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Interactions between human immunodeficiency
virus (HIV)-1 Vpr expression and innate immunity
influence neurovirulence
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Abstract

Background: Viral diversity and abundance are defining properties of human immunodeficiency virus (HIV)-1’s
biology and pathogenicity. Despite the increasing availability of antiretroviral therapy, HIV-associated dementia
(HAD) continues to be a devastating consequence of HIV-1 infection of the brain although the underlying disease
mechanisms remain uncertain. Herein, molecular diversity within the HIV-1 non-structural gene, Vpr, was examined
in RNA sequences derived from brain and blood of HIV/AIDS patients with or without HIV-associated dementia
(HAD) together with the ensuing pathobiological effects.

Results: Cloned brain- and blood-derived full length vpr alleles revealed that amino acid residue 77 within the
brain-derived alleles distinguished HAD (77Q) from non-demented (ND) HIV/AIDS patients (77R) (p < 0.05) although
vpr transcripts were more frequently detected in HAD brains (p < 0.05). Full length HIV-1 clones encoding the 77R-
ND residue induced higher IFN-a, MX1 and BST-2 transcript levels in human glia relative to the 77Q-HAD encoding
virus (p < 0.05) but both viruses exhibited similar levels of gene expression and replication. Myeloid cells
transfected with 77Q-(pVpr77Q-HAD), 77R (pVpr77R-ND) or Vpr null (pVpr(-))-containing vectors showed that the
pVpr77R-ND vector induced higher levels of immune gene expression (p < 0.05) and increased neurotoxicity (p <
0.05). Vpr peptides (amino acids 70-96) containing the 77Q-HAD or 77R-ND motifs induced similar levels of
cytosolic calcium activation when exposed to human neurons. Human glia exposed to the 77R-ND peptide
activated higher transcript levels of IFN-a, MX1, PRKRA and BST-2 relative to 77Q-HAD peptide (p < 0.05). The Vpr
77R-ND peptide was also more neurotoxic in a concentration-dependent manner when exposed to human
neurons (p < 0.05). Stereotaxic implantation of full length Vpr, 77Q-HAD or 77R-ND peptides into the basal ganglia
of mice revealed that full length Vpr and the 77R-ND peptide caused greater neurobehavioral deficits and neuronal
injury compared with 77Q-HAD peptide-implanted animals (p < 0.05).

Conclusions: These observations underscored the potent neuropathogenic properties of Vpr but also indicated
viral diversity modulates innate neuroimmunity and neurodegeneration.

Background
Human immunodeficiency virus type 1 (HIV-1) infec-
tion is a global health problem for which the pathogenic
mechanisms causing disease occurrence and the
acquired immunodeficiency syndrome (AIDS) are
incompletely understood [1-5]. HIV infection of the
brain is a major component of HIV-associated disease

burden because of the brain’s comparatively privileged
sites for viral replication and persistence; moreover, the
brain is relatively inaccessible to many antiretroviral
therapies [6-8]. HIV-associated dementia (HAD) is
caused by infection of the brain with ensuing glial acti-
vation and neuronal damage and death, characterized by
motor, behavioral, and progressive cognitive dysfunction
[9]. The prevalence of HAD is approximately 5-10% in
antiretroviral therapy-exposed populations. HAD arises
due to both pathogenic host responses, mediated by
infected and activated microglia and astrocytes, as well
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as the cytotoxic properties of viral proteins in suscepti-
ble individuals [10-14]. Among the expressed viral pro-
teins, viral protein R (Vpr) has garnered increasing
attention because of its importance in terms of modulat-
ing HIV infection of macrophages, regulation of cell
cycle pathways and its pro-apoptotic actions [15-19].
Vpr causes neuronal apoptosis through disruption of
mitochondrial function [20-22].
Molecular diversity is one of HIV’s defining properties,

which has precluded the development of effective anti-
HIV vaccines but also contributes to the emergence of
both virulent and drug-resistant viral strains [23-25].
Among blood-derived HIV sequences, Vpr exhibits
molecular diversity although the mechanistic conse-
quences of these sequence differences are unclear but
appear to be associated with clinical phenotypes in some
circumstances [26-29]. Given these circumstances
including Vpr expression and potential pathogenic
actions in the brain together with its capacity to mutate
in conjunction with clinical phenotypes, it was hypothe-
sized that Vpr might show molecular diversity in the
brain, influencing its functions as a neurotoxic ligand or
a pathogenic modulator of neuroinflammation [30-32].
Herein, brain-derived HIV-1 Vpr sequences exhibited a
consistent mutation, which distinguished non-demented
(ND) from demented (HAD) HIV/AIDS patients; the
molecular motif within Vpr associated with dementia
was less neuropathogenic but also exerted blunted anti-
viral and neurotoxic host responses, providing a new
perspective into HIV-associated neurovirulence.

Results
HIV-1 vpr sequence diversity in brain and blood
Previous studies indicated both Vpr-encoding transcripts
and proteins were present in the brains of HIV-infected
persons [20,33], chiefly in cells of monocytoid lineage in
keeping with other studies of HIV neurotropism [34,35].
To extend these analyses, full length vpr sequences were
amplified from subcortical frontal white matter and
PBMCs from HAD and ND patients. Alignment of the
predicted amino acid sequences showed that there was
substantial heterogeneity throughout the brain-derived
sequences among both HAD and ND patients using the
HIV-1 JR-CSF Vpr sequence as a reference. However, at
amino acid residue 77, there was a significant sequence
dichotomy in that a glutamate (Q) predominated in
HAD clones (17/18) but at the same position, an argi-
nine (R) was chiefly present in ND clones (7/9) (Figure
1A). To verify this observation, we analyzed blood-
derived sequences from HAD and ND AIDS patients,
which showed molecular diversity at multiple positions
in both the HAD and ND groups but the amino acid
changes distinguishing HAD and ND in brain were not
evident (Figure 1B). The nature of the molecular

diversity in vpr was investigated further by examining
the diversity of synonymous mutations within clinical
groups, which did not differ within blood- or brain-
derived sequences from each group (Figure 1C). The
frequencies of non-synonymous mutations was signifi-
cantly lower within the HAD brain-derived sequences
compared with the HAD blood-derived sequences (Fig-
ure 1D). Conversely, the dN/dS rates did not differ
among blood- and brain-derived sequences (Figure 1E).
Complementing the observation of a lower non-synon-
ymous rate in HAD brain-versus blood-derived
sequences, the numbers of amino acid differences were
also significantly lower in the HAD brain-derived
sequences than in HAD blood-derived sequences (data
not shown). However, the frequency of detection of vpr
transcripts in brain was significantly higher among HAD
patients (59%) compared with ND patients (31%) (Figure
1F). In contrast, vpr transcripts were detected in all
blood-derived samples examined, regardless of clinical
diagnosis. These observations highlighted a distinct
mutation which distinguished HAD from ND brain-
derived vpr sequences together with greater rates of vpr
transcript detection in HAD brains.

Intracellular actions of Vpr 77R and 77Q
Diversity at amino acid position 77 has been previously
recognized in blood-derived samples from HIV/AIDS
although the associated effects of this mutation in the
nervous system were uncertain [27,29,36]. To determine
the actions of each amino acid at position 77 on
immune activation and the consequent effects on neuro-
nal viability, the full length vpr allele was cloned and
thereafter mutated at position 77, generating 77Q-
(pVpr77Q-HAD) or 77R (pVpr77R-ND)-containing vec-
tors. To ensure expression of the Vpr protein, Vpr
immunoreactivity was analyzed following transfection of
cultured CrFK cells with 77R- or 77Q-containing vpr
vectors, together with a non-expressing vector (pVpr(-))
and mock transfection (Figure 2). In the non-expressing
vector (pVpr(-)), the Vpr start codon “ATG” was substi-
tuted to “ACG”. As expected, Vpr immunoreactivity was
not detectable in the mock (Figure 2A) and was mini-
mally detectable in the pVpr(-)-transfected cells (Figure
2B) [37]. However, Vpr immunoreactivity was abundant
in the cytoplasm and nuclei of cells transfected with the
pVpr77R-ND (Figure 2C) and pVpr77Q-HAD (Figure
2D) vectors, confirming the expression of Vpr by 77R
and 77Q vectors.
Vpr has been reported to exert both immune and

cytotoxic effects depending on the model [20,25,38-41].
To assess the effects of each vpr-containing vector,
immune gene expression was measured in electropora-
tion-transfected myeloid (U937) cells, which revealed
that pVpr77R-ND induced TNF-a significantly more
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JR-CSF           MEQAPEDQGP QREPYNEWTL ELLEELKNEA VRHFPRIWLH SLGQYIYETY GDTWAGVEAI IRILQQLLFI HFRIGCRHSR IGIT----QR RAR---GASR S*
002-HAD-Bl       .......... ....H..... .......S.. ......V... N......A.. .........L .......... ......Q... ...I----.. ...---.... ..
004-HAD-Bl       .......... ---L--.... .......R.. ......P... .......... .......... .......... ......Q... ...I----.. ...---.... ..
005-HAD-Bl       .......... .......... .......R.. ......P... ....H..... ....T..... .........V ......Q... ...I----.. ...---.... ..
010-HAD-Bl       .......... .......... .......S.. ......V... G...H..... .......... .......... ......Q... ....----.. ...---.... ..
017-HAD-Bl       .......... ......A... .......S.. .......... .......... ....T..... .......... ......Q... ....----.. ...---.... ..
018-HAD-Bl       .......... ---L--.... .......R.. ......P... .......... .......... .K........ ......Q... ....----.. ...---.... ..
020-HAD-Bl       .......... ....H..... .......... .......... G...H..... ....T..... .......... .......... ...-----RT .T.---.... ..
021-HAD-Bl       .......... ......D.A. .......S.. ......T... N...H..... ....T....L .......... ......L... ...V----.. ...---.... ..
022-HAD-Bl       .......... .......... .......S.. .K........ G...H..... .........L ..S....... .......... ....----R. --.---.... ..
028-HAD-Bl       .......... .......... .......R.. ......P... G......... ....V..... .......... ......Q... ...I----.. ...---.... ..
030-HAD-Bl       .......... ........A. .......... ......E... G...H..... ....T..... .......... .Y........ ...IRITQ.. .T.---.... ..
031-HAD-Bl       .......... .......... D......... ......T... N...H..... .......... .......... ......Q... ...I----.. .T.---.... ..

006-ND-Bl        .......... .....T.... .......S.. .......... G......... .......... ..T....... ......Q... ...I----.. ...---.... ..
007-ND-Bl        .......... .......... .......R.. ......L... ....H..... .......... .......... .......... ...I----.. ...R--.... ..
008-ND-Bl        .......... .......... .......S.. ......S... .......... ....T..... .......... ......Q... ....----RG .T.TRN.... ..
009-ND-Bl        .......... .......... .......... .......... G...H..D.. .......... .......... .......... ....----.. ...---.... ..
011-ND-Bl        .......... .......... .......R.. ......P... .......... .......... M......... ......H... ...M----.. ...R--.... ..
012-ND-Bl        ......N... ........A. .......... ......M... G...H..... ....T....L ..S....... .......... ...S----.. ...---.... ..
013-ND-Bl        .......... ....F.A... .......S.. ......V... G...H..... ....E..... .......... ......Q... ....----R. .T.---.... ..
014-ND-Bl        .......... .......... .......R.. ......T... G...H..N.. .......... .......... ......Q... ...I----.. ...---.... ..
015-ND-Bl        .......... .......... .......R.. ......V... ....H..... ....T..... .......... ......Q... ....----.. ...---.... ..
023-ND-Bl        .......... .......... .......R.. ......G... .......... ....T..... .......... ......H... ....------ .T.---.... ..
024-ND-Bl        .....A.... .......... .......... ......V... G...H..... ....T....L .......... ......Q... ....----R. ...---.... ..

B

C D

JR-CSF           MEQAPEDQGP QREPYNEWTL ELLEELKNEA VRHFPRIWLH SLGQYIYETY GDTWAGVEAI IRILQQLLFI HFRIGCRHSR IGIT----QR RAR---GASR S*
12B-HAD-BR       .......... .......... .......... .......... G...H..... .......... .......... ......Q... ...Q-----. ...---.... ..
12B-1-HAD-Br     .......... .......... .......... .......... G...H..... .......... ........L. ......Q... ...Q-----. .T.---.... ..
12B-2-HAD-Br     .......... .......... .......... .......... G...H..... .......... ........L. ......Q... ...Q-----. .T.---.... ..
12B-3-HAD-Br     .......... .......... .......... .......... G...H..... .......... .......... .......... ....----.. ...---.... ..
18E-HAD-Br       .......... .......... .......... .......... G......... .......... .......... ......Q... ....----.. ...---.... ..
18E-5-HAD-Br     .......... .......... .......... .......... G......... .......... .......... ......Q... ....----.. ...---.... ..
18E-7-HAD-Br     .......... .......... .......... .......... G......... .......... .......... ......Q... ....----.. ...---.... ..
18E-8-HAD-Br     .......... .......... .......... .......... G......... .......... .......... ......Q... ....----.. ...---.... ..
18E-9-HAD-Br     .......... .......... .......... .......... G......... .......... .......... ......Q... ....----.. ...---.... ..
28E-HAD-Br       .......... .......... .......S.. .......... N......... .........L .......... ......Q... ..V.----.. ...---.... ..
28E-8-HAD-Br     .......... .......... .......S.. .......... N......... .....R.... .......... ......Q... ..V.----.. ...---.... ..
28E-10-HAD-Br    .......... .......... .......S.. .......... N......... .....R.... .......... ......Q... ..V.----.. ...---.... ..
28F-HAD-Br       .......... ........A. .......... .......... G...H..... ....T..... .......... ......Q... ...I----.. ...---.... ..
362-HAD-Br       .......... .......... .......... .........Q G......... .......... ..V....... ......Q... ..TL----R. ...---.... ..
476-HAD-Br       .......... .......... .......?.. .K........ G...H..... .......... .......... ......Q... ...I-----. ST.---.... ..
506-HAD-Br       .......... .......... .......... ......E... G...H..... .......... .......... ......Q... ....----R. ...---.... ..
527-HAD-Br       .......... .......... .......... ......V... G......... .......... ..V....... ......Q... ...L----R. ...---.... ..
547-HAD-Br       .......... .......... ....D..R.. ......P..L .......... ....T..... .T.......T ......Q... ....----.. ...---.... ..

13C-ND-Br        .......... .......... .......S.. ......P... ..R....... .......... .......... .......... ....----.. ...---.... ..
13C-4-ND-Br      .......... .......... .......S.. ......P... .......... ....T..... .......... .......... ....----.. ...---.... ..
26D-ND-Br        .......... ....H..... .......... .......*.. G...H...I. .......... .......... .......... ..V.----.. ...---.... ..
26D-2-ND-Br      .......... ....H..... .......... .......*.. G...H...I. .......... .......... .......... ..V.----.. ...---.... ..
26D-5-ND-Br      .......... ....H..... .......... .......*.. G...H...I. .......... .......... .......... ..V.----.. ...---.... ..
26D-7-ND-Br      .......... ....H..... .......... .......*.. G...H...I. .......... .......... .......... ..V.----.. ...---.... ..
277-ND-Br        .......... ....H..... .......T.. .......... ....H..... .......... .......... ......Q... ....----.. ...---.... ..
489-ND-Br        .......... .......... G......S.. ......P..L .......... ....T..... .......... .......... ....----.. ...---.... ..
491-ND-Br        .......... .......... .......H.. ......E... ....H....H .......... .......... ......Q... ...N----R. ...---.... ..
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Figure 1 Brain- and blood-derived Vpr sequences. (A) Brain-derived sequences exhibited diversity in both the HAD and ND groups but a
mutation at position 77 significantly distinguished the clinical groups with a Q predominating in the HAD group and an R being most evident
in the ND group. (B) Blood-derived sequences also demonstrated molecular heterogeneity in both groups but there were no residues that
distinguished the clinical groups. (C) The frequency of within-groups synonymous mutations was similar among all sequences from all clinical
groups. (D) The frequency of within-group non-synonymous mutations was lower in the brain-derived HAD sequences compared with the
blood-derived HAD sequences. (E) Conversely, the ratios of within-group non-synonymous to synonymous mutations did not differ within the
clinical groups. (F) The frequency of detecting vpr sequences in brain was significantly higher in the HAD group compared with the ND groups
(A, B, F: Mann-Whitney U test; C-D: ANOVA, Bonferroni post hoc test; *p < 0.05).
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Vpr mRNA levels. Experiments were carried out in triplicate at least two times (E-G, Dunnett test, relative to control; *p < 0.05, **p < 0.01).
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than pVpr77Q-HAD and pVpr(-) (Figure 2E). Likewise,
pVpr77R-ND also significantly activated IFN-a (Figure
2F) and MX1 (Figure 2G) transcriptional activity in
monocytoid cells. These studies were extended by asses-
sing the neurotoxic effects of supernatants from trans-
fected cells applied to human fetal neurons (Figure 2H),
which demonstrated that supernatants derived from
pVpr77R-ND- and pVpr77Q-HAD-transfected myeloid
cells caused significant reductions in neuronal viability,
measured by b-tubulin immunoreactivity in human fetal
neurons compared with supernatants from the pVpr
(-)-transfected cells. However, the supernatants from the
pVpr77R-ND-transfected myeloid cells were significantly
more neurotoxic in this assay. These studies highlighted
Vpr’s capacity to induce variable neuroimmune
responses, depending on the individual Vpr allele but
also underlined an association between immune
response and related neurotoxicity with the supernatants
from pVpr77R-ND-transfected cells showing the greatest
neurotoxicity.

Transduction of glial cells with viruses expressing Vpr
mutants
In addition to studying the actions of Vpr in isolation,
its effects were examined in the context of whole virus
expression in which viruses encoding Vpr 77R, 77Q or
null were constructed. All of the viruses induced IFN-a
expression following transduction of human astrocytes,
although there was least IFN-a activation in the Vpr
77Q-encoding virus-transfected cells (Figure 3A). Like-
wise, all virus-transduced astrocytes displayed induction
of MX1 (Figure 3B) and BST-2 (Figure 3C) but again
lowest levels were observed in the Vpr 77Q-encoding
virus-transduced cells for both host genes. Conversely,
all of the virus-transduced cells exhibited reduced
PRKRA expression relative to the mock-transduced
astrocytes (Figure 3D). HIV-1 pol mRNA levels were
detected in all transduced cells but were highest in cells
transfected with the Vpr 77Q-encoding virus (Figure
3E), which was complemented by a similar profile in RT
activity in matched supernatants (Figure 3F). These find-
ings suggested an inverse relationship between viral
gene expression and specific host immune responses,
depending on both the presence and sequence of Vpr.

Vpr peptides (aa 70-96) activate neuronal calcium fluxes
While Vpr is expressed within cells as part of viral
transport to the nucleus as well as viral assembly
[42-45], it is also secreted into cerebrospinal fluid and
plasma and acts at the neuronal membrane to influence
neuronal function and survival [22,46]. It has been pre-
viously shown that a C-terminal domain of the Vpr pro-
tein (amino acids 70-96) has a critical role in Vpr-
mediated cytotoxic effects [47]. Given that the R77Q

mutation was located within this domain of the protein,
we investigated the effects of the amino acid 77 muta-
tion using 70-96 Vpr peptides, containing either
Vpr77Q (ΔVpr77Q-HAD) or Vpr77R (ΔVpr77R-ND).
Previous reports indicate that Vpr is capable of reducing
neuronal viability by inducing apoptosis as well as per-
turbing the cell cycle machinery [20,47-49]. However, its
effects on intracellular calcium fluxes in neurons are
less certain. Vpr peptides’ actions on neuronal cytosolic
calcium mobilization were assessed by confocal micro-
scopy in Fluor-4 prior-loaded human neurons. Gluta-
mate (500 μM), which was used a positive control,
activated robust responses in terms of changes in intra-
cellular calcium concentrations [Ca2+]i (Figure 4A) but
in addition, both ΔVpr77R-ND (n = 30) and ΔVpr77Q-
HAD (5.0 μM) (n = 19) also activated calcium responses
in human neurons. The temporal profiles of Vpr pep-
tides’ actions were similar to glutamate, albeit at lower
signal amplitudes (Figure 4B-E). This observation was
confirmed by graphic analysis, which showed that the
Vpr peptides caused smaller changes in [Ca2+]i, com-
pared with glutamate exposure to neurons (Figure 4E).
Thus, in contrast to the assays described above, amino
acids Q or R at position 77 within Vpr modulated cal-
cium responses similarly in neurons.

Mutant Vpr peptides (aa 70-96) show differential effects
on host immune responses
Since microglia and astrocytes represent the principal
innate immune cells within the brain, the actions of
soluble Vpr on their function were highly relevant to
the present experiments. Human fetal microglia (HF
μF) were exposed to Vpr peptides revealing that the
ΔVpr77R-ND peptide activated greater IFN-a (Figure
5A), MX1 (Figure 5B), PRKRA (Figure 5C) and BST-2
(Figure 5D) expression compared with ΔVpr77Q-
HAD- or mock-exposed microglia. Likewise, human
fetal astrocytes (HFA) exposed to the ΔVpr77R-ND
peptide displayed the highest induction of IFN-a (Fig-
ure 5E), MX1 (Figure 5F) and PRKRA (Figure 5G).
Both ΔVpr peptides did not activate expression of IL-
1b or TNF-a in both primary human cell types (data
not shown). ΔVpr peptides were also applied to human
fetal neurons (HFN) showing ΔVpr77R-ND (30.0 μM)
was neurotoxic while ΔVpr77Q-HAD (30.0 μM) did
not differ from the mock-exposed cultures (Figure 5H).
Both ΔVpr77R-ND and ΔVpr77Q-HAD (60.0 μM) sig-
nificantly reduced b-tubulin immunoreactivity but
again ΔVpr77R-ND was more neurotoxic at this con-
centration. Of note, the full length (amino acids 1-96)
Vpr (1.0 μM) was substantially more neurotoxic than
both Vpr peptides, emphasizing the importance of the
full length Vpr molecule for mediating Vpr’s neuro-
virulent properties.
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In vivo actions of Vpr and derived peptides
Vpr causes neurodegeneration and neurobehavioral defi-
cits in transgenic mice selectively expressing Vpr in
microglia [20-22,33]. However, the actions of soluble

Vpr proteins or peptides expressed focally in the brain
were unknown. Full length Vpr (amino acids 1-96),
ΔVpr77R-ND, ΔVpr77Q-HAD or PBS were stereotacti-
cally implanted into the striatum of mice and
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subsequent neuropathological and neurobehavioral stu-
dies were performed. Neuropathological studies of the
basal ganglia revealed that numerous neurons, identified
by their prominent nuclei and nucleoli in Nissl-stained
preparations, were present in the basal ganglia of PBS-
implanted animals (Figure 6A) but in contrast there
were a reduced number of neurons in animal implanted
with the full length Vpr- (Figure 6B) and ΔVpr77R-ND-
(Figure 6C). No differences in neuronal abundance from
the PBS-implanted animals were observed in the
ΔVpr77Q-HAD-implanted animals (Figure 6D). Minimal
Iba-1 immunoreactivity was evident in the basal ganglia
of PBS-implanted animals (Figure 6E) while the num-
bers of Iba-1 immunopositive microglia were increased
in the full length Vpr- (Figure 6F) and ΔVpr77R-ND-
(Figure 6G) implanted animals, reflecting a glial
response to cellular injury. Iba-1 immunoreactivity did
not differ between the PBS-implanted animals and the
ΔVpr77Q-HAD-implanted animals (Figure 6H). GFAP
immunoreactivity was readily detected in astrocytes of
the PBS-implanted animals (Figure 6I) but was dimin-
ished in the full length Vpr- (Figure 6J) and ΔVpr77R-

ND- (Figure 6K) implanted animals while GFAP immu-
noreactivity in the ΔVpr77Q-HAD-implanted animals
(Figure 6L) was similar to the PBS-implanted control
animals.
To define the neurobehavioral correlates accompany-

ing the neuropathological studies described above, ipsi-
versive rotary behavior was recorded at days 7, 14, and
28 post-implantation. These studies disclosed that at
days 7 (data not shown) and 14, experimental groups
displayed similar levels of ipsiversive rotary behavior
(Figure 6M). However, at day 28 post-implantation, both
full length Vpr and each ΔVpr77R-ND caused signifi-
cantly increased rotary behavior compared with PBS-
implanted animals (Figure 6N). Thus the latter findings
supported the present in vitro and neuropathological
findings in that Vpr containing 77R, as a peptide or full
length protein, was more neurovirulent compared with
the 77Q peptide or controls.

Discussion
In the present studies, mutations at amino acid position
77 were discovered within brain-derived HIV-1 Vpr
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sequences, which distinguished HIV/AIDS patients with
(77Q) and without (77R) HIV-associated dementia.
Remarkably, these mutations varied in their ability to
induce innate immune responses depending on the spe-
cific mutation, which were also associated with their
neurodegenerative actions. Moreover, ΔVpr peptides
(amino acids 70-96), containing the variable amino acid
77 residue, exerted both immunogenic and neurotoxic
actions in vitro and in vivo but the ensuing outcomes
were influenced by the specific mutation present at posi-
tion 77 within the peptide. Although the 77R mutation
induced greater antiviral innate immunity and increased
neurotoxicity, the 77Q mutation was associated with
higher frequency of detection in human brain and repli-
cated at similar levels to the virus containing the 77R
mutation in glial cells. These findings highlighted the
complexity of events influenced by HIV-1 molecular
diversity, together with the additive effects of viral mole-
cular heterogeneity on host responses and viral replica-
tion in the development of neurovirulence.
Vpr is expressed by the HIV genome later in the viral

life cycle but it appears essential for macrophage infec-
tion and perhaps microglia tropism. Vpr also mediates
apoptosis in multiple cells types, possibly through influ-
encing G2 phase of the cell cycle [15,50-54]. Previous
reports indicate that Vpr exhibits neurovirulent proper-
ties including alterations in neuronal excitability and
ensuing death in vitro as well as synaptic retraction in
vivo, accompanied by neurobehavioral abnormalities
[20]. As in previous studies, Vpr-derived peptides were
neurotoxic [47,55-57] while for full length and the
derived peptides, innate immune activation was largely
limited to antiviral responses (IFN-a and BST-2 induc-
tion) with limited concurrent induction of proinflamma-
tory cytokines (IL-1b, TNF-a). This latter observation
highlights Vpr’s neurodegenerative aspects, which are
not linked per se to pro-inflammatory mechanisms in
the nervous system. Regulation of innate immune
responses is a pivotal determinant of progression to
AIDS but also influences the development of HIV-
induced brain disease [58-60]. Type I interferons, inter-
feron (IFN)-a and -b, exert antiviral effects through
multiple pathways including regulation of the expression
of several downstream genes including MX, PRKRA, and
BST-2, all with potential antiviral activities [61-63]. MX
proteins are a group of dynamin-like large guanosine tri-
phosphatases (GTPases) enzymes. Some MX GTPases
have been shown to exert antiviral effects against a wide
range of RNA and some DNA viruses [64]. PRKRA is
an interferon-inducible protein kinase, also known as
Protein kinase R (PKR)-activating protein, which is
involved in PKR-mediated antiviral effects [65]. Likewise,
bone marrow stromal cell antigen 2 (BST-2), also
termed tetherin, has also been shown to be an IFN-

regulated restriction factor for HIV-1 [63,66]. While
neuroinflammation is a cardinal feature of HAD, anti-
viral responses including induction of IFN-a, MX-1,
PRKRA or BST-2 await clarification of their expression
in HAD, although several studies indicate the IFN-a
might be increased in the brains of HIV/AIDS patients
[67-69].
Molecular diversity, as well as specific mutations

within the HIV-1 genome, has been associated with
HIV-induced neurological disease [32,70,71]. In particu-
lar, increased diversity within brain-derived HIV-1
envelope sequences from HAD patients is a common
finding in several studies [71,72]. Specific mutations
and/or motifs within HIV-1 gp120 have also been asso-
ciated with HAD [73]. Differential sequence diversity
within brain-derived Tat and Nef sequences appear to
discriminate between HIV/AIDS patients with and with-
out HAD [74-76]. It was shown that astrocytes would
harbor provirus only [77], therefore viral genomic RNA
used as template for RT-PCR to amplify vpr gene in this
study should be derived from perivascular macrophages
or microglia. Herein, amino acid position 77 within Vpr
distinguished the two clinical groups, 77Q and 77R in
HAD and ND AIDS patients, respectively. Our finding
that brain-, but not blood-derived, sequences distin-
guished HAD from ND AIDS patients implies the motif
at position 77 might reflect mutagenesis of the virus
within the brain. The 77Q mutation has been associated
with sustained non-progression of HIV infection [27,29],
while in the present study the same mutation was asso-
ciated with HAD. Protein sequence alignment of HIV-1
Vpr from 4 HIV-1 B clade strains revealed that prototy-
pic brain-derived viruses, YU2 and JRFL, from patients
with HAD exhibited 77Q while non-brain-derived
strains (JR-CSF and NL4-3) show 77R. This comparison
suggests that the change from 77R to 77Q might be
important for both neurotropism and perhaps neuro-
virulence. Similar to previous studies, the 77Q motif
also exerted less cytotoxic effects and minimal induction
of anti-viral immune responses in vitro, suggesting this
same mutation also diminished cytopathogenicity [28].
It is widely assumed that HAD represents a state of
increased HIV-1 neurovirulence, recapitulating animal
studies in which a specific virus causes neurovirulence
[78,79]. Thus, the present studies raise a dichotomy
regarding Vpr’s role in neurovirulence: although the
77Q motif was more frequently detected in brain-
derived sequences from HAD patients, the same muta-
tion caused less neurotoxicity and a muted antiviral
immune response. However, the likelihood of detecting
vpr sequences in brain was significantly higher in HAD
(Figure 1F) and the viruses encoding Vpr 77Q or 77R
replicated similarly in glial cells (Figure 3E and 3F). Sev-
eral potential explanations underlie these findings: (a)
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the 77Q mutation with Vpr permits HIV-1 to persist
and replicate in the brain by restricting the neuroim-
mune antiviral response(s) and Vpr’s direct neurotoxic
effects, thereby augmenting the virus’ fitness and repli-
cative capacity, as evidenced by its increased detection
in HAD brains and the apparent inability to induce
BST-2; (b) the Vpr 77Q mutation might be an asso-
ciated or compensatory mutation, which modulates viral
replication but is enhanced by other neurovirulence-
conferring mutations occurring elsewhere in the HIV
genome, thereby preventing the virus from overwhelm-
ing the host; (c) the 77Q confers some as yet unrecog-
nized property on the virus in terms of its
neurovirulence, perhaps through its putative effects on
phosphorylation of the nearby 79S residue within Vpr
[80,81]. Regardless of what pathogenic mechanism is
mediated by the 77Q or -R motifs, the brain is likely an
“evolutionary cul-de-sac” for the virus because HIV-
induced brain disease predicts worsened survival with or
without combination antiretroviral therapy [82,83]. The
present findings raise a fundamental issue regarding the
relationship between virus-mediated neurovirulence and
neurological outcomes, suggesting that HAD might be a
state of failing neuroimmunity.
The present observations highlight an important

aspect of HIV disease progression in a cohort of AIDS
patients regarding the role of a comparatively unstudied
viral protein found in the brain. However, these studies
require verification in a larger cohort and perhaps in
patients infected with different HIV-1 clades. The use of
the present animal model could be extended by compar-
ing transgenic animals containing each amino acid 77
within the expressed Vpr. Herein GFAP immunoreactiv-
ity was diminished in the basal ganglia in brains of mice
implanted with the ΔVpr-77R-ND peptide, whereas as it
was not significantly altered in the basal ganglia of mice
receiving ΔVpr-77Q-HAD peptide (Figure 6I-L), indicat-
ing the wild-type but not the mutant Vpr peptide
exerted a cytotoxic effect on astrocytes. Moreover, mice
receiving full-length Vpr injection also showed a reduc-
tion in GFAP immunoreactivity, indicative of astrocyte
injury/death, which was consistent with recent observa-
tions in the brains of Vpr-transgenic animals [84].
Future studies of cerebrospinal fluid (CSF)-derived Vpr
alleles might also be a fruitful approach in terms of
understanding pathogenesis as well as diagnostic impor-
tance, given the availability of CSF early in the disease
course.

Conclusions
These observations suggest that the 77R mutation
within Vpr exerts greater effects on host cell immunity
and survival than 77Q, thereby limiting viral expression
and perhaps persistence in the brain. However these

findings also indicate that HIV-mediated neurovirulence
reflects the virus’ overall capacity to curb antiviral
immune responses through viral mutagenesis coupled
with preserving its replicative properties.

Methods
Human brain and blood samples for RNA isolation, PCR
and sequencing
Genomic RNA was isolated from frontal white matter of
brain tissue and peripheral blood mononuclear cells
(PBMCs), which were obtained from AIDS-defined
HIV-1 seropositive persons who were non-demented
(ND) or diagnosed pre-mortem with HAD, using TRIzol
reagent (Gibco), as previously reported [85,86]. Accord-
ing to the manufacturer’s protocol, total RNA was iso-
lated, dissolved in diethylpyrocarbonate (DEPC)-treated
water and used for the synthesis of cDNA. The HIV-1
vpr gene was amplified from cDNA using a nested PCR
protocol: initial denature step of 2 min at 94°C, followed
by 35 cycles of 30 S at 94°C, 30 S at 52°C, 1 min at 68°
C, with a final extension step of 7 min at 72°C. The for-
ward and reverse primers used were as follows: first
round forward primer 5’-CAAGCAGGACATAA-
CAAGGTA G; first round reverse primer 5’-
TGGCAATG AAAGCAACACT; second round forward
primer 5’-CATCTAGAGCAGAGGACAGATGGAA-
CAAG and second round reverse primer 5’-CTAG
GCCTTCTAGGATCTACTGGCTCC. PCR fragments
corresponding to the amplified vpr gene were isolated
from agarose gel using the QiaQuick gel extraction kit
(Qiagen), the incomplete fragment ends were filled in
with Klenow, phosphorylated using T4 polynucleotide
kinase and cloned into the pSL1180 vector (Amersham
Biosciences Inc). All reagents were obtained from New
England BioLabs Ltd and used following the manufac-
turer’s specifications. PCR fragments or multiple clones
of the cloned PCR fragments were sequenced in both
directions using the second round PCR forward and
reverse primers, as previously reported [72,76,85]. DNA
sequences were determined by automated sequencing
on an ABI 370 sequencer (Applied Biosystems, Streets-
ville, ON) using the manufacturer’s protocols and
reagents. The sequences obtained from cloned and PCR
fragments were aligned using the BioEdit sequence
alignment software (Ibis Biosciences, Carlsbad, CA) and
used to derive a consensus sequence for each patient
group.

Construction of vpr clones
To clone 96 amino acid HIV-1 vpr gene (derived from
HIV-1 NL43), forward primer PHN96-1F 5’-GGG
CCCGGGATCCACCGGTCGCCACCATGGAACAAG
CCCCAGAAGACC, containing BamH I restriction site,
and reverse primer PHN96-1RM 5’-GGCGGATAC
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CCGCG GCCGCCTAGGATCTACTGGCTCCATTTC,
containing Not I restriction sites, were utilized with tem-
plate of HIV NL4-3 plasmid cDNA to amplified the vpr
fragment by PCR. The generated fragment was subse-
quently digested with BamH I and Not I and ligated
into a pEGFP-N1 plasmid vector with same restriction
enzymes digestion, in which the green fluorescent protein
gene was removed. Similarly, a vpr start codon knockout
clone was constructed by replacing above primer
PHN96-F with PHN96-1FK5’-GGGCCCGGGATC-
CACCGGTCGCCA CCACGGAACAAGCCCCAGAA-
GACC, in which ATG was substituted to ACG [37]. To
construct the “R77Q” modified HIV vpr (NL43D), pri-
mer pairs of PHN96-1F (shown above)/PHN96-3R 5’-
TCTGCTATGTTGACACCCAATTCTG and PHN96-
1RM (shown above)/PHN96-3F 5’-GTGTCAACATAG-
CAGAATAGGC were used to generate two overlapping
fragments of the vpr gene with template of HIV NL4-3
plasmid for the first PCR. The two generated fragments
were fused together in a subsequent extension reaction
and amplified by secondary PCR with outside primers
PHN96-1F and PHN96-1RM (shown above) and thus
generate an entire “R77Q” modified vpr gene fragment
flanked with BamH I and Not I restriction site. The
entire vpr gene fragment was subsequently cloned into
above described GFP vector generating NL4-3. The two
vpr constructs, 77R-ND and 77Q-HAD were re-
sequenced to ensure that only the vpr gene sequences of
interest were present.

HIV molecular clones’ construction
To evaluate the effects of Vpr mutations on human fetal
astrocytes, HIV-1 envelope-defective molecular clones
were constructed for transfection. The construction of
HIV-1 envelope-defective proviral plasmids, including
HxBRUR-/Env-, HxBRUR+/Env-, and HxBRUR+/Env-/
Vpr(R77Q) was previously described [27,87,88].

Transfection and immunofluorescence detection
To test expression of cloned HIV-1 Vpr protein, trans-
fection of the cloned HIV-1 vpr plasmid was performed
in Crandle feline kidney (CrFK) cells (ATCC) and
expression of the Vpr protein within CrFK cells was
subsequently analyzed by immunofluorescent staining.
1.5 × 105 CrFK cells were cultured on a sterile cover
slip in MEM medium supplemented with 10% fetal
bovine serum, penicillin (100 U/ml), and streptomycin
(100 μg/ml) by incubation at 37 degrees Celsius with 5%
CO2 for 24 hours to achieve >90% confluency. 1.5 μg of
vpr plasmid DNA and 5 μl of Lipofectamine 2000 (Invi-
trogen) in 500 μl of Opti-MEM medium (Gibco) were
transfected into each well according to the manufac-
turer’s protocols. For immunofluorescent staining,
supernatants of the overnight transfected CrFK cells

were replaced with 1 ml 2% (pH7.4) PBS-buffered paraf-
ormaldehyde and incubated for 20 min at room tem-
perature (RT). Cells were washed with PBS 2 × 5 min
followed by incubation with blocking buffer (PBS/0.2%
Triton/10% normal goat serum and 2% BSA) for 1 hour
at room temperature. 100 μl diluted rabbit anti-vpr pri-
mary antibody (1:100 dilution with PBS/0.2% Triton/5%
normal goat serum and 1% BSA) was added on each
coverslip and incubated for 2 hours at RT. A shaking
wash step with PBS (0.1% Tween20) at RT for 3 × 10
min was followed incubation with the primary antibody.
Subsequently, 100 μl diluted goat anti-rabbit secondary
antibody (Cy3 Conjugated) (1:1000 dilution PBS/0.2%
Triton/5% normal goat serum and 1% BSA) was added
on each coverslip and incubated for 1 hours at RT.
Shaking washes with PBS (0.1% Tween20) at RT for 4 ×
15 min were performed and the coverslips were
mounted with Gelvatol on glass slides for confocal
laser-scanning microscopy analysis as described pre-
viously [20].

Human myeloid cell (U937) transfection by
electroporation
10 μg of cloned vpr plasmid was added to 5 × 106 U937
cells/reaction which then were re-suspended in 250 μl
of room temperature RPMI medium (without FBS and
P/S). The mixture was then transferred to a 0.4-cm gap
cuvette for electroporation. Electroporation was per-
formed at 242 voltage and 975 microfarads for ~30
msec with a Gene Pulser II electroporator (Bio-Rad).
The electroporation-transfected U937 cells were cul-
tured in 12 well plates, adding fresh RPMI medium (1
ml/well) containing 10% fetal bovine serum, penicillin
(100 U/ml), and streptomycin (100 μg/ml), followed by
incubation at 37°C in 5% CO2 for 24 hours. At 24 hours
post-transfection, culture supernatants were collected
for neurotoxicity assays and total cellular RNA was iso-
lated using the TRIzol reagent (Gibco).

Human fetal neuron, astrocyte and microglia cell cultures
Human neuronal cultures were prepared from 15-19
week aborted fetal brains obtained with consent
(approved by the University of Alberta Ethics Commit-
tee), as previously described [86]. Briefly, fetal brain tis-
sues were dissected, meninges were removed, and a
single cell suspension was prepared by trituration
through serological pipettes, followed by digestion for
30 min with 0.25% trypsin (Life Technologies, Burling-
ton, ON, Canada) and 0.2 mg/ml DNase I (Roche Diag-
nostics, Mannheim, Germany) and passage through a
70-μm cell strainer (BD Biosciences, Mississauga, ON,
Canada). Cells were washed 2 times with fresh medium
and plated in T-75 flasks coated with poly-L-ornithine
(Sigma-Aldrich, Oakville, ON, Canada) at 6-8 × 107
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cells/flask and medium for growing human fetal neuron
(HFN), astrocyte and microglia cells was subsequently
added (named HFN medium), which was MEM supple-
mented with 10% FBS (Life Technologies), 2 mM L-glu-
tamine (Life Technologies), 1 mM sodium pyruvate (Life
Technologies), 1 × MEM nonessential amino acids (Life
Technologies), 0.1% dextrose (Sigma-Aldrich), 100 U/ml
Penicillin (Life Technologies), 100 μg/ml streptomycin
(Life Technologies), 0.5 μg/ml amphotericin B (Life
Technologies), and 20 μg/ml gentamicin (Life Technolo-
gies). Specifically, for neuronal cultures, 25 μM cytosine
arabinoside (Sigma-Aldrich) were additionally supple-
mented to prevent astrocyte growth. Astrocyte cultures,
without cytosine arabinoside, were passaged once a
week and in 4-6 weeks the neurons were eliminated; the
remaining astrocytes were ready for HIV transfection or
infection. For microglial cell cultures, suspended micro-
glial cells collected by centrifugation at 1200 rpm for 10
min at one week after cultures were established. The
collected microglia cells were grow in a new plate with
the above medium (without cytosine arabinoside) and
ready for HIV transfection or infection in two days.

Neuronal toxicity assay
Neurotoxicity assays were performed by methods
described previously [20]. Briefly, human fetal neurons
described above were cultured in 96-well flat bottom
plate with supernatants derived from transfected U937
cells for 48 hours. Cells were then fixed in 4% formalin,
washed in PBS containing 0.1% Triton-X, blocked for 90
min with LI-COR Odyssey Blocking Buffer (LI-COR,
Lincoln, NE). After removal of the blocking reagent, the
cells were incubated overnight at 4°C with monoclonal
mouse anti-b-tubulin (1:1000 dilution; Sigma-Aldrich).
After primary antibody application, the cells were
washed in PBS containing 0.1% Tween-20 and incubated
with goat anti-mouse Alexa Flour 680 (1:200 dilution;
Invitrogen) secondary antibody. All antibody dilutions
were made with LI-COR Odyssey Blocking Buffer. After
removal of the secondary antibodies, the cells were
washed in PBS/0.1% Tween 20 and left to dry in the
dark before quantification of b-tubulin immunoreactivity
using the Odyssey Infrared Imaging System (LI-COR).

Human astrocyte (HFA) transfection
The above prepared HFAs were subsequently seeded
into 12 well plates at 2 × 105 cells/well and 1 × 104

cells/well, respectively, followed by incubation at 37
degrees Celsius with 5% CO2 for 24 hours. For each
transfection reaction, 2 μg of proviral HIV-1 plasmid
(HxBRUR+/ENV-, HxBRUR-/ENV- or HxBRUR
+/ENV-/Vpr(R77Q)) were mixed with 1 μl plus reagent
(Invitrogen) for 10 minutes. Then 5.5 μl of Lipofecta-
mine LTX (Invitrogen) was added to the mixture and

incubated for 30 minutes followed by transfection to
each well (with 1 ml fresh HFN medium) according to
the manufacturer’s protocols. At 6 hours post-transfec-
tion, transfection medium was removed and 1 ml/well
fresh HFN medium was added. At 48 hours post-trans-
fection, culture supernatants containing pseudotyped
HIV-1 were collected for viral reverse transcriptase (RT)
activity assay and total cellular RNA was isolated from
the cultured primary HFAs with using RNeasy Mini Kit
(Qiagen) after lysis with TRIzol (Invitrogen) using man-
ufacturer’s guidelines. The isolated RNA was used for
real time RT-PCR.

Reverse transcriptase (RT) assay
RT activity in culture supernatants was assayed as pre-
viously described [89]. Briefly, 8 μl of culture superna-
tant was incubated with 32 μl of reagent buffer
containing [a-32P] dTTP for 2 hours at 37°C. 30 μl
reaction mixes were spotted on pencil labeled DE-81
paper squares (Whatman International, Ltd.). Papers
were air-dried again for 30 min and washed 5 times for
10 min with gentle shaking in 100 ml 2 × SSC and
twice for 1 min in 50 ml 95% ethanol. Papers were air-
dried for 30 min and RT levels were measured by liquid
scintillation counting (TRI-CARB 2100TR, PACKARD,
USA). All assays were performed in minimum triplicate.

Real time RT-PCR assay
Total cellular RNA was isolated from cultured U937,
primary HFAs using RNeasy Mini Kit (Qiagen) after
lysis with TRIzol (Invitrogen) using manufacturer’s
guidelines. RNA dissolved in DEPC-treated water was
used for cDNA synthesis. First-strand cDNA was
synthesized by using 500 ng/reaction of the extracted
total RNA for subsequent RT-PCR assay as described
previously [89]. The prepared first-strand cDNA was
diluted 1:1 with sterile water and 5 μl were used per
PCR. The primers used in the real-time PCR were as
follows: GAPDH: forward primer, 5’-AGCCTTCTCCAT
GGTGAA; reverse primer, 5’-CGGAGTCAACGGAT
TTGGTCG; TNF-a: forward primer, 5’-CCCCA
GGGCTCCAGAAGGT; reverse primer, 5’-TGGGGCA
GAGGGTT GATTAGTTG; IFN-a: forward primer,
5’GGAGGAGAGGGTGGGAGAAAC; reverse primer,
5’-GAAAGCGTGACCTGGTGTATGAG; MX1: forward
primer, 5’-CGGGGAAGGAATGGG AATCAGTCA;
reverse primer, 5’-TTCCGCACCACGTCCACAACCTT;
PRKRA: forward primer, 5’-GTCCACCAGCCCCATCA-
CAG; reverse primer, 5’-AGGGGCCAGAGGGGAACT
TT; BST-2: forward primer, 5’-AGAAGGGCTTTCAG-
GATGTG; reverse primer, 5’-CTTTTGT CCTTGG
GCCTTCT; HIV-1 Pol: forward primer, 5’-TTAAGA-
CAGCAGTACAAATGGCAG T; reverse primer, 5’-
ACTGCCCCTTCACCTTTCCA. Semi-quantitative
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analysis was performed by monitoring in real time the
increase of the fluorescence of SYBR Green dye on a
Bio-Rad I-Cycler IQ detection system. A threshold cycle
value for each gene of interest was determined as pre-
viously reported [90]. All data was normalized against
the matched GAPDH mRNA levels except for U937
electroporation-transfected experiment (Figure 2), which
was normalized against the matched Vpr mRNA levels.

Soluble Vpr preparation
The procedure for producing full- length recombinant
HIV-1 Vpr protein derived from pNL4-3 has been
described previously [91]. In addition, Vpr peptides (70-
96) were purchased from Alpha Diagnostic
International.

Calcium imaging
Human neuronal cultures were plated in 35 mm tissue
culture dishes (VWR). The 2-5 days old cultures treated
with 5 μM Fluo-8 acetoxymethyl ester (Fluo-8-AM) for
30 minutes were imaged as previously described [92].
Changes in Ca2+ induced fluorescence intensity were
evoked by glutamate (500 μM, 60 s application) and Vpr
peptides and were measured using a confocal micro-
scope equipped with an argon (488 nm) laser and filters
(20 × XLUMPlanF1, NA 0.95 objective; Olympus
FV300, Markham, Ontario, Canada). Full frame images
(512 × 512 pixels) were acquired at a scanning time of 3
s per frame. Selected regions of interest were drawn
around distinct cell bodies and traces of time course of
change of fluorescence intensity were generated with
FluoView v.4.3 (Olympus). Data were only collected
from cells in the plane of focus that responded reversi-
bly to a glutamate challenge. Data were collected from
1-5 neurons in each 35 mm dish.

In vivo mouse model
Three-week-old male CD-1 mice were obtained from
Charles River Laboratories (Wilmington, MA) and
housed in a biocontainment facility according to the
guidelines of the Canadian Animal Care Committee. All
behavioral testing was performed as described previously
[93] by an experimenter blinded to the specific trans-
genic groups. Animals were placed in a stereotaxic
frame under ketamine/xylazine anaesthesia. Full length
Vpr (400 μM, 2 μl/each animal), Peptides (20 mM, 2 μl/
each animal) and PBS (2 μl) were delivered into the
striatum of the animals. In vivo neurological injury was
assessed according to the Ungerstedt model [94]. In
short, ipsiversive rotations as well as total rotations were
monitored over 10 min after intraperitoneal injection of
amphetamine (1 mg/kg) on days 7, 14, 21, and 28 fol-
lowing striatal injections. More ipsiversive rotations or
less total rotations are both indicative of neurological

injury. Animals were sacrificed upon completion of the
behavioral studies, brains were removed and immersion
fixed in 4% paraformaldehyde.

Tissue preparation and staining
Immunofluorescent labelling was performed using 5 μm
paraffin-embedded serial fixed mouse brain sections,
prepared as previously described [95]. Briefly, coronal
brain sections were deparaffinized and hydrated using
decreasing concentrations of ethanol. Antigen retrieval
was performed by boiling the slides in 0.01 M trisodium
citrate buffer, pH 6.0, for 10 min. Sections were blocked
in PBS containing 10% normal goat serum (NGS), 2%
bovine serum albumin and 0.1% Triton X-100 overnight
at 4°C. The sections were incubated overnight at 4°C
with antibodies against ionized calcium binding adaptor
molecule (Iba-1; 1:200; Wako, Tokyo, Japan) and glial
fibrillary acidic protein (GFAP; 1:200; DAKO, Carpin-
teria, CA, USA), washed in PBS, then incubated with
Alexa 488 conjugated goat anti-rabbit or mouse (1:2500
dilution; molecular probes, Eugene, OR) for 1 hour at
room temperature in the dark followed by repeated
washing in PBS. The sections were finally mounted with
Gelvatol and examined with a Zeiss Axioskop 2 upright
microscope (Oberkochen, Germany). The sections for
Nissl staining were deparaffinized in 3 changes of xylene
and hydrated using decreasing concentrations of etha-
nol. Slides were then stained in 0.1% cresyl violet solu-
tion (Sigma-Aldrich, Oakville, ON, Canada) for 10
minutes and rinsed quickly in distilled water, and differ-
entiated in 95% ethanol. Finally the slides were dehy-
drated in 100% ethanol, cleared in xylene, mounted with
Acrytol (Surgipath, Canada), and examined with a Zeiss
Axioskop 2 upright microscope (Oberkochen, Germany).

Statistical analyses
Statistical analyses were performed using GraphPad
InStat version 3.0 (GraphPad Software, San Diego, CA),
using ANOVA, for mRNA alterations and neurobeha-
vioral analyses. Unless otherwise stated, all post-hoc sig-
nificant comparisons indicate differences between the
control group(s). p values < 0.05 were considered
significant.
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