to
have an indeterminate Western blot (only bands to p24
were present) and an HIV-1 viral load of > 750,000
copies/mL. He reported having tested negative for HIV-
1 two years prior to admission. He was enrolled into the
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Acute Infection and Early Disease Research Program
(AIEDRP) study and started on a regimen of zidovudine,
lamivudine, and indinavir within 48 hours of admission.
This regimen was changed to abacavir, lamivudine and
efavirenz at week four and by week 16, his viral load
was < 50 copies/ml. He stopped taking his antiretrovir-
als at week 36 for a 2 week period, and his viral load
rebounded to 22,000 copies/ml. The same regimen was
re-initiated, and he was adherent until week 92 at which
time he stopped taking all of the antiretroviral drugs.
His CD4" T cell count, which was 412 cell/uL at the
time of diagnosis, has been stable at greater than 1000
cells/uL over the last five years, and his viral load, which
has been consistently less than 50 copies/ml since the
discontinuation of HAART, was measured at 1 copy/mL
in 2011 using a highly sensitive single copy assay [28,29]
(Figure 1). The patient was incarcerated between 2004
and 2005, and medical records confirmed that he was
not on antiretroviral therapy at this point. Furthermore,
qualitative testing for antiretroviral drugs on plasma
samples from 2009, 2010 and 2011 was performed to
rule out surreptitious use of antiretroviral therapy. All
samples were negative whereas nevirapine and lamivu-
dine were detected in a plasma sample from his spouse.

The patient’s spouse was diagnosed with HIV-1 infec-
tion 3 years before subject 169 was admitted with acute
retroviral syndrome. Her CD4" T cell count nadir was
84 cells/uL, and her baseline viral load prior to the
initiation of HAART was 122,000 copies/ml.

Patient 169 has a high frequency of HIV-1

infected CD4" T cells

In order to determine whether the patient was infected
with a defective virus and whether his spouse trans-
mitted the virus to him, we amplified virus from a
plasma sample from the time of diagnosis. In addition,
virus was cultured from CD4" T cells isolated from
PBMCs obtained from the patient and his spouse in
2010. The frequency of latently infected resting CD4" T
cells in patient 169 was 1.61 infectious units per million,
which is more than a log higher than the frequency
found in our cohort of ES [3] and similar to the fre-
quencies found in chronic progressors on suppressive
HAART regimens [30,31].

Patient 169 is infected with fully replication-competent,
dual-tropic virus

We next analyzed the fitness of isolates obtained from
patient 169 and his spouse. For patient 169, full genome
sequencing of replication-competent virus cultured from
1999 plasma and three independent replication-compe-
tent isolates obtained from CD4" T cells in 2010 was
performed. One of the isolates from 2010 (2B) was iden-
tical to the 1999 isolate with the exception of a single
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Figure 1 Clinical characteristics of Patient 169. The patient's CD4 counts and viral load are shown. Viral load measurements below the limit
of detection are denoted by open symbols. The time on HAART is denoted by the shaded region.

nucleotide difference in the HIV-1 LTR. The two other
isolates from 2010 (1A, 1B) were identical although they
were isolated from independent culture wells. The dif-
ferences between the identical 2010 isolates and the
1999 isolate are summarized in Table 1. For the
patient’s spouse, full genome sequencing of two inde-
pendent isolates cultured from her resting CD4" T cells
in 2010 was performed. No large deletions were found
in any gene and no drug resistance mutations were
found in any of the isolates obtained from either patient.
Phylogenetic analysis of the env gene showed that the
isolates from 169 and his spouse were more closely
related to each other than to any other isolate in the
Los Alamos database, confirming that the two patients
were a transmission pair [Figure 2].

Table 1 Differences in sequence of replication-competent
1999 and 2010 isolates.

Differences between Pt-169 1999 and 2010-1A/1B isolates

Nucleotides Amino Acids
LTR 2
Gag A18* N6*
Pol 2 2
Vif 0 0
Vpr 1 1
Vpu 0 0
Env 2, A21 (V4)* 1, A7 (V4)*
Nef 1 1
Total 47 18

Isolate 2B from 2010 is identical to the 1999 isolate with the exception of a
single nucleotide in the LTR. Isolates 1A and 1B are identical to each other.

* The triangle denotes deletions in the 2010-1A/1B isolates.

Sequence analysis of the env gene suggested that all
isolates cultured from both patients were CXCR4- tropic
(data not shown). To confirm this, we amplified and
cloned the env gene from the 1999 and 2010 isolates
from patient 169, and made GFP-expressing NL4-3
pseudotyped virus as previously described [32]. Infection
studies were then performed with GHOST cells expres-
sing CCR5 and/or CXCR4. As shown in Figure 3A,
pseudotyped virus containing env from 1999 and 2010
was able to infect GHOST cells expressing either co-
receptor, demonstrating that each viral clone was dual-
tropic (Figure 3A).

We next compared the replication capacity of virus cul-
tured from patient 169 to that of CCR5-tropic (Ba-L) and
CXCR4-tropic (IIIB) laboratory isolates. As shown in Fig-
ure 3B, the isolates from 1999 and 2010 replicated as well
as IIIB in MT-2 cells whereas Ba-L did not replicate in
these cells, which do not express the CCR5 co-receptor. In
primary CD4" T cells, the two isolates from Patient 169
replicated as well as Ba-L. Thus control of viral replication
in this patient was not due to infection with an attenuated
virus, and viral fitness was stable over time.

Patient 169 does not have known genetic factors that
contribute to the control of viral replication

Having ruled out viral attenuation, we focused on host
factors as potential causes of the observed virologic con-
trol. Heterozygosity for the 32 base pair deletion in
CCR5 has been associated with slow HIV-1 progression
[33,34]. This gene was thus analyzed by PCR, and
patient 169 was determined to have two wild type CCR5
alleles. The most consistent finding in different cohorts
of ES has been the over-representation of protective
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Figure 2 Phylogenetic Analysis: An alignment of the variable regions of env is shown for replication-competent isolates obtained
from Patient 169 and his spouse. Numbering is from the first amino acid in gp120. (A). The sequences are also compared to other Clade B
sequences(B). Phylogenies were estimated by using a classical approach, functioning under a maximum-likelihood (ML) optimality criterion.

HLA alleles such as HLA-B*27 and B*57 [9-14,35,36]. In
addition, genome wide association studies have docu-
mented a protective single nucleotide polymorphism

(SNP) in the HLA-C promoter [35,36]. Furthermore,
HLA-Bw4-80Ile alleles have been shown to be associated
with slowly progressive disease when inherited in
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conjunction with the KIR3DS1 and/or KIR3DL1 natural
killer cell receptor alleles [37,38]. Patient 169 does not
have an HLA-Bw4-80Ile allele or any other HLA allele
that has been previously associated with attenuated
HIV-1 disease. He also does not have the protective C/
C HLA-C SNP (Table 2).

CD4" T cells from Patient 169 are fully susceptible to
infection

Some studies [39,40] have suggested that ES CD4" T cells
that have been activated ex vivo are resistant to viral infec-
tion while others have shown that unstimulated CD4" T
cells from these patients are fully susceptible to viral entry
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Table 2 Analysis of genetic factors associated with
protection in HIV-1 infection

Genetic factors

Factor Genotype
CCR5 wild type
HLA-A *3001, *6801
HLA-B *4201
HLA-C *0602, *1701
HLA C SNP (rs9264942) T/C

and productive infection [41,42]. In order to determine
whether CD4" T cells from patient 169 were resistant to
infection, we purified primary CD4" T cells from 169 and
five HIV-1 seronegative donors and infected them directly
ex vivo by spinoculation with CCR5 (Ba-L) and CXCR4
(NL4-3) tropic isolates as previously described. As shown
in Figure 4, CD4" T cells from 169 were as susceptible to
infection with both types of isolates as were the CD4" T
cells from the seronegative donors. In order to determine
if spinoculation was masking subtle differences in the sus-
ceptibility to infection, we infected CD4" T cells with
CXCR4-tropic virus without spinoculation [41] and again
found that CD4" T cells from patient 169 were fully sus-
ceptible to infection. We also looked at susceptibility to
infection with serial dilutions of both lab strains and a
pseudotyped virus containing dual tropic envelope that
was amplified from the patient in 1999. In all cases, patient
169’s cells were found to be as susceptible to infection as
cells from HIV-negative donors.

Patient 169 has low titers of HIV-specific neutralizing
antibodies

To determine whether a robust humoral response was
playing a role in the control of viral replication, we com-
pared reciprocal IC50 titers of neutralizing antibodies
(Nab) in patient 169 to titers in viremic patients and ES
as previously described [43]. Patient 169 had the lowest
titers of Nab to laboratory strain SF162 Env as shown in
Figure 5. To determine how well the patient neutralized
autologous virus, we measured titers of Nab to pseudo-
typed virus expressing Env cloned from the 1999 and
2010 replication-competent isolates. His reciprocal IC 50
titers of Nab to autologous Env from 1999 was 1:195
which is comparable to the titers seen in ES, but lower
than the titers seen in viremic patients [43]. In contrast,
his Nab titer to contemporaneous Env was >1: 4 (Figure
5B). Thus it appears that neutralizing antibodies were not
the cause of control of viral replication in this patient.

Characteristics of the HIV-specific CD8" T cell response in
Patient 169

Many ES have been found to possess potent HIV-speci-
fic CD8" T cell activity [16-19]. We thus looked at CD8
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* T cell responses in Patient 169. An ELISPOT assay
was performed following stimulation with Gag and Nef
peptides. As shown in Figure 6, two independent non-
overlapping epitopes were targeted in Nef, and and six
such epitopes were targeted in Gag. Escape mutations in
certain Gag epitopes have been associated with viral
attenuation [44-46], and we therefore examined
sequences in targeted epitopes to look for signs of viro-
logic escape. A comparison of the sequences from the
1999 and 2010 isolates showed an R18G substitution in
a Nef epitope and a G17W substitution in a Gag epitope
in isolates 1A and 1B. Both substitutions were absent in
isolate 2B, and thus even if these mutations caused a
reduction in viral fitness in some isolates, escape muta-
tions would not explain virologic control in this patient.

To determine whether CD8" T cells were involved in
the direct control of viral replication, we attempted to
culture autologous virus from Patient 169 with and
without the depletion of CD8" T cells. As shown in Fig-
ure 7A, virus culture was successful only when CD8" T
cells were depleted, but the same phenomenon was seen
in chronic progressors who had substantial levels of vir-
emia and in patients on suppressive HAART regimens.
There was no viral outgrowth from ES CD4" T cells
consistent with the low frequency of infected CD4" T
cells in these patients [3]. We next compared the
respective abilities of CD8" T cells from Patient 169 and
ES in HIV-1 inhibition assays in which pseudotyped
virus was used to superinfect autologous CD4" T cells.
As shown in Figure 7B, while primary CD8" T cells
from most ES caused a significant reduction in virus
replication, CD8" T cells from Patient 169 had very little
effect in this assay.

Discussion

We present here a patient who has controlled HIV-1
replication for more than nine years after the cessation
of HAART. While some studies have reported that
initiation of HAART during primary infection can lead
to the control of viral replication once therapy is discon-
tinued, most of these patients eventually experienced a
rebound in viremia [21,22]. To our knowledge, the nine
years of control seen in patient 169 is the longest period
of control reported in a patient who was treated in pri-
mary infection and who subsequently underwent treat-
ment interruption. We extend prior studies by
performing full genome sequence analysis and phenoty-
pic studies of viral isolates obtained at the time of infec-
tion and eight years after the cessation of HAART. We
show that Patient 169 was infected by virus from a
patient with AIDS, and we demonstrate that the viral
isolates from patient 169 are dual-tropic and replica-
tion-competent, which makes it unlikely that an attenu-
ated virus was transmitted. It should be noted that
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Figure 6 CD8+ T cell epitope analysis. Epitopes in Nef (A) and Gag (B) targeted by CD8+ T cells as determined by an IFN-g ELISPOT assay
using overlapping 15 mers. Open boxes represent actual peptides targeted in the assay whereas the shaded boxes represent predicted optimal
HLA-B*42 restricted epiotpes which were not targeted.

infection with dual-tropic virus is associated with more
rapid progression than infection with CCR5-tropic virus
[47,48]. Thus the long term control seen in this patient
is even more remarkable.

We hypothesized that the patient’s virus may have
developed drug resistance mutations or escape muta-
tions that led to viral attenuation later in his disease
course. However sequence analysis did not reveal any
drug resistance mutations, and potential escape muta-
tions in Gag and Nef were seen in only some isolates.
While it is possible that escape mutations in other viral
genes caused a reduction in viral fitness, the fact that
isolates obtained from 2010 replicated as well in vitro as
viral isolates present during primary infection makes
this unlikely.

We considered the possibility that this patient was
destined to become a natural ES. However several
observations suggest that this is not the case. He had a
viral load of > 750,000 copies/mL and was very sympto-
matic during seroconversion. Studies have shown that
patients with severe acute retroviral syndrome have a
more rapid rate of disease progression [49]. In contrast,
natural ES tend to have limited symptoms and low viral

loads during primary infection [50-52]. ES also invari-
ably have extremely low frequencies of latently infected
CD4" T cells [3] whereas Patient 169 had a very large
number of HIV-1 infected CD4" T cells during primary
infection [27], and his current frequency of latently
infected cells is currently similar to that seen in patients
with progressive disease on HAART. Finally, he did not
have any of the HLA alleles that are overrepresented
in ES.

We show here that CD4" T cells from Patient 169 are
fully susceptible to infection and that he had very low
titers of neutralizing antibodies to heterologous and
autologous virus. Interestingly, depletion of CD8" T
cells resulted in efficient outgrowth of virus from CD4"
T cells. While this suggests that CD8" T cells are play-
ing a role in the control of viral replication, it is unlikely
to be the only mechanism involved as CD8" T cells
from patients with progressive disease were also effective
at preventing outgrowth of autologous virus. In contrast,
CDS8" T cells from Patient 169 were not as effective as
those from ES at inhibiting replication of recombinant
virus carrying GFP. Thus it appears that this patient is
controlling replication of pathogenic dual-tropic virus by



Salgado et al. Retrovirology 2011, 8:97 Page 10 of 14
http://www.retrovirology.com/content/8/1/97

e N
A)
1000 - B PBMC
BcCD8 -
g 100 o
(o))
c
Rl
<
N
a. 10 -
1 |J [ — | — e | [ — |
Viremics HAART ES Pt169
B)
B CD4
18 -
CD4+CD8
16 - U
14 -
c
S 12
=
8 10 -
S 8 o
=
o 6 -1
o~
4 -
2 4
0 A
HIV- Donors ES Pt169
Figure 7 CD8+ T cell functional analysis. The effect of CD8+ T cell depletion on autologous virus outgrowth is shown by a comparison of
virus replication in activated unfractionated PBMC or activated PBMC from which CD8+ T cells were depleted (A). The ability of CD8+ T cells to
inhibit replication of GFP expression virus in activated autologous CD4+ T cells is shown. Open bars were below the limit of the detection. (B)
by comparing the percentage of infected CD4+ T cells (GFP positive) in the absence and presence of CD8+ T cells.

a mechanism that is distinct from the CD8" T cell over a much larger number of infected CD4+ T cells in
mediated control that is seen in many ES. This Patient 169.

unknown mechanism may be similar to the mechanisms

present in ES who do not possess protective HLA alleles  Conclusions

or potent HIV-specific CD8" T cell responses [9,13,53], The data presented here suggest that early treatment in
but it is still unique in that control is being maintained  some patients infected with fully pathogenic virus can
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lead to control of viral replication for extended periods
of time. Understanding the mechanisms involved in this
control may lead to vaccine development and effective
immunotherapy in patients with progressive disease.

Availability of supporting data
The data sets supporting the results of this article are

available in the Gen Bank repository (accession numbers
JN599164 and JN599165)

Methods

Virus Isolation and Sequence Analysis

Culture of replication-competent virus from CD4" T cells
was performed as previously described [3]. Replication-
competent virus from 1999 was obtained by spinoculating
CD4" T cells from an uninfected donor with the patient’s
plasma. Full genome sequence analysis of viral isolates
was performed as previously described [3]. Classical, max-
imum likelihood and Bayesian phylogenetic analysis were
performed as described previously [7].

Antiretroviral drug testing

100 pl of patient serum were treated with 300 pl of cold
acetonitrile, stored at -20°C for 20 minutes and subse-
quently centrifuged at 12,000 x rpm for 5 minutes. Spe-
cimen supernatants were evaporated to dryness and
reconstituted with 100 pl water. 10 ul of each treated
sample were injected onto the liquid chromatography
system equipped with Transcend pumps (Thermo Fisher
Scientific) for analytical separation. The chromato-
graphic run began with 60 seconds of 5% methanol con-
taining 10 mM ammonium acetate (mobile phase B),
followed by a 10 minute ramp to 95% B. Analytes were
eluted from a Hypersil Gold 50 x 2.1 mm; 3 um particle
size HPLC column (ThermoFisher Scientific) during this
gradient and the column was washed for 60 seconds
with 2:2:1 acetonitrile:isopropanol:acetone and re-equili-
brated with 5% mobile phase B for 180 seconds. Ana-
lytes were detected over a 14.9 minute run using the
Exactive Orbitrap mass analyzer (Thermo Fisher Scienti-
fic) with a heated electrospray ionization (HESI) source.
The source parameters were as follows: sheath gas: 40,
auxillary gas: 10, sweep gas: 0, spray voltage: 3.5 kV,
capillary temperature: 270 °C, capillary voltage: 60 V,
tube lens voltage: 120 V, skimmer voltage: 15 V, heater
temperature: 350 °C. The mass spectrometer method
included two positive-mode scan events: one full scan
event with ultra-high resolution (100000 @ 1 Hz) and
one in-source collision-induced dissociation (CID) event
with enhanced resolution (25000 @ 4 Hz) and collision
energy of 45 eV. Both scan events were programmed for
100 ms maximum inject time and balanced ACG tar-
gets. The analytical method was found to have a limit of
detection of <20 ng/ml for amprenavir, atazanavir,
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darunavir, efavirenz, emtricitabine, indinavir, lamivudine,
lopinavir, nelfinavir, nevirapine, ritonavir, saquinavir,
tenofovir and tipranavir. Positive identification was
determined by exact mass detection at 5 ppm discrimi-
nation, analyte retention time and identification of mass
transitions when possible.

Viral Tropism assay

RFP expressing recombinant pseudotype virus was made
with env genes amplified from 1999 and 2010 isolates.
These viruses were used to infect GHOST cell lines
transfected with CCR5 and/or CXCR4 (obtained from
the NIH AIDS Research and Reference Program) and
the percentage of RFP positive cells was determined in
triplicates on day three. GHOST cells express low levels
of endogenous CXCR4 and therefore infection of cells
transfected with CCR5 alone was performed in the pre-
sence of the CXCR4 antagonist AMD 3100 at a dose of
1 uM (obtained from the NIH AIDS Research and
Reference Program).

Viral Fitness Assay

Viral fitness was analyzed as described previously [3].
PBMCs from healthy donors were activated for two days
with IL-2 and PHA. CD4" T cells were isolated (MACS,
CD4" T cell isolation Kit) and infected by spinoculation
[54] (1200 x g for 2 hours) with equal quantities (200
ng/mL) of p24 from primary patient isolates, or with
Ba-L or IIIB laboratory HIV-1 strains as controls. Super-
natant samples were taken over the course of 7 days.
Viral replication was quantified using p24 ELISA (Perkin
Elmer).

Genetic Polymorphisms

HLA-A, B, and C allele identification was performed at
the Johns Hopkins University Immunonogenetics
laboratory. CCR5 was amplified from genomic DNA
using gene specific primers. The presence or absence of
the CCR5 A32 mutation was determined by relative size
of the resulting PCR fragment. HLA-C single nucleotide
polymorphism genotyping (rs9264942) was performed
utilizing the Applied Biosystems 7300 real-time PCR
System allelic discrimination assay, following the manu-
facturer’s guidelines. Primers and probes were developed
by Custom TagMan SNP Genotyping assays (ABI).
Determination of the HLA-B Bw4-80Ile allele was per-
formed using the Olerup SSP 104.101 KIR Genotyping
12 Lot71E and 104.201 KIR ligand genotyping Lot85E
kits, following the manufacturer’s guidelines.

CD4"* T cell susceptibility assay

CD4" T cells from the patient and five healthy donors
were purified by negative selection using Miltenyi beads
and were infected directly ex vivo. Spinoculation [55]
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was performed with pseudotyped CCR5 and CXCR4 tro-
pic viruses and GFP expression was measured in tripli-
cates as previously described [41,42]. Infection without
spinoculation was also performed with CXCR4 tropic
virus.

Neutralization assay

Neutralization assays were performed as described pre-
viously [43]. Briefly, recombinant pseudoviruses contain-
ing SF162, or Patient 169 env were titrated on TZM b1
cells to determine a linear range of infection for each
pseudovirus. Infections were then performed in dupli-
cate with a concentration of virus within this linear
range, along with serial dilutions of patient plasma that
had been heat inactivated at 56°C for 60 min. All assays
were performed in the presence of 10% total human
plasma. Each virus was pre-incubated with 5% test
plasma and with four-fold serial dilutions of test plasma
in normal human plasma. To determine neutralization,
each test plasma well was compared to wells containing
an equal concentration of normal human plasma.

CD8" T cell assays

Reactive CTL epitopes were defined by IFN-y Elispot. As
previously described [55], whole blood was taken from
each patient and PBMCs were isolated by Ficoll gradient
centrifugation. PBMCs were aliquoted into each well of
96 well MultiScreen (Millipore) plates with conjugated
IFN-y antibody. Cells were activated with overlapping
peptides spanning the entire amino acid sequence of B
clade consensus gag and nef at a concentration of 5 pg/
ml (obtained from the NIH AIDS Research and Refer-
ence Program). PBMCs were cultured overnight, and
subsequently analyzed. Quantification of spot forming
units (SFU) was performed in a blinded fashion by Zell-
net Consulting (Fort Lee, NJ). Positive responses were
defined as greater than 50 SFU per million PBMCs.
Negative controls (wells with medium alone) routinely
had less than 15 SFU per million PBMC.

The effect of CD8+ T cells on autologous virus out-
growth was determined by measuring p24 values on
unfractionated PBMC and PBMC depleted of CD8+ T
cells. The cells were stimulated for 48 hours with PHA at
1 pg/ml and culture supernatant was obtained on day 10.

The cytolytic T cell effect was determined by a CD8
suppression assay. PBMCs were isolated from patients,
and CD8" T cells were positively selected using Miltenyi
magnetic beads (MACS, CD8" T cell Isolation kit). CD8
T cells were depleted of CD16" cells (Invitrogen,
Dynal Beads) to remove contaminating NK cells. CD4"
T cells were isolated by negative selection using Miltenyi
magnetic beads. Purity of depletion was analyzed by
flow cytometry. CD4" T cells were infected by spinocu-
lation at 1200 x g for two hours with replication
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competent NL4-3 virus, in which GFP is engineered
into nef. Flow cytometry was performed five days after
infection to assess the percentage of GFP positive cells.
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