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HIV-1 predisposed to acquiring resistance to
maraviroc (MVC) and other CCR5 antagonists

in vitro has an inherent, low-level ability to utilize
MVC-bound CCR5 for entry
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Abstract

including MVC, vicriviroc and AD101.

resistance to CCR5 antagonists.

of virological failure on MVC.

Background: Maraviroc (MVC) and other CCR5 antagonists are HIV-1 entry inhibitors that bind to- and alter the
conformation of CCR5, such that CCR5 is no longer recognized by the viral gp120 envelope (Env) glycoproteins.
Resistance to CCR5 antagonists results from HIV-1 Env acquiring the ability to utilize the drug-bound conformation
of CCR5. Selecting for HIV-1 resistance to CCR5-antagonists in vitro is relatively difficult. However, the CCR5-using
CC1/85 strain appears to be uniquely predisposed to acquiring resistance to several CCR5 antagonists in vitro

Findings: Here, we show that Env derived from the parental CC1/85 strain is inherently capable of a low affinity
interaction with MVC-bound CCR5. However, this phenotype was only revealed in 293-Affinofile cells and NP2-CD4/
CCR5 cells that express very high levels of CCR5, and was masked in TZM-bl, JC53 and U87-CD4/CCR5 cells as well
as PBMC, which express comparatively lower levels of CCR5 and which are more commonly used to detect

Conclusions: Env derived from the CC1/85 strain of HIV-1 is inherently capable of a low-affinity interaction with
MVC-bound CCR5, which helps explain the relative ease in which CC1/85 can acquire resistance to CCR5
antagonists in vitro. The detection of similar phenotypes in patients may identify those who could be at higher risk

Introduction

Human immunodeficiency virus type 1 (HIV-1) entry is
initiated by the interaction of the viral gp120 envelope
(Env) glycoproteins with cellular CD4 and a coreceptor,
either CCR5 or CXCR4 [1]. Maraviroc (MVC) and other
CCR5-antagonists such as vicriviroc (VVC, also known as
SCH-D), AD101 (a preclinical precursor of VVC), and
aplaviroc (APL) are HIV-1 entry inhibitors that bind to-
and alter the conformation of CCR5, such that CCR5 is
no longer recognized by gp120 [1]. Thus, CCR5-antago-
nists are allosteric inhibitors of HIV-1 entry [2-4]. MVC
has been approved for use in treatment-experienced and
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antiretroviral therapy (ART)-naive HIV-1-infected adults
who have no evidence of CXCR4-using virus in plasma
[5]. As with other antiretrovirals, treatment with CCR5-
antagonists can result in drug resistance leading to viro-
logical rebound. Although virological failure can arise
from the emergence of CXCR4-using HIV-1 strains that
were present at very low levels prior to initiation of a
CCR5-antagonist [6], genuine resistance to CCR5-
antagonists results from adaptive alterations in gp120
enabling recognition of the drug-bound conformation of
CCR5 [7-15].

Being allosteric inhibitors of virus entry, resistance to
CCR5-antagonists is evident by plateaus in virus inhibi-
tion curves below 100% inhibition [16]. The magnitude
of the reduction in plateau height can be quantified as
the maximal percent inhibition (MPI), which reflects the
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ability of HIV-1 gp120 to recognize the drug bound con-
formation of CCR5. For example, MPIs can be high
(> 80%) [15] signifying a relatively inefficient ability of
gp120 to utilize the drug-bound conformation of CCR5,
or low (< 20%) [13] signifying relatively efficient utiliza-
tion of drug-bound CCR5. However, MPIs can be influ-
enced by differences in the level of CCR5 expression on
target cell populations [9,11,12]. Generally, in cell lines,
there is an inverse relationship between the MPI achieved
by a given virus with resistance to a CCR5-antagonist,
and the level of CCR5 expression. Clinically, MPIs of
HIV-1 have been reported using the PhenoSense™ Entry
assay [16], which uses the U87-CD4/CCR5 cell line.
These cells express comparatively lower levels of CCR5
than other commonly used indicator cells such as TZM-
bl, JC53 and NP2-CD4/CCR5 cells [12] and therefore, are
likely to provide a relatively conservative measure of
resistance to CCR5-antagonists. Consistent with this
view, results from the clinical trials of MVC in treat-
ment-experienced subjects (MOTIVATE) showed that
most MVC-resistant viruses in subjects failing therapy
had relatively high MPIs within the range of 80-95%,
when tested using the PhenoSense™ Entry assay ([15]
and references within).

The in vitro generation and characterization of HIV-1
variants with resistance to antiretroviral drugs is vital for
elucidating resistance mechanisms. However, selecting for
HIV-1 resistance to CCR5-antagonists is relatively difficult
[16]. One particular HIV-1 strain, CC1/85 [17], has been
used in a number of independent studies for the in vitro
generation of HIV-1 resistance to different CCR5-antago-
nists including MVC, VVC and AD101 (for example,
[16,18-20]). In fact, the published in vitro CCR5-antagonist
resistance studies are heavily biased towards the character-
ization of resistant variants derived from CC1/85. The
CC1/85 strain of HIV-1 may therefore be predisposed to
acquiring resistance to CCR5- antagonists in vitro. Here,
we sought to elucidate the phenotypic features of CC1/85
that underlie this predisposition. A better understanding
of these mechanisms has the potential to identify subjects
with increased risk of developing resistance to MVC and
other CCR5-antagonists.

Methods

MVC-Sens and MVC-Res plasmids contain the env gene
of CC1/85 virus and a derivative with MVC-resistance,
respectively, cloned into the pSVIII-Env expression
vector [15,16]. Single-round luciferase reporter viruses
pseudotyped with MVC-Senv or MVC-Res Envs, or with
the CCR5-using (R5) YU2, JRCSF, NB6-C3 or NB8-C4
Envs as controls were produced as described previously
[15]. The characterization and maintenance of TZM-bl,
JC53, U87-CD4/CCR5, NP2-CD4/CCR5 and the dually
CD4- and CCR5-inducible 293-Affinofile cells, and the
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preparation of peripheral blood mononuclear cells
(PBMC) has been described previously [15,21]. Maraviroc
resistance assays were conducted using Env-pseudotyped
luciferase reporter viruses, or replication competent
viruses carrying MVC-Res or MVC-Sens env genes, as
described previously [15,16]. For experiments using 293-
Affinofile cells, populations expressing CD4 together
with different levels of CCR5 ranging from relatively low
to high were generated by inducing the cells with 2.5 or
5 ng per ml of minocycline and either 15.6, 31.2, 62.5,
125, 250, 500, 1000 or 2000 nM of ponasterone A, as
described previously [21]. Alterations in drug sensitivity
were assessed by reductions in the MPI as described
previously [15,16].

Results

As part of our ongoing studies of HIV-1 resistance to
MVC and other CCR5-antagonists [15], in particular the
influence of cell-surface CCR5 levels on the ability of resis-
tant viruses to recognize the drug-bound conformation of
CCR5, we first conducted MVC resistance assays for
MVC-Res and MVC-Sens Envs in four different cell lines
that express varying levels of CCR5, as well as PBMC. The
cell lines included U87-CD4/CCR5 cells which express
comparatively low-levels of CCR5, TZM-bl and JC53 cells
which express comparatively moderate levels of CCR5,
and NP2-CD4/CCR5 cells which express comparatively
high levels of CCR5 (Figure 1A). The MPIs for MVC-Res
Env ranged from approximately 55% in NP2-CD4/CCR5
cells to as high as 97% in U87-CD4/CCR5 cells (Figure
1B). Therefore, consistent with previous studies of VVC-
and APL-resistant HIV-1 [11,12], we observed a close
inverse relationship between CCR5 expression levels on
cell lines and the magnitude of the MPI for MVC-Res
Env. However, the most pronounced phenotypic resistance
to MVC was in PBMC (Figure 2), which express much
lower levels of CCR5, typically in the order of 5,000 to
12,000 molecules of CCR5 per CD4+/CCR5+ T-lympho-
cyte depending on the donor [22]. These results are con-
sistent with those of previous studies, which suggest that
distinct forms of CCR5 may exist on primary cells and cell
lines that have varying affinities for CCR5 antagonists [23].
Unexpectedly, while virus pseudotyped with MVC-Sens
Env was completely inhibited by MVC in U87-CD4/
CCR5, TZM-bl and JC53 cells (Figure 1B) and PBMC
(Figure 2A), this virus was consistently incompletely inhib-
ited in NP2-CD4/CCR5 cells, plateauing at approximately
96% inhibition at the highest concentrations of MVC
(Figure 1B). Interestingly, incomplete inhibition of Env
derived from CC1/85 to MVC and another CCR5 antago-
nist, SCH-C has also been noted in two previous studies
using different experimental approaches [16,24]. In con-
trast to the incomplete inhibition of virus pseudotyped
with MVC-Sens Env in NP2-CD4/CCR5 cells, viruses
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Figure 1 Profiles of MVC resistance in cell lines expressing different levels of CCR5. (A) U87-CD4/CCRS5, JC53. TZM-bl and NP2-CD4/CCR5
cells were stained for cell-surface CCR5 expression, which was quantified by gFACS as described previously [21]. (B) Luciferase reporter viruses
pseudotyped with MVC-Sens or MVC-Res Envs were used to infect the different cell lines in the presence of increasing concentrations of MVC as
described in the Methods, and virus inhibition curves were generated and used to calculate the MPI as described previously [15]. The CCR5 cell
surface staining data is representative of 3 independent experiments. The virus inhibition data are means of triplicates, and are derived from 3
independent experiments. Error bars represent standard error. MCF, mean cell fluorescence; MPC, molecules per cell; MPI, maximal percent
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pseudotyped with control YU2, JRCSE, NB6-C3 and NB8-
C4 Envs were completely inhibited by MVC in these cells
with MPIs consistently at 100% (data not shown).
Together, these results show that MVC-Sens Env main-
tains a MVC-sensitive phenotype in PBMC and cell lines
expressing relatively low or moderate CCR5 levels, includ-
ing U87-CD4/CCR5 cells that are used in the Pheno-
Sense™ Entry assay, but displays a low-level of basal
resistance to MVC in NP2-CD4/CCR5 cells that express
considerably higher levels of CCR5.

To more precisely determine the relationship between
CCR5 expression levels and the detection of this pheno-
type of MVC-Sens Env, we next performed MVC inhibi-
tion assays in 293-Affinofile cells where we could tightly
control the induction of CCR5 in a uniform cell type. 293-
Affinofile cells were induced to express CD4 together with
eight different levels of CCR5 (ranging from approximately
8,000 to 167,000 molecules of CCR5 per cell) (Figure 3B)
and subjected to entry assays with luciferase reporter
viruses pseudotyped with MVC-Sens or MVC-Res Envs in
the presence or absence of 10 uM MVC (Figure 3A). In
the absence of drug, we observed a similar pattern of virus
entry levels between MVC-Sens and MVC-Res Envs in all
cell populations, indicating a similar CCR5-dependence

profile. In the presence of drug, as expected [15], MVC-
Res Env entered cells efficiently, particularly when cells
were expressing high levels of CCR5. MVC-Sens Env
entered cells expressing relatively high levels of CCR5 in
the presence of drug, albeit less efficiently than MVC-Res
Env, but was completely inhibited by MVC in cells expres-
sing comparatively moderate and low-levels of CCR5. In
contrast, luciferase reporter viruses pseudotyped with con-
trol YU2, JRCSF, NB6-C3 and NB8-C4 Envs were comple-
tely inhibited by MVC in 293-Affinofile cells expressing
the highest levels of CCR5 (Figure 3C). Together, these
results confirm the observations in NP2-CD4/CCR5 cells
(Figure 1B) that MVC-Sens Env displays a low-level
MVC-resistant phenotype that is revealed only when cells
are expressing high levels of CCR5, but masked when cells
are expressing moderate or relatively low-levels of CCR5.
To determine whether this apparent low-level basal
resistance could be due to an inherent ability of MVC-
Sens Env to recognize drug-modified CCR5, we next pro-
duced virus inhibition curves for MVC-Sens and MVC-
Res Envs in differentially induced 293-Affinofile cell popu-
lations (Figure 4). MVC-Res Env achieved plateaus of
incomplete inhibition by MVC in all cell populations, with
MPIs ranging from approximately 20 to 40% in a CCR5
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Figure 2 Profiles of MVC resistance in primary peripheral blood mononuclear cells. Luciferase reporter viruses pseudotyped with MVC-
Sens or MVC-Res Envs were used to infect PHA-activated, IL-2-stimulated PBMC in the presence of increasing concentrations of MVC as
described in the Methods, and virus inhibition curves were generated and used to calculate the MPI as described previously [15]. The virus
inhibition data are means of triplicates, and are derived from 3 independent experiments using cells from different donors. Error bars represent
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concentration-dependent manner. MVC-Sens Env was
completely inhibited by MVC in cells expressing low-levels
of CCR5, but achieved plateaus of incomplete inhibition in
cells expressing higher levels of CCR5, with MPIs ranging
from approximately 53 to 100% in a CCR5 concentration-
dependent manner. In contrast, viruses pseudotyped with
control YU2 and JRCSF Envs achieved plateaus of 100%
inhibition in all cell populations, despite a clear association
between the MVC ICs5, and CCR5 expression levels.
Whilst the association between the MVC IC5, for YU2
and JRCSF and CCR5 expression levels suggests that more

MVC is required to achieve complete inhibition of these
viruses as CCR5 levels are increased, the plateaus of
incomplete inhibition by MVC-Sens Env are consistent
with the interpretation that it possesses the ability to inter-
act with the drug-bound conformation of CCR5 [16].
However, the fact that this occurs only in cells expressing
high levels of CCR5 supports the interpretation that this is
a low affinity interaction [11]. Together, these results sug-
gest that MVC-Sens Env can be distinguished from other
R5 Envs by an inherent, yet relatively inefficient capability
of recognizing the MVC-bound conformation of CCR5.
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Figure 3 Profiles of MVC resistance in 293-Affinofile cells induced to express different levels of CCR5. (A) Luciferase reporter viruses
pseudotyped with MVC-Res or MVC-Sens Envs were used to infect 293-Affinofile cell populations induced to express CD4 and increasing levels
of CCR5 in the presence or absence of 10 uM MVC, and the percent infection was calculated relative to the levels of infection achieved in cells
expressing the highest levels of CCR5 without drug, as described previously [15]. (B) The CCR5 induction levels in response to increasing
concentrations of ponasterone A were quantified by gFACS as described previously [21]. (C) The inability of virus pseudotyped with MVC-Sens
Env to be completely inhibited by MVC in 293-Affinofile cells expressing the highest CCR5 levels was compared to inhibition of virus
pseudotyped with YU2, JRCSF, NB6-C3 or NB8-C4 Envs in these cells. The data shown are means of triplicates and are representative of 3
independent experiments. Error bars represent standard error.
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Figure 4 Maraviroc inhibition curves in differentially-induced 293-Affinofile cell populations. Luciferase reporter viruses pseudotyped with
MVC-Sens, MVC-Res, YU2 or JRCSF Envs were used to infect 293-Affinofile cells induced with 2.5 ng per ml of minocycline together with
increasing concentrations of ponasterone A, in the presence of increasing concentrations of MVC as described in the Methods, and virus
inhibition curves were generated as described previously [15]. The data shown are means of triplicates and are representative of 3 independent
experiments. Error bars represent standard error.
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Discussion and conclusions

Our results suggest that MVC-Sens Env, which was
derived from the CC1/85 strain of HIV-1, has an inherent
ability to recognize the MVC-modified conformation of
CCR5. These results provide a plausible explanation as to
why CC1/85, but not most other R5 HIV-1 strains,
appears to be predisposed to acquiring resistance to MVC
and other CCR5-antagonists in vitro, and why CC1/85 has
been frequently used for this purpose in a number of inde-
pendent studies [16,18-20]. The disclosure of the ability of
MVC-Sens Env, but not other R5 Envs, to recognize drug-
bound CCR5 in cell lines engineered to overexpress CCR5
distinguishes CC1/85 from other R5 viruses as being pre-
disposed to develop a genuinely resistant profile when cul-
tured in the presence of increasing concentrations of
CCR5-antagonist. However, despite this predisposition,
17 virus passages and multiple Env mutations were
required for CC1/85 to acquire resistance to MVC, com-
pared to only 1 passage for this virus to acquire resistance
to 3TC [16], suggesting that even CC1/85 has a relatively
high genetic barrier to acquiring resistance to CCR5-
antagonists.

The results of this study suggest that a similar baseline
ability of HIV-1 to interact with drug-modified CCR5 may
exist in certain subjects prior to commencing MVC or
other CCR5-antagonists. To this end, in a longitudinal
study of 21 ART-naive subjects with HIV-1 subtype C, we
have identified two subjects whose viruses exhibit plateaus
of incomplete inhibition by MVC in NP2-CD4/CCR5 cells
and 293-Affinofile cells expressing high levels of CCR5, but
which are completely inhibited by MVC in cell lines
expressing lower levels of CCR5, in a strikingly similar
fashion as CC1/85 ([25], manuscript in preparation). In
addition, retrospective analysis of 11 subjects who devel-
oped APL-resistance during the CCR100136 (EPIC) clinical
trial of APL showed that baseline viruses of 8 individuals
(73%) had some evidence of partial APL-resistance prior to
therapy [8]. Further analysis of one of these baseline viruses
confirmed that the Env glycoproteins had a low-affinity
interaction with APL-bound CCR5 [12]. The clinical signif-
icance of viral variants with low-level basal recognition of
drug-bound CCR5 in the setting of MVC and other CCR5-
antagonist therapies remains to be determined by more
extensive in vivo studies. To this end, we have shown that
the likelihood of developing resistance to CCR5-antago-
nists in vivo is influenced also by the activity of the
patient’s optimized background therapy (B. Jubb and M.
Westby, unpublished data). Nonetheless, our results sug-
gest that certain individuals could be at increased risk of
drug failure on MVC and other CCR5-antagonists due to
predisposition for development of resistance.

One reason why U87-CD4/CCR5 cells are justifiably used
by the PhenoSense™ Entry assay for the measurement of
HIV-1 resistance to CCR5-antagonists is because the
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CCR5 expression levels on these cells more closely reflects
CCR5 levels on primary CD4+ T-cells [22]. However,
should future in vivo studies demonstrate that patients
with baseline HIV-1 strains possessing inherent low-level
ability to recognize drug-bound CCR5 are at greater risk of
drug failure due to a predisposition to develop resistance,
this phenotype is likely to be masked or only weakly
exposed in U87-CD4/CCR5 cells. Pre-screening candidates
for CCR5-antagonist therapy by a modified drug suscept-
ibility assay using NP2-CD4/CCR5 cells or 293-Affinofile
cells could potentially identify these individuals.
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