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Abstract

human mesenchymal stem cells (MSCs).

patients.

Background: HIV infection elicits the onset of a progressive immunodeficiency and also damages several other
organs and tissues such as the CNS, kidney, heart, blood vessels, adipose tissue and bone. In particular, HIV
infection has been related to an increased incidence of cardiovascular diseases and derangement in the structure
of blood vessels in the absence of classical risk factors. The recent characterization of multipotent mesenchymal
cells in the vascular wall, involved in regulating cellular homeostasis, suggests that these cells may be considered a
target of HIV pathogenesis. This paper investigated the interaction between HIV-1 and vascular wall resident

Results: MSCs were challenged with classical RS and X4 HIV-1 laboratory strains demonstrating that these strains are
able to enter and integrate their retro-transcribed proviral DNA in the host cell genome. Subsequent experiments
indicated that HIV-1 strains and recombinant gp120 elicited a reliable increase in apoptosis in sub-confluent MSCs.
Since vascular wall MSCs are multipotent cells that may be differentiated towards several cell lineages, we challenged
HIV-1 strains and gp120 on MSCs differentiated to adipogenesis and endotheliogenesis. Our experiments showed
that the adipogenesis is increased especially by upregulated PPARy activity whereas the endothelial differentiation
induced by VEGF treatment was impaired with a downregulation of endothelial markers such as vVWF, Flt-1 and KDR
expression. These viral effects in MSC survival and adipogenic or endothelial differentiation were tackled by CD4
blockade suggesting an important role of CD4/gp120 interaction in this context.

Conclusions: The HIV-related derangement of MSC survival and differentiation may suggest a direct role of HIV
infection and gp120 in impaired vessel homeostasis and in genesis of vessel damage observed in HIV-infected
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Background

Although the main targets of HIV infection pathogenesis
are the CD4+ cells of the immune system, several stu-
dies have clearly shown that HIV infection directly and/
or indirectly targets other cell lineages and organs [1].
In particular, HIV progressively hampered the
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homeostasis and functionality of the CNS, bone, kidney
and cardiovascular system. These organ-specific lesions
have gained a growing importance in the monitoring of
HIV infected patients [2-4], especially since the advent
of highly active anti-retroviral therapy (HAART) that
has increased the patients’ life expectancy thereby deter-
mining a chronic disease evolution [5].

Clinical and epidemiological studies have shown a
consistent connection between HIV infection and a
significantly increased incidence of cardiovascular
events [6-9], atherosclerosis, coronary arterial disease
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and pulmonary hypertension [10]. Some reports have
clearly demonstrated that HIV infection represents an
independent risk factor for atherosclerosis and coron-
ary arterial disease, and atherosclerotic lesions have
been observed in coronary, peripheral and cerebral
arteries of HIV positive subjects in the absence of clas-
sical risk factors [6,11,12]. Carotid artery thickening
was up to 24% higher in HIV patients compared with
uninfected sex- and age-matched individuals [13-15]
and large retrospective studies have proved that HIV
positive subjects have a higher incidence of cardiovas-
cular events than uninfected individuals [7,16,17].
These cardiovascular diseases are mainly related to
impaired vessel wall homeostasis [18]. In particular,
atherosclerosis is linked to severe endothelial dysfunc-
tion with arterial wall injury due to factors that trigger
a chronic inflammatory response with subsequent
atheromatous plaque formation [19,20]. The mechan-
isms involved in the genesis of atherosclerosis and sub-
sequent cardiovascular damage in HIV positive patients
have still not been elucidated, even though some puta-
tive indications were recently reported [10].

HIV infection is associated with systemic inflamma-
tion and chronic immune activation determining a dys-
regulation of several cytokines such as IL-6, TNF alpha,
M-CSF, IL-10 and IL-1 [21-24]. These cytokines may be
involved in the atherosclerosis to different extents, acti-
vating and inducing the migration of monocytes in the
vessel structures and eliciting the evolution to macro-
phages [25,26]. Monocytes are known to be the precur-
sors of lipid-laden foam cells within the atherosclerotic
plaque [27] producing high levels of pro-inflammatory
cytokines thereby determining an inflammatory positive
feed-back [10]. Moreover, HIV infection affects choles-
terol metabolism especially by viral Nef protein, impair-
ing cholesterol metabolism and cholesterol transport in
macrophages and probably hastening the development
of vessel structure damage [28,29]. Besides the inflam-
matory pathway, HIV directly affects endothelial cell
layer homeostasis: gp120 and Tat elicit apoptosis in
endothelial cells [30-32] through caspase activation.
HIV-1 gp120 induces a direct release of endothelin-1,
IL-6 and TNFa in endothelial cells leading to direct ves-
sel injury by continuous endothelial damage. Recent
observations showed that the homeostasis of the
endothelial layer structure does not depend exclusively
on circulating endothelial progenitors but can also be
regulated by multipotent MSCs [33-36]. MSCs were iso-
lated in the adventitia and in the subendothelial region
of vessels and can be differentiated towards several cell
lineages such as endothelial cells, osteoblasts, adipocytes
and smooth muscle cells [37,38]. Hence, these cells may
be the targets of HIV and/or viral proteins inducing
direct or indirect vessel damage. To our knowledge, no
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study has been performed on the interplay between HIV
infection and MSCs derived from vascular wall struc-
tures to investigate its possible role in the induction of
cardiovascular disease and atherosclerosis. The specific
studies performed on MSCs and HIV interaction were
focused on MSCs or stromal cells isolated from bone
marrow [39-43]. These reports described HIV-related
bone marrow derangement mechanisms demonstrating
that some strains of HIV are able to infect these cells
albeit to a low extent [39,40,43] impairing their clono-
genic potential with a strong effect on bone marrow cell
regulation [40]. In addition, the bone marrow-derived
MSCs were affected by viral proteins such as Tat,
gp120, Rev and p55 in the specific differentiation to dif-
ferent cellular lineages [41,42]. The aim of our study
was to determine the biological effects of HIV infection
and gp120 treatment on vascular wall-derived mesench-
ymal cells to elucidate a possible additional mechanism
underlying the vessel dysfunctions observed in HIV-
infected patients.

Materials and methods

Cell cultures and MSC isolation and differentiation
Human arterial segments of femoral arteries from three
male multi-organ heart-beating donors (mean age 39
years) were harvested and used for cell isolation as pre-
viously described [38,44]. These vascular artery seg-
ments did not have the requirements of length and
calibre for clinical use. Isolated MSCs were character-
ized by flow cytometry and their multi-differentiation
potential was determined as previously described [38].
The flow cytometry characterization was carried out on
cells taken at passages 3-5 detached by trypsin and
washed twice with phosphate-buffered saline (PBS) con-
taining 2% fetal calf serum (FCS; Gibco, Paisley, UK).
The cells were stained for 20 minutes at room tempera-
ture using the following monoclonal antibodies (mAbs):
fluorescein isothiocyanate (FITC) anti-CD29, phycoery-
thrin (PE)-anti-CD34, FITC-anti-CD44, FITC-anti-
CD45, FITC-anti-CD73, PE-anti-CD90, PE-anti-CD105,
PE-anti-CD146, PE-anti-CD166 and FITC-anti-KDR, (all
from Beckman-Coulter, Fullerton, CA, USA). vWF
expression was revealed after permeabilization with the
Intraprep Kit (Beckman-Coulter), then incubated with
vWFmAD (1/20 in PBS; DakoCytomation, Glostrup,
Denmark) for 1 hour at room temperature and subse-
quently incubated with secondary anti-mouse IgG FITC
(1/40 in PBS; DakoCytomation) for 30 minutes at room
temperature. PE- or FITC- irrelevant isotype matched
mAb served as negative controls. The cells were exten-
sively washed in PBS and then analyzed by Cytomics
FC500 Flow Cytometer (Beckman-Coulter). Isolated
MSCs were cultured in D-MEM (Lonza, Basel, Switzer-
land) plus 10% FCS and split every 3-4 days at about
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70% density. MSCs were usually seeded at a density of 5
x 10% cells/cm?. For culture expansion, 75 cm” and 25
cm? flasks (Becton Dickinson, Palo Alto, CA) treated
with collagen (Sigma, St Louis, MO, USA) were used as
previously described [44], while for the experiments, the
MSCs were seeded in untreated 6-well or 24-well plates
(Nunc, Rochester, NY, USA) and employed between
passages 4 and 8. To induce adipogenic differentiation,
confluent cells were cultured as follows: three cycles of
3 days induction medium and 3 days maintenance med-
ium of hMSC Mesenchymal Stem Cell Adipogenic Dif-
ferentiation Medium kit (Lonza) were carried out. After
a few days the cells containing neutral lipids in fat
vacuoles were stained with fresh red oil solution (Sigma)
as previously described [45]. MSCs cultured only with
adipogenic maintenance medium were taken as the
negative control for differentiation. Angiogenic differen-
tiation was assessed on confluent cells, cultured in
DMEM (Lonza) with 2% FCS and 50 ng/ml Vascular
Endothelial Growth Factor (VEGEF; Invitrogen, Carlsbad,
CA, USA) for 7 days, changing the medium every 2
days. MSCs cultured in medium without VEGF through-
out the induction period were considered the negative
control for differentiation [45,46]. NK-92 cells were kept
in o-MEM (Gibco) plus 15% FCS, 15% horse serum
(Gibco) and 20 U/ml of recombinant human IL-2
(Peprotech, London, UK). Peripheral blood mononuclear
cells (PBMCs) were obtained from healthy donors who
gave their informed consent following the Helsinki
declaration. PBMCs were kept in RPMI 1640 plus 10%
ECS or activated by PHA (5 pg/ml; Sigma) plus IL-2 (10
U/ml).

Viral stocks and infection procedures

HIV-1y13 and HIV-144, stocks were achieved as pre-
viously described [40] and titrated by ELISA HIV-1 p24
antigen kit (Biomerieux, Marcy L’Etoile, France). The
heat-inactivated HIV-1y;3 (hiHIV-1y5,) and HIV-1,4,
(hiHIV-1,4,) viruses were obtained after a cycle of inac-
tivation at 65°C for 30 minutes [47]. HIV-1 infection of
MSCs was carried out at 50-60% of confluence with
HIV-1yp or HIV-144, (5 ng/ml of HIV-1 p24) in 6-well
or 24-well plates for 2 hours at 37°C. The MSC cultures
were extensively washed with PBS, kept in medium and
cells and supernatants were harvested at specific times.
The HIV-1 p24 content in the infection experiments
was assayed by ELISA HIV-1 p24 antigen kit (Biomer-
ieux). In some experiments on sub-confluent MSCs the
cell cultures were treated with hiHIV-1 strains (5 ng/ml
of HIV-1 p24) or recombinant gp120 (1 pg/ml; NIBSC)
for 2 hours at 37°C. As controls, the MSCs were treated
with p24 (1 pg/ml; NIBSC) or with HIV-1 strains,
hiHIV-1 or gp120 pre-treated for 30 minutes at 37°C
with 20 pl of rabbit anti-gp120 pAb (NIBSC, Potters
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Bar, UK) or, alternatively with 20 pl of rabbit anti-p24
pAb (NIBSC). When confluent MSCs were differentiated
to endothelial cells, the same treatment by HIV-1 strains
or viral proteins was performed before VEGF stimula-
tion. In the experiments on MSCs differentiated to adi-
pogenesis, HIV-1jj1p or HIV-1,4. (5 ng/ml of HIV-1
p24), hiHIV-1 strains (5 ng/ml of HIV-1 p24) or recom-
binant gp120 (1 pg/ml; NIBSC) were added to cell cul-
tures for 2 hours at 37°C before every differentiating
medium replacement. At specific times post-treatment,
the cells were collected for appropriate molecular and
flow cytometry analysis the procedures described below.
The CD4 receptor blockade was performed by p5p
(Sigma) treatment as described previously [42,48].

Proviral and integrated DNA detection

Cellular and proviral DNAs were extracted from sam-
ples by DNAeasy kit (Qiagen, Hilden, Germany). Puri-
fied DNA (0.5 pg) was amplified by PCR using SK431
and SK462 HIV-1 gag gene oligos as previously
described [49]. A specific amplicon of 142 bp was
detectable by 2% agarose gel electrophoresis. As a con-
trol, parallel amplification of globin gene was carried
out as previously described [50]. The integrated HIV-1
proviral DNA was analyzed after gel purification of cell
genomic DNA [51] followed by nested Alu-PCR assay as
assessed by O’Doherty and coworkers [52]. The first
nested PCR amplification was performed on cell geno-
mic DNA (0.5 pg) with primers specific for Alu and gag
sequences whereas the second amplification was carried
out with HIV-1 LTR oligonucleotide pair. A specific
amplicon of 100 bp was detectable by 3% agarose gel
electrophoresis.

Qualitative and quantitative RT-PCR amplification

Total mRNA was extracted either from MSCs, PBMCs,
NK-92 or from E. coli Dh5a bacteria by High Pure
RNA isolation kit (Roche) following the manufacturer’s
instructions. Total RNA (100 ng) was retro-transcribed
and amplified using Quantitect SYBR Green RT-PCR kit
(Qiagen) using 400 nM of each B-actin, CD4, CCR5 and
CXCR4 specific oligos (for sequences see [49]) in a
LightCycler instrument (Roche). The amplification was
performed with RT step (1 cycle at 50°C for 20 min) fol-
lowed by initial activation of HotStar Taq DNA Poly-
merase at 94°C for 15 min and 40 cycles in three steps:
94°C for 10 s, 60°C for 30 s, 72°C for 60 s. B-actin real
time RT-PCR amplification was carried out with an
annealing step at 60°C for 15 s and an extension time at
72°C for 25 s. The amplicons were also analyzed in 1.5%
agarose gel electrophoresis. The amplification of c-kit,
BCRP-1, Oct-4, Notch-1, Sox-2, BMI-1 and 2-micro-
globulin was assessed following the method described by
Pasquinelli and coworkers [38].
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To quantify the mRNA expression of several cellular
genes involved in the endothelial and adipogenic differ-
entiation, total cellular RNA (100 ng) was retro-tran-
scribed and amplified using Quantitect SYBR Green RT-
PCR kit (Qiagen) and 400 nM of each specific oligonu-
cleotide. The amplification was performed with RT step
(1 cycle at 50°C for 20 min) followed by initial activation
of HotStar Taq DNA Polymerase at 95°C for 15 min
and 40 cycles in three steps: 94°C for 10 s, 60°C for 15
s, 72°C for 30 s for C/EBP 3, C/EBP 9, adipsin, PPARY,
UCP-1, vWF, KDR whereas for Flt-1 an additional step
was added at 78°C for 2 s to analyze the fluorescence.
The relative quantifications were performed by specific
standard external curves as described [53] and the nor-
malization was performed by parallel amplification of
ribosomial 18S as described previously [54]. The specific
oligo pairs for adipsin, PPARy, UCP-1 and ribosomal
18S genes were already published [52], whereas the
sequences of C/EBP B, C/EBP §, vWF, Flt-1 and KDR
were:

C/EBPB: 5" TTCAAGCAGCTGCCCGAGCC 3 and 5’
GCCAAGTGCCCCAGTGCCAA 3

C/EBPS: 5-GTGCGCACAGACCGTGGTGA-3 and 5’
CGGCGATGTTGTTGCGCTCG 3

vWEF: 5> TAGCCCGCCTCCGCCAGAAT 3’ and 5’
GTGGGCTGGAGGCCACGTTC ¥

Flt-1: 5GCCCTGCAGCCCAAAACCCA 3’ and 5’
CGTGCCCACATGGTGCGTC ¥

KDR: 5’GCGAAAGAGCCGGCCTGTGA 3’ and 5’
TCCCTGCTTTTGCTGGGCACC 3

Apoptosis analysis

The apoptotic cells were analyzed on primary sub-con-
fluent MSCs challenged with HIV-1 strains, hiHIV-1
strains or gp120. The cell cultures were washed with
PBS and detached by trypsin at specific times after the
treatment start. Apoptotic cells were evaluated as pre-
viously described [49]. In brief, the cells were fixed in
cold ethanol 70% for 15 minutes at 4°C and after washes
in PBS the samples were treated with RNase (0.5 mg/ml;
Sigma) and then stained with propidium iodide (50 pg/
ml; Sigma). The samples were analyzed by FACScan
cytometry (Becton-Dickinson) equipped with an argon
laser (488 nm) using Lysis II software (Becton-
Dickinson).

Flow cytometry analysis of cell surface and intracellular
markers

Flow cytometry analysis of cell surface CD4, CXCR4 and
CCR5 was carried out by FITC-anti-CD4mAb (Becton-
Dickinson), FITC-anti-CXCR4mAb (R&D System, Min-
neapolis, MI) and FITC-anti-CCR5mAb (R& D System)
respectively, whereas FITC- irrelevant isotype-matched
mAb served as negative controls. These antibodies were
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used diluted 1/20 in PBS on 1 x 10° cells for 20 minutes
at room temperature. The cells were extensively washed
in PBS and then analyzed by Cytomics FC500 Flow Cyt-
ometer (Beckman-Coulter). Analysis of intracellular
CD4 was performed by staining with the FITC anti-CD4
mAb for 20 minutes at room temperature, after cell
fixation with 2% paraformaldehyde and permeabilization
with 0.1% saponin. To assay the expression of endothe-
lial specific markers (e.g. Flt-1, KDR, and vWF) by flow
cytometry, 1 x 10° MSCs were analyzed at day 7 after
detachment with trypsin. FITC-Flt-1mAb (1/20 in PBS;
Santa Cruz Biotechnology, Santa Cruz, CA, USA) and
FITC-KDRmADb (R&D System) were used at 1/20 in
PBS for 20 minutes whereas to reveal vWF, MSCs were
permeabilized with the Intraprep Kit (Beckman-Coulter),
incubated with vWFmADb (1/20 in PBS; DakoCytoma-
tion) for 1 hour at room temperature and subsequently
incubated with secondary anti-mouse IgG FITC (1/40 in
PBS; DakoCytomation) for 30 minutes at room tempera-
ture. Fluorescence intensity data of intracellular and sur-
face proteins were acquired using a Cytomics FC500
Flow Cytometer (Beckman-Coulter). Results were ana-
lyzed using the CXP Software (Beckman-Coulter).

PPARY activity assay

PPARy transcription factor activity was detected by
TransAM PPARy kit (Active Motif, Carlsbad, CA, USA)
as indicated by the manufacturer. This approach is a
highly sensitive ELISA assay that provides, after the
extraction of nuclear proteins, the determination of
PPARy binding on specific consensus sequence fixed on
plate wells. This binding was targeted by specific anti-
PPARy mAD revealed by means of an HRP-conjugated
secondary pAb and a colorimetric substrate. The assay
was read by spectrophotometer at 450 nm and com-
pared with reference curve after protein concentration
normalization.

Statistical analysis

The data are expressed as means + standard deviation
(+SD) of three separate experiments performed in dupli-
cate. Statistical analysis was performed using Student’s
two-tailed t-test.

Results

Human MSCs can be isolated and purified from
peripheral artery vascular wall

Human vascular wall-derived MSCs were characterized by
cellular and molecular approaches. Flow cytometry analy-
sis showed that these cells expressed a reliable cell marker
phenotype with CD29+, CD44+, CD73+, CD90+, CD105
+, CD166+, KDR'®Y, CD34", CD45, CD146™ and vWE"
(Figure 1). Parallel molecular analysis showed that in the
early culture passages these cells exhibited RT-PCR
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Fluorescence intensity

Figure 1 Analysis of typical MSC markers by flow cytometry. Shadowed areas represent MSCs treated with fluorochrome-conjugated
irrelevant isotype matched mAb, whereas unshadowed areas are the MSCs stained with specific fluorochrome-conjugate mAb. A typical pattern

positive detection of embryonic stem cell marker Oct-4 as
well as some molecules known to play a role in critical
regulatory pathways of stem cells, such as c-kit, BCRP-1,
Notch-1, Sox-2 and BMI-1 (data not shown). To deter-
mine whether these cells also expressed the mRNAs of
classical HIV receptor CD4 and co-receptor CXCR4 and
CCR5, total RNA was extracted from MSCs and analyzed
with the RT-PCR technique. The CD4, CXCR4 and CCR5
mRNAs were currently detectable as shown in Figure 2A.
In parallel, the expression of CD4, CXCR4 and CCR5 pro-
teins was analyzed on the cell membrane using a flow
cytometry procedure. CXCR4 and CCR5 were clearly
detected on the cell membrane. Staining with FITC-conju-
gated anti-CD4mADb failed to disclose CD4 protein expres-
sion on the cell surface, but when the MSCs were fixed
and permeabilized with saponin an intracellular positivity
was clearly displayed in about 20% of the cells (Figure 2B).
This finding may suggest a complex pattern of CD4 pro-
tein regulation expression in these cells that did not rule
out the possible presence of a very low level of CD4 pro-
tein on the cell membrane below the sensitivity level of
flow cytometry.

HIV-1,4, and HIV-1 ;, integrate their retrotranscribed
proviral DNA in host MSC genome

To determine whether MSCs can be considered targets
of HIV-1 infection, subconfluent MSCs were challenged
with two classical HIV-1 X4 and R5 laboratory strains
represented by HIV-1yyy, and HIV-1,4, respectively.
Total DNA, collected and purified at days 3 and 7 post-
infection, was analyzed by PCR, and both HIV-1y, and
HIV-1,4, proviral DNAs were disclosed (Figure 3A). In

parallel experiments, the integrated viral DNA in the
MSC genome was analyzed by a nested-Alu PCR where
the first oligo pair amplifies regions of different length
between Alu regions and HIV-1 gag gene whereas the
second amplification was performed with internal HIV-1
specific oligos to obtain a specific 100 bp amplicon.
Whole DNA was extracted from MSCs at days 7 and 10
post-infection, and HIV-1 specific 100 bp product was
detected (Figure 3B). Hence, these results indicate that
both HIV-1 strains enter MSC cells and retrotranscribe
their RNA genome to proviral DNA integrating it in the
host cell genome. To establish whether HIV infection of
MSCs determines the production of new viral progeny,
we analyzed the p24 protein burden by ELISA in MSC
supernatants. The p24 protein was barely detected and
progressively decreased over time suggesting that the
MSCs showed a very low permissivity to HIV infection
in these experimental conditions (Figure 3C).

HIV-1 strains and recombinant gp120 induce apoptosis in
subconfluent MSCs

Besides the direct infection of specific targets, HIV
employs several pathogenetic mechanisms among which
apoptosis activation plays a pivotal role in several cell
models such as CD34+ hematopoietic progenitor cells
and T cells. To investigate whether the interaction
between HIV-1 and MSCs induces apoptosis activation,
subconfluent MSCs were exposed to both HIV-1 strains,
and the apoptotic cell percentage was assessed with pro-
pidium iodide flow cytometry technique. The flow cyto-
metry analysis performed at day 1, 3 and 7 post-
infection showed a significant increase in apoptotic cells
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Figure 2 Analysis of CD4, CXCR4 and CCR5 expression in MSCs. Analysis of CD4, CXCR4, CCR5 and B-actin mRNA expression by qualitative
real time RT-PCR in MSCs (A). A typical gel electrophoresis of qualitative real time RT-PCR is shown. As positive controls, total RNAs extracted
from PBMC were employed. The total RNAs extracted from NK-92 cells (for CD4) and E. coli total RNA (for CXCR4 and CCR5) served as negative
control. Panel B displays a typical flow cytometry analysis of CCR5, CXCR4 and CD4 staining in MSCs. Unshadowed areas represent MSCs treated
with FITC-conjugated specific mAb, whereas the negative control (MSCs stained by FITC-conjugated irrelevant isotype matched mAb) is
represented by shadowed areas. Three experiments were performed in duplicate.
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(Figure 4A) in the samples challenged with the two
HIV-1 strains at day 3 (13.9 + 3.2% and 11.2 + 2.5% in
the HIV-1yyy, or HIV-1,4, infected samples respectively,
in comparison with 4.4 + 0.5% of apoptotic cells
detected in the mock-infected cultures; p < 0.05) and to
a lesser extent at day 7 (10.3 £ 1.4% and 10.1 + 1.2% in
the HIV-1yy, or HIV-1,4, infected samples respectively,
in comparison with 5.2 + 0.4% in the mock-infected cul-
tures; p < 0.05). The parallel challenge of MSCs with

recombinant viral gp120 (11.8 + 2% vs 4.4 + 0.5% at day
3) or heat inactivated (hi)HIV-1 strains displayed a simi-
lar apoptosis increase pattern (Figure 4B). The pre-treat-
ment of HIV-1 strains or gp120 with neutralizing rabbit
pADb to gpl120 elicited a clear inhibition of apoptosis
induction (Figure 4B). Since the interaction between
gp120 and CD4 was related to programmed cell death
in different cell models, MSCs were treated by p5p (a
CD4 antagonist) and challenged with HIV-1yy,, HIV-
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Figure 3 HIV--1 proviral DNA and p24 protein detection in MSCs infected by HIV--1 strains. Analysis of HIV-1 proviral DNA by qualitative
real time PCR (A): agarose gel electrophoresis of MSC infected by HIV-1y, and HIV-1,4, at days 3 and 7 post-infection. Positive control was
activated PBMC at day 3 and negative control was mock-infected MSCs. All experiments were performed using 5 x 10° MSC or activated PBMCs
infected or not with HIV-1y, and HIV-1,4, (5 ng/ml p24). Panel B shows DNA integrated proviral HIV-1. The total DNA extracted from 5 x 10°
MSC or activated PBMC cells was run in agarose gel electrophoresis and, after the purification of cellular DNA as previously described (51), a
nested Alu-PCR was performed. The MSCs challenged by HIV-1 strains were analyzed at day 7. Activated PBMCs infected with the two HIV-1
strains served as positive controls. A specific LTR 100 bp band is detectable in HIV-1 infected MSCs and positive controls. Panel C displays the
cell supernatant p24 analysis. ELISA p24 kit was employed to analyze the p24 content in cell supernatant. This assay exhibits a sensitive limit at 3
pg/ml. The amount of p24 in MSCs challenged with HIV-1 strains was very low and, in these experimental conditions, slowly declined at later
tested times. The positive controls were performed by activated PBMC infected with HIV-1 strains.
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HIV-1ada PBMC

=r=HIV-1lllb MSCs
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lada or gp120. This p5p treatment induces a significant
inhibition of HIV related apoptosis induction at days 3
and 7 indicating that CD4 blockade tackled the HIV-1
and gp120 related MSC apoptosis (Figure 4C).

In the next series of experiments, we studied whether
HIV-1 strains and/or gp120 elicited apoptosis in MSCs
differentiated towards adipogenic and endothelial cell
lineages. Interestingly, biologically active or hiHIV-1
strains and gp120 failed to determine a significant

apoptosis induction during the adipogenetic or endothe-
lial differentiation (data not shown) suggesting that
these differentiation stimuli could prevent the negative
survival signal induced by viral treatment.

HIV-1 and recombinant gp120 positively modulate the
MSCs differentiation to adipogenesis

MSCs isolated from blood vessels can be differentiated
into several lineages such as osteoblast, adipocyte,
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Figure 4 Determination of apoptotic cell percentage by a flow cytometry procedure. Sub-confluent MSCs treated with HIV-1 strains (5 ng/
ml p24) and recombinant gp120 (1 pg/ml) were assayed (panel A) with propidium iodide staining after cell fixation at different times (days 1, 3,
and 7). Panel B reports the apoptosis induction when hiHIV-1 strains or gp120 were used. Panel C represents the apoptotic cell percentages
obtained when CD4 blockade by p5p treatment was performed. Statistical significance was determined using Student’s t test with *p < 0.05.
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smooth muscle and endothelial cells. To study the
effects of HIV-1 on the differentiation of these cells, the
interaction of HIV-1 and recombinant gp120 on MSC
differentiation to adipogenic and endothelial lineages
was analyzed. The adipogenic differentiation was tested
at different times by direct staining of cell cultures with
red oil. The microscopic evaluation of the red oil stained
cell cultures showed a reliable increase in red oil stained
cells in the cell cultures treated with viral agonists at
days 7 and 10 (Figure 5), in comparison with control
cultures indicating that the HIV-1 and gp120 enhanced
a more rapid and massive differentiation of MSC stimu-
lated to adipogenic lineage. Since PPARYy is currently
considered the most important regulator of adipogenesis
through its transcription factor activity, we assayed with
ELISA TransAM assay the PPARy activity at day 7 in
the same experimental conditions. HIV-1yy,, HIV-1,4,
and recombinant gpl20 induced (Figure 6A) a

significant up-regulation of PPARy activity in compari-
son with the cell culture control (3.4 + 0.5 fold increase
with HIV-1yq, (p < 0.05), 3 £ 0.4 fold increase with
HIV-1,4, (p < 0.05) and 2.7 = 0.5 fold increase with
gp120 (p < 0.05) when the cell cultures were challenged
either by HIV-1 strains or gp120. This effect was abol-
ished when HIV-1 strains or gp120 were pre-treated
with anti-gp120 pAb. In parallel, the PPARy mRNA con-
tent evaluated by quantitative real time RT-PCR (Figure
6B) showed a slight but significant up-regulation of spe-
cific transcripts (2 + 0.5 fold increase with HIV-1y,; p
< 0.05, 1.7 £ 0.3 fold increase with HIV-1,4,; p < 0.05
and 1,8 + 0,4 fold increase with gp120; p < 0.05) with
respect to induced cell culture controls. Since adipogen-
esis is regulated by several factors modulating specific
gene expression, the mRNA expression of other specific
genes involved in adipogenesis regulation was analyzed.
The early steps of differentiation are linked to activation
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Figure 5 Red oil staining of MSCs differentiated towards adipogenesis at day 10. MSCs challenged with HIV-1 strains (5 ng p24/ml) or
gp120 (1 pg/ml) displayed more abundant multivacuolar adipogenic vescicles in the cytoplasm than untreated differentiated cells. Neutralizing
anti-gp120 pAb or p5p treatment in MSC samples challenged with HIV-1 or gp120 inhibited the increase in red oil stained lipid drop amount.

Magnification 200X.

of C/EBP B and 8, which, in turn, activate C/EBP o and
PPARy inducing the complete differentiation to mature
adipocyte with the expression of late differentiation mar-
kers such as adipsin and UCP-1. The analysis of C/EBP
B and & mRNA expression was analysed by quantitative
real time RT-PCR (Figure 7A). HIV-1 and gp120
induced a significant up-regulation of C/EBP B (8.2 +
2.3, p < 0.05 with HIV-1yy,, 5.8 £ 1.4 p < 0.05 with
HIV-1,4, and 4.7 + 1.3 p < 0.05 with gp120) and & (3.6
+ 1.2, p < 0.05 with HIV-1yp, 3.4 £ 1.3 p < 0.05 with
HIV-1,4, and 3.5 £ 0.9 p < 0.05 with gp120) mRNAs at
day 3. As expected, the pre-treatment of HIV-1 strains
or gpl20 with anti-gp120 pAb inhibited the specific

mRNA increase. In parallel, some late adipogenetic mar-
kers such as adipsin and UCP-1 mRNAs expression
were studied with quantitative real time RT-PCR at day
10. HIV-1 strains and gp120 positively modulated the
adipsin mRNA expression whereas UCP-1 is poorly
expressed and did not show any significant quantitative
mRNA variation related to any treatment (Figure 7B)
suggesting that MSCs in these experimental conditions
underwent a differentiation toward white fat rather than
brown fat. The CD4 blockade by p5p determined a sig-
nificant decrease of adipogenesis induction (Figure 5) by
HIV-1 strains and gp120 as well as PPARy activity up-
regulation (Figure 6C-D). Consistently, the treatment
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Figure 6 Effect of HIV-1 strains and gp120 on PPARY transcription factor activity and mRNA expression in MSCs differentiated to
adipogenesis. In A and C, MSCs were challenged with HIV-1 strains (5 ng/ml) and gp120 (1 pg/ml) in the presence or absence of anti-gp120
pAb, anti p24 pAb and p5p. MSCs were harvested at day 7 and nuclear extracts were processed for PPARy activity using TransAM PPARy kit. The
PPARy activity data were expressed by the ratio (+SD) between samples and the control represented by MSC cell cultures differentiated to
adipogenesis. The adipogenesis differentiated cell culture PPARy activity was set at 1. Three experiments performed in duplicate were carried out.
In B and D, quantitative real-time RT-PCR was performed at day 7 to analyze PPARy mRNA expression in cell cultures treated with the viral
strains and viral proteins. The mRNA expression data were expressed by the ratio between samples and the control represented by adipogenesis
differentiated cell cultures after 18S ribosomial normalization. The adipogenesis differentiated cell culture mRNA was set at 1. Three experiments
performed in duplicate were carried out. Statistical significance was determined using Student’s t test with *p < 0.05.
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with p5p also decreased the HIV-related activation of C/
EBPB, C/EBPS and adipsin mRNA expression (Figure
7C-D) indicating a general down-regulation of HIV
related proadipogenetic effects.

HIV-1 and recombinant gp120 inhibit the MSCs
endothelial differentiation

In a next series of experiments, we investigated the
effects of HIV-1 and gp120 on endothelial differentia-
tion of MSCs induced by VEGF treatment. When
MSCs were treated with VEGF, they differentiated to
endothelial cells exhibiting several specific endothelial
markers. To assess whether the endothelial

differentiation may be positively or negatively affected
by viral challenge, the expression of some endothelial
markers such as vWF, Flt-1 and KDR was analyzed by
a flow cytometry procedure. This approach displayed a
clear decrease of all three markers (Figure 8) when
MSCs were challenged by gp120 or HIV-1 strains. In
parallel, quantitative real time RT-PCR was carried out
and the results confirmed a significant decrease of Flt-
1, KDR and vWF mRNA expression when HIV-1
strains or gp120 were added to cell cultures (p < 0.05;
Figure 9A). Moreover, the treatment of cell cultures
with p24 or gp120 and HIV pre-treated with neutraliz-
ing anti-gp120 pAb did not show any significant



Gibellini et al. Retrovirology 2011, 8:40
http://www.retrovirology.com/content/8/1/40

Page 11 of 18

12

=
-] o

Folds of expression
Folds of expression

10 -

Folds of expression
o
Folds of expression

01 : ||
C/EBPP C/EBP&

Figure 7 Analysis of mRNA expression of specific early and late genes involved in adipogenesis by quantitative real time RT-PCR.
MSCs were challenged with HIV-1 strains (5 ng/ml) and gp120 (1 ug/ml) in the presence or absence of anti-gp120 pAb, anti p24 pAb and p5p.
Panel A and C show the up-regulation of two transcription factor gene expressions such as C/EBP B and C/EBP & involved in the early stages of
differentiation. The analysis was performed at day 3 post-stimulation and the two mRNA were significantly increased with respect to
adipogenesis differentiated cell cultures. In B and D, some late markers of adipogenic differentiation such as adipsin and UCP-1 mRNA expression
were analyzed. Adipsin was significantly up-regulated at day 10 whereas UCP-1 a marker of brown fat was barely expressed and without any
significant difference with respect to the controls. The results were expressed by the ratio between samples and the control represented by
adipogenesis differentiated cell cultures after 185 ribosomial normalization. The adipogenesis differentiated cell culture mRNA was set at 1. The
data represent the mean (+SD) of three independent experiments performed in duplicate. Statistical significance was determined using Student’s

t test with *p < 0.05.
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biological effect on mRNA and protein endothelial
marker expressions.

We also analysed whether p5p treatment may affect
the HIV-related inhibition of VEGF-driven MSC differ-
entiation. As shown in Figure 9B and 10, CD4 blockade
determined a clear recovery of vWF protein and mRNA
expression at day 7 as well as for Flt-1 and KDR (Fig-
ures 9 and 10 and data not shown) in HIV-1 and gp120
treated samples.

Discussion

Human MSCs are multipotent cells that can be isolated
from almost all tissues and organs in the human body
[55]. These cells have the potential to differentiate by

specific stimuli to different cell lineages and can be
involved in tissue repair and homeostasis [56]. Several
studies have demonstrated MSCs in the blood vessel
wall that can be differentiated to endothelial, adipocyte,
osteoblast and smooth muscle cells [38,57-59]. In parti-
cular, MSCs isolated from the blood vessel wall are
strongly involved in the control of endothelial layer
structure and vessel wall homeostasis [60] suggesting
that their impairment may play an important role in
vessel damage and atherosclerotic evolution. Since cardi-
ovascular lesions, particularly atherosclerosis, represent
major clinical manifestations during the evolution of
HIV-related disease [13-15,61], we investigated the
interaction between HIV-1 and MSCs isolated from the
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collected and flow cytometry analysis of VWF, Flt-1 and KDR protein showed an inhibition of these three markers in MSC samples challenged
with HIV-1 or gp120. In the histograms, shadowed areas represent the isotype irrelevant FITC-labeled mAb treated samples, the unshadowed
areas represent VEGF treated sample challenged with HIV-1 or gp120 with or without neutralizing anti-gp120 pAb. A typical experiment is
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vessel wall to establish whether HIV-1 is able to impair
MSC biology. This report focused on two main aspects:
the direct effects of HIV-1 challenge and gp120 treat-
ment on primary vessel wall MSCs and the impact of
viral action on MSC differentiation towards specific cel-
lular lineages to identify possible mechanisms involved
in the derangement of vascular structure observed in
HIV-1 positive individuals. Two classical HIV-1 X4 and
R5 laboratory strains were able to enter, retro-transcribe
and integrate the proviral DNA in the MSC host gen-
ome but the very low level of p24 protein content
detected in the cell supernatant raised the possibility
that the MSCs may be considered barely permissive to
HIV-1 infection.

Previous studies [39,40,43] disclosed that HIV produc-
tively infected bone marrow mesenchymal or stromal
cells to different extents. Recent data on bone marrow-
derived MSCs demonstrated that HIV-1 proviral DNA

integration was detected after HIV-infected sera chal-
lenge [42] in the absence of detectable HIV-1 p24 in the
cell supernatants. It is conceivable that the relative dis-
cordance among the results described in these studies is
related to both MSC culture isolation purity and the
specific anatomical origins (bone marrow and vessel
wall) that may induce different responses to HIV-1 chal-
lenge. Interestingly, the indication that vessel wall MSCs
were subjected to proviral DNA integration in the DNA
host genome may suggest a possible role of MSCs as a
potential infection reservoir. However, the importance
and the relative possibility of HIV reactivation by this
reservoir must be assessed by further studies to discern
its true extent and biological impact in vivo. Following
these data on the sensitivity of MSCs regarding the HIV
infection, we also studied the effects of HIV on the sur-
vival of primary MSCs. Apoptosis activation plays a
pivotal role in some HIV-1-related pathogenetic aspects
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related to specific cell lineage progressive loss [62]. Pro-
grammed cell death is considered an important pathway
involved in the progressive decline of CD4+ T lympho-
cytes and in the anemia, granulocytopenia and thrombo-
cytopenia, due to impaired CD34+ hematopoietic
progenitor survival, occurring in several patients during
HIV-related disease development [1,2,62]. Moreover, Tat
and gp120 are involved in the apoptosis of neuronal and
osteoblast cells, respectively, supporting, at least in part,
the AIDS dementia complex and the osteopenia/osteo-
porosis observed in several HIV-positive individuals
[3,4,49]. The treatment of sub-confluent vessel wall
MSCs with both HIV-1 strains lead to significant apop-
tosis activation. Interestingly, HIV-1 strains and gp120
are able to elicit apoptosis induction that is inhibited in
presence of anti gp120pAb or p5p treatment. This sug-
gests that the interaction between gp120 and CD4 plays
an important role in the activation of programmed cell
death. HIV-1 gp120 recognizes CD4 as its main receptor
even though it is well known to bind other cell recep-
tors such as the galactocerebroside molecule (GalC)
determining a wide array of biological effects from infec-
tion of susceptible cells to induction of signal transduc-
tion intracellular pathways [63]. In particular the
interaction between gp120 and CD4 determines apopto-
sis activation in several cell lineages such as CD34+
hematopoietic progenitor cells and CD4+ cells [64-66].
The vessel wall MSCs express the CD4 mRNA in the
absence of detectable amounts of CD4 protein on the
cell membrane by flow cytometry analysis. However, the
presence of CD4 protein below the sensitivity limit of

the technique cannot be ruled out because flow cytome-
try showed its detection limit at around 1,000 fluores-
cent molecules [67]. Moreover, the intracellular
detection of a low amount of CD4 in about 20% of
MSCs suggests a possible complex regulation of CD4
protein expression in these cells. It is noteworthy that
this pattern of CD4 expression (mRNA positivity and
protein undetectable on cell membrane by flow cytome-
try) was previously observed on MSC purified from
bone marrow [39] and in other cell lines sensitive to
HIV infection that underwent productive infection and/
or apoptosis induction [67-69]. Interestingly, apoptosis
activation was not detected when the MSCs were com-
mitted to fat or endothelial cells. The treatment with
differentiation inducers and the cell confluence may
tackle the HIV-1 strains/gp120-induced negative signals.
VEGEF, for example, induces a strong activation of cell
survival pathways with the phosphorylation of AKT via
activation of PI-3-kinase that determines cell survival
during the differentiation [70,71]. In addition, MSCs dif-
ferentiate when the cells are confluent suggesting a pos-
sible role of the cell cycle and then a specific pattern of
transcription factors in survival regulation.

Since the vessel wall MSCs exhibited cell differentia-
tion multipotency, we analyzed the HIV-1 impact on
MSCs when these cells were differentiated towards spe-
cific cell lineages represented by adipocytes and
endothelial cells. Adipogenesis is regulated through a
sequence of cellular and molecular events well described
in pre-adipocye cell models such as the 3T3-L1 cell line
and stem cell lines [72,73]. After the growth arrest in
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at day 7. CD4 blockade by p5p inhibited the HIV-related negative modulation of intracellular VWF protein in VEGF-differentiated cell cultures.
Shadowed areas represent samples treated with irrelevant mAb plus FITC-conjugated secondary antibody, whereas unshadowed areas are the
MSCs stained with anti-vWF mAb plus FITC-conjugated secondary antibody. A typical experiment is shown.
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confluence, the cells in these models were subjected to
clonal expansion mediated to induction of C/EBP 3 and
C/EBP § [74,75] that positively regulate the expression
of some adipocyte specific genes. In particular, these
transcription factors activate C/EBPa. and PPARy [76],
which in turn modulate the further steps of the differen-
tiation programme to adipocytes. PPARYy is a pivotal fac-
tor for in vivo adipogenesis: PPARy deficient mice are
characterized by a total absence of white and brown adi-
pose tissue [77]. In vessel wall MSCs, HIV-1 and gp120
are able to enhance adipogenesis and up-regulate
PPARYy activity. PPARy has already been described as a
target of gp120. Cotter and coworkers [78] reported
increased PPARy activation in primary osteoblasts with
a dysregulation of osteoblastogenesis also associated
with RUNX-2 inhibition. In addition, Rev and p55 were
able to activate PPARy in MSCs from bone marrow
[41]. These observations suggested that the modulation

of PPARy by HIV proteins during HIV infection may be
considered a co-factor in the lipid and bone derange-
ment observed during the HIV infection and in some
antiretroviral treatments [79]. Our data also showed that
viral infection and gp120 exposure induced an up-regu-
lation of C/EBPB and & mRNA expressions demonstrat-
ing that adipogenesis positive modulation is determined
until the first differentiation molecular steps. Interest-
ingly, C/EBPp factor modulates HIV-1 expression and
replication in monocyte/macrophages and is even acti-
vated by the gp120/CD4 interaction through the MAP
kinase pathway [80] suggesting a more complex role of
this transcription factor in HIV-1 pathogenesis. Of note,
CD4 blockade determined a significant decrease of HIV-
related adipogenesis in agreement with data described
by Cotter and coworkers in bone marrow-derived MSCs
(42). Altogether, these observations suggest that these
HIV-related pro-adipogenic effects in MSCs purified
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from different anatomical districts, might be induced, at
least in part, by CD4/gp120 binding.

Until the study by Asahara and coworkers [33], it was
generally postulated that the formation of new vessels in
the adult originated from sprouting of pre-existing ves-
sels [81,82]. More recent studies showed that endothelial
cells could also be renewed by other cell types such as
mesenchymal cells with a more complex regulation of
vessel wall structure homeostasis [36,37,83]. In particu-
lar, adult human arteries contain multipotent MSCs that
reside within specific zones of the vascular wall such as
the sub-endothelial space and vascular adventitia [37].
In our model, we analyzed the impact of HIV-1 and
gp120 protein on MSCs differentiated by VEGF treat-
ment to endothelial cells studying the mRNA and pro-
tein expression of specific endothelial markers such as
vWE, Flt-1 and KDR. Unlike adipogenesis, endothelial
differentiation was impaired by HIV-1 and gp120 as
documented by a decrease of vWF, Flt-1 and KDR
mRNA and protein expression that is strongly inhibited
by CD4 blockade. This impairment of endothelial differ-
entiation may represent an interesting additional patho-
genetic model in HIV-1 infection. The dysfunction of
endothelial cells and vascular structure has been proven
in HIV patients [9,10]. In particular, several studies have
described how chronic inflammation, platelet activation
and hypercoagulability elicit damage to endothelial
homeostasis [84-86] and may play a role in the linkage
between HIV infection and cardiovascular disease [9].

HIV-related chronic inflammation determines the
expression of several cytokines especially in mononuc-
lear cells such as IL-6, IL-8 and TNF o [22,23,87,88]
which activate endothelial cells and enhance leukocyte
adhesion. In addition, gp120 is able to determine direct
and indirect injury to endothelial cells. This viral glyco-
protein induces apoptosis in endothelial cells especially
in the lung, thereby contributing to pulmonary hyper-
tension [30,89]. HIV-1 gp120 also stimulates the activa-
tion of cytokines like IL-6 and TNF a [90] resulting in
damage to endothelial vessel structure.

Vascular injury and atherosclerosis have been
described in HIV positive patients: autopsy reports
demonstrated atherosclerotic lesions in peripheral, cor-
onary and cerebral arteries in the absence of traditional
atherosclerosis risk factors [11-13]. Several retrospective
studies performed on HIV-infected individuals have
demonstrated a two-three fold rise in the incidence of
cardiovascular disease in comparison with sex and age-
matched healthy subjects [7,16,61]. In addition, an ana-
lysis of surrogate markers of coronary artery disease
showed that carotid artery intima-media thickness
(IMT) is increased up to 24% in HIV-infected patients
with respect to controls [13].
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The HIV-related mechanisms of atherosclerosis induc-
tion and cardiovascular damage remain unsettled. Some
studies have suggested that the atherosclerosis induction
observed in HIV-positive patients is linked to the direct
effect of HIV infection and/or viral proteins on choles-
terol metabolism in monocytes [28,91,92]. These cells
represent the precursors of the lipid foam cells within
the atherosclerotic plaque producing a high level of IL-
6, a cytokine positively regulated also by Tat [10,21,24].
The foam cells produce proatherogenic factors such as
chemokines, cytokines and metalloproteinases, which
promote plaque expansion with instability of lesions and
vascular cell degeneration and apoptosis [10,29]. In
addition, chronic infection and endothelial damage
determine a significant increase in monocyte migration
exacerbating vessel damage [25].

Conclusions

Our data suggest an additional HIV-related mechanism of
vessel wall and endothelial layer injury, involving MSCs.
HIV affects MSC biology acting on both uncommitted
and committed MSCs. HIV is able to integrate its genome
in vascular wall MSC DNA. Apoptosis activation is mainly
activated through the gp120/CD4 interaction that also
plays an important role even in differentiation derange-
ment. This shows a direct effect on primary MSCs that
decreases the viable MSCs suited for vessel structure
homeostasis. Our findings may even suggest the role of
reservoir for HIV infection in MSCs although the true
clinical and virological impact awaits clarification.

HIV and gp120 negatively influence endotheliogenesis
thereby facilitating diffuse vascular damage and the pro-
motion and development of atherosclerosis lesions due
to impaired MSC repair control of endothelial and ves-
sel structure. On the other hand, HIV and gp120 induce
the differentiation of MSCs to adipocytes through
PPARYy activity and C/EBP B expression up-regulation
leading to speculate that not all subintimal foam cells
originate from monocytes. The HIV-related induction of
adipocyte differentiation can determine a derangement
of MSC differentiation balance with a possible involve-
ment in atherosclerosis genesis and development. Inter-
estingly, some peculiar lesions are found in
atherosclerothic vessel degeneration such as cartilagi-
nous metaplasia with endocondral ossification and fat
tissues, especially in inflammatory abdominal aortic
aneurysms [93,94] that have not been well explored and
might be related to dysregulated MSC differentiation.
Altogether, these results indicate that HIV and gp120
have a strong direct impact on vessel wall MSC biology
and differentiation. These observations may help to
explain the early and diffuse atherosclerosis and vascular
damage observed in HIV-infected patients.
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