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Abstract

Background: Both Aicardi-Goutières syndrome, a Mendelian mimic of congenital infection, and the autoimmune
disease systemic lupus erythematosus can result from mutations in the gene encoding the enzyme Trex1. In mice,
the absence of Trex1 causes severe myocarditis. The enzyme is thought to degrade endogenous retroelements,
thus linking them to autoimmune disease. However, inhibition of reverse transcription by the inhibitor zidovudine
(AZT) did not ameliorate the disease, weakening the link to retroelements.

Findings: Here, we show that two other FDA-approved drugs that inhibit reverse transcriptase can ameliorate the
myocarditis in Trex1-null mouse.

Conclusions: The result suggests that retroelements contribute to this hereditary form of autoimmunity, and that
treatment with retroelement inhibitors might ameliorate Aicardi-Goutières syndrome in humans.
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Findings
Aicardi-Goutières syndrome (AGS) [1] is a genetically-
determined encephalopathy with remarkable phenotypic
overlap with the sequelae of congenital infection. Sys-
temic lupus erythematosus (SLE) is an autoimmune dis-
ease characterized by the production of autoantibodies
that target nucleic acids and their associated proteins.
Like AGS [2], SLE is associated with a perturbation of
type I interferon metabolism [3]. Both AGS [4], and a
cutaneous subtype of SLE called familial chilblain lupus
[5,6], can result from mutations in TREX1. Furthermore,
mutations in TREX1 represent the single most common
cause of monogenic SLE identified to date [7].
Trex1 is a ubiquitous DNA 3’ exonuclease [8] that can

degrade retroelements (retroviruses and retrotranspo-
sons) [9-11]. In Trex1-deficient mice, single-stranded
DNA [12] derived from retroelement cDNA [9] accumu-
lates in the cytoplasm of cells in the heart and is
thought to trigger the sterile inflammatory myocarditis
[13]. On the basis that unrestricted retroelements may
cause, or at least contribute to, the disease [9], it was
reasoned that it ought to be possible to treat or prevent

disease with anti-retroviral agents. However, treatment
of the mice with the reverse transcription inhibitor azi-
dothymidine (AZT) did not rescue the mice from lethal-
ity [9]. It was argued that the absence of Trex1 may
unleash hundreds of diverse reverse transcriptases
encoded by the mouse genome, some of them being
AZT resistant [9]. As a single agent, AZT also may
leave some retroelements out of its range of activity.
Finally, although it leads to premature termination of
cDNA synthesis, AZT has only little effect on the synth-
esis of short reverse transcription intermediates, includ-
ing those of spliced retroelement products [14,15]. The
interrupted or slowed reverse transcription may create
persistent exposure to cytoplasmic DNA products that
elicit an antiviral innate immune response [16] coordi-
nated by activation of type I IFNs (the so-called IFN-sti-
mulatory DNA response [17]). Along this line,
raltegravir, a drug that inhibits retroviral integrase and
thus increases the concentration of cDNA in the cell,
also exacerbates autoimmune disease [10].
In Trex1 deficient mice, the inflammation of the heart

muscle takes an aggressive course, with mice starting to
die after 4 weeks of age (Figure 1). We sought to pre-
vent the autoimmune disease with anti-retroviral drugs
other than AZT. Keeping in mind that a single drug
may leave some retroelements out of its range of
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activity, we decided to use a combination of drugs that
inhibit reverse transcriptase. Because nucleoside reverse
transcription inhibitors also inhibit human LINE-1 retro-
transposition [18], we assumed that a Truvada/Viramune
combination (both FDA-approved drugs) would inhibit
both classes of retroelements–retroviruses and retrotran-
sposons. Truvada is a fixed-dose combination tablet con-
taining emtricitabine and tenofovir disoproxil fumarate
[19]. Emtricitabine is a synthetic nucleoside analog of
cytidine. Tenofovir disoproxil fumarate is converted in
vivo to tenofovir, an acyclic nucleoside phosphonate
(nucleotide) analog of adenosine 5’-monophosphate. Vir-
amune (nevirapine) [20] blocks the reproduction of retro-
virus earlier in its cycle than Truvada. It binds directly to
reverse transcriptase and blocks the RNA-dependent and
DNA-dependent DNA polymerase activities by disrupt-
ing the enzyme’s catalytic site. Viramune does not com-
pete with template or nucleoside triphosphates, or inhibit
the cellular DNA polymerases tested so far [21].

We first determined that the combination of Truvada
and Viramune is effective against MLV. Using flow cyto-
metry, we titrated the drug concentration for its ability
to inhibit expression of green fluorescence protein
encoded by MLV provirus upon infection; the EC50 was
well below 100 nM (Figure 1A). When fed to Trex1-
deficient mice at a dose comparable to that given to
patients with HIV, the drugs substantially reduced mor-
tality (Figure 1B). On sections of the heart from 9-
month old treated mice, there were some mild patchy
inflammatory infiltrates with little myocyte injury; but
the difference to the marked inflammatory infiltrates
with myocyte necrosis and dropout in 7-month old
non-treated mice (at 9 months all untreated mice were
dead) was striking (Figure 1C).
Almost half of the human genome consists of retroele-

ments, many of them active. There are several ways that
retroelements might trigger an autoimmune response,
including (i) sensing of retroelement RNA and cDNA,

Figure 1 Effect of reverse transcriptase inhibitors on survival of Trex1-deficient mice. A) Inhibition of MLV cDNA synthesis by Truvada/
Viramune. Flow cytometry graphs displaying GFP intensity generated by provirus: y-axis, cell number; x-axis, fluorescence intensity on a
logarithmic scale. An MLV-based vector encoding GFP was added to NIH/3T3 cell cultures with 0, 100 nM, or 1 μM. B) Survival curves showing
the effect of Truvada/Viramune (+ drug; magenta circles) on Trex1-deficient mice [13] obtained from D. Stetson [9]. The drugs were given from
conception via the drinking water as a solution of 3 × 10-4 M nevirapine, 1.6 × 10-4 M emtricitabine and 9.4 × 10-5 M tenofovir. Log rank test for
the drug effect, p = 0.000014. C) Hematoxylin-eosin stained sections of the left heart ventricle of treated (+ drug) and non-treated (- drug) mice
killed at 9 and 7 months of age, respectively. Sections from three mice were examined in each category.
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(ii) generation of mimetopes through error-prone
reverse transcription of mRNA encoding retroelement
proteins, and (iii) insertional mutagenesis. We showed
here that a hereditary autoimmune inflammation in the
mouse that is likely caused by accumulation of retroele-
ment cDNA can be treated with reverse transcriptase
inhibitors. Other autoimmune diseases might be amen-
able to different interventions of retroelement activities.

Abbreviations
AZT: zidovudine; AGS: Aicardi-Goutières syndrome; IFN: interferon; MLV:
murine leukemia virus; SLE: systemic lupus erythematosus.
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