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Variations in autologous neutralization and CD4
dependence of b12 resistant HIV-1 clade C env
clones obtained at different time points from
antiretroviral naïve Indian patients with
recent infection
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Abstract

Background: Limited information is available on HIV-1 Indian clade C sensitivities to autologous antibodies during
the course of natural infection. In the present study, a total of 37 complete envelope clones (Env) were amplified
at different time points predominantly from the plasma of five Indian patients with recent HIV-1 infection and
envelope-pseudotyped viruses were examined for their magnitude of sensitivity to autologous plasma antibodies
during natural course of infection.

Results: Variable low levels of neutralization were consistently detected with contemporaneous autologous plasma.
In contrast to clade B and African clade C HIV-1 envelopes, Env clones obtained from four patients were found to be
resistant to IgG1b12. The majority of the Env clones were resistant to 2G12 and 2F5 due to the absence of the
minimal motifs required for antibody recognition, but were sensitive to 4E10. Nonetheless, Env clones from one
patient were found to be sensitive to 2G12, atypical for clade C, and one Env clone exhibited unusual sensitivity to
17b, suggesting spontaneous exposure of CD4i epitopes. Phylogenetic analysis revealed that Env clones were closely
clustered within patients. Variation in the potential N-linked glycosylation pattern also appeared to be different in
patients over the course of infection. Interestingly, we found that the sensitivity of Envs to contemporaneous
autologous NAbs correlated positively with increased sensitivity to soluble CD4 and inversely with anti-CD4 antibody
and Envs with increased NAb sensitivity were able to efficiently infect HeLa cells expressing low CD4.

Conclusion: Our data showed considerable variations in autologous neutralization of these early HIV-1 clade C
Envs in each of these patients and indicate greater exposure to CD4 of Envs that showed increased autologous
neutralization. Interestingly, Env clones obtained from a single patient at different time points were found to retain
sensitivity to b12 antibody that binds to CD4 binding site in Env in contrast to Envs obtained from other patients.
However, we did not find any association between increased b12 sensitivity of Envs obtained from this particular
patient with their degree of exposure to CD4.

Background
Induction of broadly neutralizing antibodies (NAbs)
against diverse strains of Human Immunodeficiency
Virus Type 1 (HIV-1) remains an important goal for
vaccine development [1-3]. Major obstacles are the

remarkable sequence variability of the envelope glyco-
proteins (Env) and the masking of critical neutralizing
epitopes by N-linked glycans and other structural and
steric constraints [4-6]. Most HIV-1-infected individuals
mount a strong autologous NAb response within the
first 6 to 12 months of infection that is highly specific
for the subject’s transmitted/founder virus. The response
generally broadens after several years of infection, where
in approximately 10-20 percent of cases the antibodies
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exhibit considerable breadth of neutralization against
diverse strains [7-15].
HIV-1 entry is mediated by binding of trimeric gp120

spikes to CD4 receptor that in turn exposes coreceptor
binding sites and facilitates fusion of viral and cell mem-
brane [16]. NAbs bind to exposed epitopes on Env tri-
mers and thereby compromise HIV-1 entry [17,18,6,19].
The discovery of broadly neutralizing monoclonal anti-
bodies (MAbs) from HIV-1-infected patients with the
ability to neutralize diverse primary HIV-1 isolates
[20-23], suggested that there are indeed vulnerable epi-
topes on the functional Env trimer [24]. Thus, MAb
IgG1b12 binds the CD4-binding site (CD4bs) of gp120
[25] and neutralizes more than 50% of HIV-1 clade B
and approximately 30% of non-clade B viruses [26,27].
Although many neutralization epitopes can be masked
by N-linked glycans, one MAb, 2G12 [28,29], binds to
specific glycan residue and neutralizes many clade B iso-
lates but has limited breadth against non-clade B iso-
lates [26,30,31]. In addition, highly conserved sequences
[32] in the coreceptor binding site (also known as CD4-
induced or CD4i region) are potential targets for virus
neutralization [33-36]. Thus, antibodies mimicking pro-
totype MAb 17b show significant virus neutralization
after triggering gp120 with soluble CD4 (sCD4) [24].
Apart from epitopes in gp120 recognized by broadly
neutralizing MAbs, the membrane proximal external
region (MPER) in gp41 is vulnerable to NAbs and found
to be a target of three well characterized MAbs 2F5,
4E10, and Z13 [37-39]. Antibodies targeting the MPER
of gp41 neutralize HIV-1 by blocking viral fusion with
the cell membrane and thereby preventing viral entry
[40]. 59). Interestingly, these types of antibodies are
rarely detected during natural infection [22,41,42].
Being highly variable, Env remains a major target of

the NAb response in HIV-1-infected individuals; thus,
Env-driven antibodies have been shown to neutralize
autologous virus variants moderately over time
[12,13,43,44], followed by rapid escape from neutraliza-
tion. Autologous NAbs appear to be directed to variable
regions of gp120 and are influenced by the pattern of
surface Env glycosylation that varies widely among HIV-
1 strains [9,10,44-52]. These data indicate that despite a

limited role for autologous NAbs in the control of vire-
mia, the antibodies exert selection pressure on Env early
in infection. In the case of HIV-1 clade B, the V1, V2
and V3 domains have also been shown to mediate CD4
independence, cellular tropism and receptor utilization
in addition to neutralization sensitivity [49,53-65].
HIV-1 clade C is the dominant genetic subtype circulat-

ing in India, Sub-Saharan Africa and China [66-70].
Though much information on autologous NAbs against
HIV-1 African clade C is available [9,10,42,49,50,52,71,72],
very limited information is available on the neutralization
properties of subtype C HIV-1 in India. Current evidence
suggests that sequences for the Indian HIV-1 clade C Env
and other genes such as gag and nef form a monophyletic
lineage and segregate separately as a sub clade within the
more diverse subtype C strains from Africa [69,73-77].
Recently, Kulkarni et al [27] demonstrated that newly
transmitted Indian Envs are antigenically complex despite
close genetic similarity. In this paper, we examined the
NAb response in subtype C HIV-1-infected individuals in
India by using Env clones amplified from uncultured per-
ipheral blood mononuclear cells (PBMC) at the baseline,
and plasma at the follow up visits of five recently infected
subjects and assessed autologous NAbs at different time
points for one year. We found that patient Envs varied
considerably in their sensitivities to their autologous
plasma antibodies and differed in their susceptibilities to
MAbs, indicating distinct mechanisms of autologous neu-
tralization and antibody specificities in these patients.

Results
Genetic properties of clade C env clones
Study subjects are described in Table 1. More than one
env clones was obtained from each of five recently
infected HIV-1 positive individuals from India at a base-
line visit and 6 and 12 months later except for subject
IVC5, for whom the last visit was at 24 months (Table
2). Env clones from the baseline visit were obtained
from infected PBMC DNA whereas for follow up visits,
env was amplified from plasma viral RNA. Phylogenetic
analyses of the complete gp160 amino acid sequences
revealed that the Env clones were indeed subject specific
(Figure 1), with intra-clonal genetic divergences between

Table 1 Patient details

Plasma HIV-1 RNA (copies/ml) CD4 count (cells/mm3)

Patient ID Mode of Transmission Year of Infection Baseline F1 (moths) F2 (months) Baseline F1 (months) F2 (months)

NARI-IVC-2 Heterosexual 2008 8400 3070 (6) 17700 (12) 479 503 (6) 135 (12)

NARI-IVC-3 Heterosexual 2006 5380 29700 (6) 15700 (12) 592 499 (6) 477 (12)

NARI-IVC-4 Heterosexual 2006 37800 UD (6) UD (12) 328 374 (6) 402 (12)

NARI-IVC-5 Heterosexual 2006 1410 9040 (6) 48600 (24) 606 619 (6) 427 (24)

NARI-IVC-11 Heterosexual 2007 33400 11900 (6) 17300 (12) 552 693 (6) 590 (12)

UD: undetermined
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Env clones obtained from the same subject but at differ-
ent time points indicated ongoing viral evolution. All
Envs possessed low net V3 loop charge, a conserved
GPGQ motif (Additional file 1: Figure S1) and were
found to be CCR5 tropic (Table 2). Except for patients
IVC 3 and IVC 4, no significant variation in total N-
linked glycosylation sites (PNLG) was found at the three
time points sampled (Figure 2); the number of PNLG

varied between 25-31 (Table 2). Median gp160 lengths
varied between patients; however they did not differ sig-
nificantly between clones obtained from the same
patient at different times (Figure 3). Although there
were no major differences between the variable loops of
the patient-specific envelope clones obtained at different
time points, Env clones 3-3.J9, 3-5.J25 and 5-4.J49, 5-4.
J16 amplified from patients IVC 3 and IVC 5 were

Table 2 Genetic properties of patient Env clones

Patient ID Clone ID/Follow up Schedule† Source gp120 length gp41 length PNLG sites Net V3 loop charge CoR usage

2.J8/B PBMC 466 352 25 3 CCR5

2.J9/B PBMC 466 352 26 3 CCR5

2-3.J4/F1 PLASMA 465 352 30 3 CCR5

NARI-IVC2 2-3.J7/F1 PLASMA 466 352 29 3 CCR5

2-3.J17/F1 PLASMA 460 352 28 3 CCR5

2-3.J18/F1 PLASMA 465 352 30 3 CCR5

2-5.J3/F2 PLASMA 466 345 31 3 CCR5

2-5.J11/F2 PLASMA 465 352 29 2 CCR5

3.J16/B PBMC 466 352 27 5 CCR5

NARI-IVC3 3-3.J9/F1 PLASMA 459 352 28 5 CCR5

3-5.J25/F2 PLASMA 458 352 29 4 CCR5

3-5.J38/F2 PLASMA 463 352 31 3 CCR5

4.J2/B PBMC 462 352 30 3 CCR5

4.J22/B PBMC 462 352 30 3 CCR5

4.J27/B PLASMA 461 352 29 3 CCR5

4-2.J41/F1 PLASMA 458 352 27 2 CCR5

4-2.J45/F1 PLASMA 460 345 27 2 CCR5

NARI-IVC4 4-2.J42b/F1 PLASMA 464 345 27 2 CCR5

4-2.J45b/F1 PLASMA 459 345 26 2 CCR5

4-2.J46b/F1 PLASMA 464 345 28 2 CCR5

4-2.J47b/F1 PLASMA 459 345 27 2 CCR5

4-5.J5/F2 PLASMA 455 345 28 2 CCR5

5.J41/B PBMC 472 351 29 2 CCR5

5-3.J2/F1 PLASMA 461 351 26 3 CCR5

5-3.J4/F1 PLASMA 472 351 29 3 CCR5

5-3.J5/F1 PLASMA 461 362 30 3 CCR5

5-3.J9/F1 PLASMA 472 351 29 3 CCR5

NARI-IVC5 5-4.J16/F2 PLASMA 464 351 31 3 CCR5

5-4.J18/F2 PLASMA 475 351 30 4 CCR5

5-4.J22/F2 PLASMA 464 351 28 3 CCR5

5-4.J49/F2 PLASMA 475 351 30 3 CCR5

11.J25/B PBMC 461 352 27 4 CCR5

11.J28/B PBMC 461 352 27 4 CCR5

11-3.J3/F1 PLASMA 458 352 28 4 CCR5

NARI-IVC11 11-3.J9/F1 PLASMA 457 352 27 4 CCR5

11-3.J16/F1 PLASMA 457 352 26 4 CCR5

11-5.J12/F2 PLASMA 461 352 28 3 CCR5

† B = Baseline sample; F1 = First Follow up and F2 = Second follow up.

Ringe et al. Retrovirology 2010, 7:76
http://www.retrovirology.com/content/7/1/76

Page 3 of 15



found to have shorter V1 and V2 loops compared to the
contemporaneous Env clones (Additional file 1: Figure
S1).

Neutralization sensitivity of clonal Envs to autologous
plasma varied between study subjects
We next assessed the autologous neutralization of Env
clones amplified at three different time points from each
of five subjects. All five subjects mounted a moderate
NAb response against their early viruses obtained at the
baseline except patient IVC2; however this phenotype
varied with respect to contemporaneous plasma antibo-
dies (Table 3). Surprisingly, only 1/8 clones from subject
IVC-2 was neutralized by the plasma samples obtained
at later time points, whereas a few (3/8) Env clones
were neutralized by the contemporaneous plasma. Thus,
while the autologous NAb response to early Env clones
improved over time in four subjects, it diminished over
time in one subject. This observation was correlated

with a gradual decline in CD4, indicating that autolo-
gous NAb possibly has selected the fittest Env variants
capable of faster disease progression in this particular
patient. The majority of the Envs obtained from follow
up visits were resistant to contemporaneous autologous
plasma antibodies indicating rapid escape of viral var-
iants. The persistence of a few sensitive Envs such as 3-
3.J9/F1, and 4-2.J45 during this period of infection
despite mounting humoral immune pressure may indi-
cate that these Env variants had adapted to sustain such
immune pressure possibly through certain compensatory
changes in Env sequence and retained their sensitivities
to autologous neutralizing antibodies.

Neutralization phenotype of the Envs as assessed with
common neutralizers
To test if the Envs obtained from patients at different
time points varied in their sensitivities to common
broadly neutralizing MAbs, pseudotyped viruses carrying

Figure 1 Phylogenetic relationships between inter and intra-patient Env gp160 amino acid sequences used to study virus
neutralization as determined by Neighbor-Joining maximum likelihood tree using Mega 4.1. Bootstrapped values indicated that Env
sequences were patient specific and indicated monophyletic clustering of intra-patient Env.
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patient Envs were tested in neutralization assays with
sCD4 and five MAbs (b6, IgG1b12, 2G12 targeting
gp120 and 2F5, and 4E10 targeting gp41). As shown in
Table 4 the majority of Env clones were sensitive to
sCD4 at concentrations ranging from 0.1 to 6.66 μg/ml.
The pseudoviruses that required excess (>6.66 μg/ml)
sCD4 for 50% neutralization were considered as resis-
tant in our study. Consistent with the earlier report [27]
all Env variants were resistant to 2G12 except those
obtained from IVC-3 patient and this resistance was
associated with the absence of PNLG at position 295
(HXB2 numbering) at the N-terminal base of V3 loop.
The sensitivity of IVC-3 env clones was due to the pre-
sence of N295, atypical of clade C. In contrast to clade
B and African clade C viruses [10,26], envelopes from
patient IVC 3, 4, 5, 11 were found resistant to IgG1b12.
This observation of b12 resistance of the India clade
Envs is in line with that reported by Kulkarni et al [27].
As with the MPER-specific MAbs, all the Envs were
resistant to 2F5 at the highest concentration tested
(Table 4). Interestingly, while 2F5 resistance was found
to be associated with the absence of DKW motif in
gp41 in most of the Envs, this motif was found to be
present in IVC3-3-9F1, IVC3-5-25F2, and all the Envs
obtained from IVC-11 and conferred resistance as

shown in Additional file 2: Table S1. Our data indicate
that residues outside MPER domain possibly modulated
2F5 sensitivity despite the presence of a minimum DKW
motif in MPER for 2F5 sensitivity. The ability of 4E10 to
neutralize all the env clones was in agreement with the
presence of WFXI motif in gp41; however 4 Envs
(4-2_NEM.J46b, 4-5_NEM.J5, 5-3_NEM.J4 and 5-3_NEM.
J9) despite having WFXI motif (a minimum 4E10 recogni-
tion motif), they were found to be moderately resistant to
4E10 up to a concentration of 6.66 μg/ml (Additional file
1: Figure S1 and Additional file 2: Table S1).

Envs from one patient (NARI-IVC2) were moderately
sensitive to IgG1b12 but were resistant to
contemporaneous plasma antibodies
In contrast all others, Envs amplified from a patient
(NARI-IVC2) showed reasonable sensitivity to b12 MAb
that targets CD4bs in Env. As shown in Figure 4, these
Envs were found to provide a 50% reduction in infection
in TZM-bl cells at concentrations ranging from 0.2 to
2.23 μg/ml. The extent of b12 sensitivities of Envs
obtained from this particular patient were found to be
much higher than the two b12-sensitive Indian clade C
Envs reported by Kulkarni et al [27]. The degree of b12
sensitivity of IVC Envs, however, did not correlate with

Figure 2 Variations of PNLGs in patient Envs at different time points during the course of infection. The bar represents median values.
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their sensitivity to sCD4 and contemporaneous plasma
antibodies. Thus, Envs 2-3.J18, 2-5.J3 and 2-5.J11 which
showed the highest neutralization sensitivity (IC50 of 0.5,
0.29 and 0.21 μg/ml respectively) to b12 required more
sCD4 for 50% neutralization and except for 2-3.J18
showed neutralization resistance to contemporaneous
plasma antibodies (Tables 3 and 4). Our data indicated
that escape from contemporaneous NAbs in turn
mounted structural constraints in Env specifically on
CD4 binding site. This feature therefore possibly con-
tributed in reduced sensitivity of NAb resistant IVC2
envelopes to sCD4, although all envelopes in this patient
surprisingly retained b12 sensitivity.

Sensitivity of Envs to contemporaneous autologous NAbs
correlated positively with increased sensitivity to sCD4
and inversely with anti-CD4 antibody
To assess whether the increased sensitivity of patient
envelopes to autologous NAbs could be due to greater
flexibilities of gp120 interactions with CD4, we next
compared the sensitivities of patient Envs to autologous
plasmas, sCD4 and an anti-CD4 monoclonal antibody
(SIM.2) (hybridoma supernatant) that blocks gp120-CD4
binding. Interestingly, Envs that were resistant to con-
temporaneous plasmas were less sensitive to sCD4 and

required less anti-CD4 antibody (SIM.2) for 50% inhibi-
tion. Thus, as shown in Figure 5, a positive association
was seen between Env sensitivity to contemporaneous
autologous plasma and an increased sensitivity to sCD4
and inverse correlation between Env sensitivity to auto-
logous NAb anti-CD4 antibody, suggesting that Envs
with increased sensitivities to sCD4 exhibited greater
exposure of epitopes than are targeted by autologous
antibodies. The reduced sensitivity of Envs to SIM.2
suggests that Envs with more exposed epitopes for
sCD4 require more anti-CD4 antibody for optimum
inhibition to entry. Overall, the sensitivities of Envs to
sCD4 varied and inversely correlated with their inhibi-
tion by SIM.2.

Increased sensitivity of patient Envs to contemporaneous
NAb and sCD4 correlated with reduced CD4 dependence
We next investigated if Envs with increased sensitivity to
autologous antibodies and sCD4 exhibited greater bind-
ing to cell surface CD4. Thus, HeLa cells expressing low
CD4 but high CCR5 (RC49 cell line) were infected with
Env-pseudotyped viruses and the degree of infection was
obtained by measuring the intracellular p24. As shown
in Figure 6, Envs with increased sensitivity to autologous
NAbs (such as 2-3.J18, 3-3.J9, 4.J2, 4-2.J45, 5-4.J22 and

Figure 3 Variations in total gp160 lengths of Env clones obtained at different times in each patient during the course of infection.
Each bar represents median gp160 residues. Note that significant differences in median gp160 lengths of Envs between IVC 2 and 4, IVC 2 and
11, IVC 4 and 5 and IVC 5 and 11.
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5-4.J49) showed reduced CD4 dependence. However,
this phenomenon was found to be independent of the
patients and the follow up times examined here (Addi-
tional file 3: Figure S2). As expected, we found that

increased sensitivity of Envs to autologous NAbs was
correlated with reduced CD4 dependence (P < 0.0155)
and increased susceptibility to sCD4 (P < 0.0001) (Fig-
ure 7). Collectively, our data showed an inverse

Table 3 Neutralization sensitivity of patient envelopes to
autologous plasma antibodies

Env
clones

Baseline
plasma

Plasma First visit
(F1)

Plasma Second visit
(F2)

2.J8 601 228 <20

2.J9 522 240 <20

2-3.J4 350 <20 <20

2-3.J7 374 <50 <20

2-3.J17 300 <20 <20

2-3.J18 <20 540 652

2-5.J3 <50 <20 <20

2-5.J11 50 <20 <20

3.J16 195 696 2389

3-3.J9 349 554 1053

3-5.J25 <20 <20 184

3-5.J38 <20 <20 72

4.J2 421 2671 3848

4.J22 87 811 1172

4.J27 74 773 871

4-2.J41 103 98 406

4-2.J45 3375 6287 8307

4-2.J42b 60 <20 115

4-2.J45b 70 <50 500

4-2.J46b <50 <50 160

4-2.J47b 72 <50 340

4-5.J5 64 <20 244

5.J41 <20 110 1934

5-3.J2 <20 <20 1845

5-3.J4 <20 <20 1067

5-3.J5 <20 <20 1161

5-3.J9 <20 <20 1104

5-4.J16 <20 <20 <50

5-4.J18 <20 <20 <50

5-4.J22 <20 <50 223

5-4.J49 <20 <50 180

11.J25 66 2158 2830

11.J28 76 2008 2310

11-3.J3 <20 <50 1193

11-3.J9 <20 <20 148

11-3.J16 <20 <20 201

11-5.J12 <20 <20 <50

Values are reciprocal titer of patient plasma resulting 50% reduction in
relative luminescence unit (RLU) as an indicator of neutralization sensitivity in
TZM-bl cells following infection with pseudoviruses with 200TCID50. The ID50

values are average of two independent assays wherein each assay was done
in duplicates.

Table 4 Neutralization sensitivity to monoclonal
antibodies, sCD4 and anti-CD4

Env clones b6 b12 2G12 17b 2F5 4E10 sCD4 SIM.2*

2.J8 >6.66 2.23 >6.66 >6.66 >6.66 0.34 3.66 120

2.J9 >6.66 2.16 >6.66 >6.66 >6.66 0.38 3.27 104

2-3.J4 >6.66 1.97 >6.66 >6.66 >6.66 3.36 >6.66 260

2-3.J7 >6.66 2.19 >6.66 >6.66 >6.66 5.85 >6.66 260

2-3.J17 >6.66 2.04 >6.66 >6.66 >6.66 4.85 >6.66 106

2-3.J18 >6.66 0.5 >6.66 5.1 >6.66 4.5 >6.66 37

2-5.J3 >6.66 0.29 >6.66 >6.66 >6.66 2.69 >6.66 201

2-5.J11 >6.66 0.21 >6.66 >6.66 >6.66 0.32 6.05 152

3.J16 >6.66 >6.66 4.20 >6.66 >6.66 0.23 0.54 103

3-3.J9 >6.66 >6.66 0.18 2.9 >6.66 0.3 0.1 76

3-5.J25 >6.66 >6.66 4.85 >6.66 >6.66 2.6 3.3 106

3-5.J38 >6.66 >6.66 4.30 >6.66 >6.66 2.22 >6.66 79

4.J2 >6.66 >6.66 >6.66 >6.66 >6.66 0.28 0.5 10

4.J22 >6.66 >6.66 >6.66 >6.66 >6.66 4 >6.66 138

4.J27 >6.66 >6.66 >6.66 >6.66 >6.66 5.28 >6.66 142

4-2.J41 >6.66 >6.66 >6.66 >6.66 >6.66 2.64 2.28 164

4-2.J45 >6.66 >6.66 >6.66 >6.66 >6.66 3.94 2.53 50

4-2.J42b >6.66 >6.66 >6.66 >6.66 >6.66 5 >6.66 224

4-2.J45b >6.66 >6.66 >6.66 >6.66 >6.66 6.2 >6.66 265

4-2.J46b >6.66 >6.66 >6.66 >6.66 >6.66 >6.66 >6.66 240

4-2.J47b >6.66 >6.66 >6.66 >6.66 >6.66 6.5 >6.66 212

4-5.J5 >6.66 >6.66 >6.66 >6.66 >6.66 >6.66 >6.66 334

5.J41 >6.66 >6.66 >6.66 >6.66 >6.66 0.29 0.5 114

5-3.J2 >6.66 >6.66 >6.66 >6.66 >6.66 5.6 >6.66 119

5-3.J4 >6.66 >6.66 >6.66 >6.66 >6.66 >6.66 >6.66 119

5-3.J5 5.9 >6.66 >6.66 >6.66 >6.66 5.66 >6.66 210

5-3.J9 >6.66 >6.66 >6.66 >6.66 >6.66 >6.66 >6.66 222

5-4.J16 >6.66 >6.66 >6.66 >6.66 >6.66 2.32 2.94 320

5-4.J18 >6.66 >6.66 >6.66 >6.66 >6.66 2.52 >6.66 157

5-4.J22 2.5 >6.66 >6.66 >6.66 >6.66 0.24 0.23 44

5-4.J49 5.9 >6.66 >6.66 >6.66 >6.66 0.52 0.53 121

11.J25 >6.66 >6.66 >6.66 >6.66 >6.66 0.34 3 99

11.J28 >6.66 >6.66 >6.66 >6.66 >6.66 0.32 2.4 88

11-3.J3 >6.66 >6.66 >6.66 >6.66 >6.66 5.64 >6.66 548

11-3.J9 >6.66 >6.66 >6.66 >6.66 >6.66 3.35 >6.66 555

11-3.J16 >6.66 6.05 >6.66 >6.66 >6.66 3.25 >6.66 585

11-5.J12 >6.66 >6.66 >6.66 >6.66 >6.66 2.67 >6.66 571

Values are concentrations resulting 50% reduction in relative luminescence
unit (RLU) as an indicator of neutralization sensitivity in TZM-bl cells following
infection with pseudoviruses with 200TCID50. The IC50 values are average of
two independent assays wherein each assay was done in duplicates. * The
values corresponding to anti-CD4 SIM.2 is hybridoma fluid are reciprocal
dilutions giving 50% reduction in relative luminescence unit (RLU).
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association of autologous neutralization sensitivity of
patient Envs with CD4 dependence.

Discussion
In contrast to the HIV-1 neutralization properties of
African clade C, there is only one report on the neutra-
lization properties of HIV-1 clade C Env clones ampli-
fied from co-cultured PBMCs of acutely infected Indian
patients [27]. One of the disadvantages in obtaining Env
clones from co-culture is that it would potentially select
for virus variants that become adapted for favorable
replication in the absence of any immune pressure in
vitro. This process would therefore fail to select viruses
growing in vivo which are responsible for the pathogen-
esis in the natural course of infection. In the present
study, we characterized for the first time the autologous
NAb response in subtype C HIV-1 infected Indian
patients using multiple molecular Env clones amplified
without culture from each study subject. We found that
while moderate NAb responses developed in three sub-
jects (IVC 3, 4 and 11), no significant NAb response
was detected at all three time points against contem-
poraneous autologous virus in the remaining two sub-
jects (IVC 5 and IVC 11). In agreement with previous
reports, as with both subtype B and African subtype C
Envs, we found that in four patients (IVC3, 4, 5 and 11),
Envs obtained at baseline and earlier time points were
neutralized by plasma antibodies obtained at later time

points, indicating repeated cycles of escape [45,52]. Of
potential interest, Env clones obtained at all time points
from IVC2 patient were moderately sensitive to
IgG1b12, whereas Env clones from the remaining sub-
jects were resistant to this MAb. Surprisingly NAb
response in this patient waned over the period of time
as plasma from later time points failed to neutralize
many contemporaneous as well as earlier envelopes.
Intriguingly, no correlation was observed between b12
sensitivity and sCD4 sensitivity as the b12 epitope over-
laps CD4 binding site. One plausible explanation for
this observation could be that this patient did not
develop b12 like antibodies and possibly the absence of
selective pressure on the b12 binding site caused the
high sensitivity of these envelopes from IVC-2 towards
b12. It was also possible that due to lack of co- evolu-
tion of b12 and other CD4 binding sites in Env, we did
not find any association between b12 and sCD4 sensitiv-
ities to Env clones obtained from this particular patient.
These observations indicate the presence of compensa-
tory amino acid residues in the IVC-2 Env clones posi-
tioned either in the CD4bs or in the proximity that
favored enhanced neutralization by b12 MAb. It would
be important to further investigate the Env sequence
that modulated b12 sensitivity in this patient.
Although we found repeated cycles of escape from

autologous NAbs in all the patients, one Env variant (4-
2_NEM.J45) obtained from patient NARI-IVC4 at the

Figure 4 Sensitivity of Env clones amplified from IVC2 patients to IgG1b12 antibody. Env-pseudotyped viruses were incubated with
IgG1b12 at indicated concentrations for 1 hour before TZM-bl cells were added as described in the Methods. The reduction of infectivity of
TZM-bl cells was measured as a function of the degree of IgG1b12 mediated neutralization of these Envs.
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first follow up retained unusually high sensitivity to con-
temporaneous and earlier and follow-up plasmas with a
mean ID50 of greater than 1: 3000. The persistence of
this sensitive Env against which high titer of NAb was
developed for at least 6 months makes this envelope
interesting; in particular retention of neutralizing epi-
topes under immense humoral immune pressure prob-
ably indicates that this envelope might be more fit in
terms of CTL pressure or increased infectivity to com-
pensate for increased sensitivity to NAbs as previously
described by Moore et al [45,52]. When tested against
common HIV-1 neutralizing MAbs, most Envs obtained
at different time points from all the five participants
were resistant to IgGb6, IgG1b12, 2G12 and 2F5 and
sensitive to 4E10 only. Intriguingly, two Env variants
each from subjects IVC4 and IVC5 despite containing
the minimum WFXI motif in gp41 MPER domain for
4E10 recognition, were found to require 4E10 antibody
in excess (>6.66 μg/ml) of that required to provide 50%

neutralization compared to all other Envs. Nakamura
et al [78] recently showed that while F673N and
W680G confers 4E10 resistance of HIV-1 envelopes,
W680R showed variable 4E10 resistance. In all cases,
IC50 values were reported to be in the range of greater
than 50-100 μg/ml. In our study, we did not find any of
these substitutions in these four Envs, suggesting that
the relative resistance of these Envs over others tested
here are probably due to changes outside the MPER.
Nonetheless, these 4 Envs showed 30-40% sensitivity to
4E10 at a concentration of 6.66 μg/ml, indicating these
Envs required excess 4E10 for 50% neutralization but
certainly not as much as that would require for W680G
or F673N as shown by Nakamura et al [78]. One Env
variant each from subjects IVC2 and IVC 3 obtained at
first follow up visits that showed unusual sensitivity to
17b, indicating exposed CD4i epitopes. These two Env
variants in contrast to the majority of the Env clones
were also found to be efficient at infecting HeLa cells

Figure 5 Correlations between autologous neutralization sensitivities of patient Envs with their relative susceptibilities to sCD4 and
anti-CD4 antibody (SIM.2). Note that Envs that required sCD4 more than 6.66 μg/ml were given a value of 7 μg/ml for the benefit of
calculation. A strong correlation was observed between autologous neutralization and Env sensitivity to sCD4 (P < 0.0001) and SIM.2 (P = 0.0004)
and between Env susceptibilities to sCD4 and anti-CD4 (P =< 0.0001).
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expressing low levels of CD4 thereby indicating the pre-
sence of exposed CD4i epitopes on Env that enabled
them to productively infect HeLa cells expressing low
CD4. Nonetheless, two Env variants (5.4.J22 and 5.4.J49)
obtained from IVC 5 patient at 2 years showed
increased infectivity to HeLa cells expressing low CD4
but were resistant to 17b, indicating that these Envs
evolved to conceal their coreceptor binding region on

gp120 without compromising low CD4 dependence in
the same way that most circulating variants do.
How NAbs drive the Env evolution that impacts on

CD4 affinity, tropism and sensitivity to NAbs is not very
clear in early HIV-1 clade C infection although two
groups using HIV-1 clade B Envs showed association of
R5 macrophage tropism with increased CD4 affinity
consistent with increased resistance to anti-CD4

Figure 6 Variation in CD4-dependence of pseudoviruses carrying patient Envs. Pseudoviruses carrying distinct patient Envs were used to
infect HeLa cells (RC49 cell line) and the infectivity expressed as percentage infection of these pseudoviruses that infected HeLa cells expressing
high CD4 and high CCR5 (JC53 cell line).

Figure 7 Correlation between CD4 dependence of patient Envs with their sensitivities to autologous plasma antibodies and sCD4.
Association of CD4 usage of Env-pseudotyped viruses with autologous plasma antibodies and (P < 0.0155) and sCD4 (P < 0.0001) indicated that
Env-pseudotyped viruses with low CD4 dependence tend to be more susceptible to autologous NAb in the patients tested here.
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monoclonal antibodies [79,80]. Although in general, the
majority of the Envs obtained from all the patients were
moderately sensitive to sCD4, we found a few Envs (5.
J41, 4-5.J5, 5-4.J16, 11.J25 and 11.J28) that showed auto-
logous antibody resistance but were moderately sensitive
to sCD4 indicating that these Envs evolved strategies in
escaping autologous neutralization however they
retained a very high affinity for the CD4 receptor. The
CD4 binding site (CD4bs) on Env experiences most
selective pressure as potent NAbs are directed to this
domain as documented earlier [15,49]. Under this selec-
tive pressure exerted by humoral immunity, CD4bs is
compelled to acquire changes in Env sequences to
escape from NAbs that in turn would restrict Env bind-
ing efficiently to CD4 receptors [81]. In our study we
found that all the Envs that were sensitive to autologous
plasma antibodies were moderately susceptible to sCD4
indicating in this scenario, autologous NAbs were
mostly directed towards the CD4 binding domain and
escape from NAbs possibly had compromised Env bind-
ing with CD4. When tested for the extent of CD4 expo-
sure of gp120, Envs that were sensitive to autologous
antibodies as well as to sCD4 were found to require less
cell surface CD4 for efficient entry, indicating an inverse
correlation between Env sensitivity to autologous NAbs
and CD4 dependence. The relationship between sensi-
tivity of Envs to sCD4 and anti-CD4 antibodies with
variable dependence to cell surface CD4 were described
previously by different investigators. Gorry et al [82]
showed that a neurotropic Env obtained from brain tis-
sue with higher affinity to CD4 was found to be increas-
ingly sensitive to CD4 mimetic, CD4-IgG2. Later,
Dunfee et al [83] showed that Envs with N283 substitu-
tion could productively infect cells expressing low cell
surface CD4 and show greater affinity to sCD4. Similar
observations were found by Vermeire et al [81], where
they showed that a NL4-3 variant that evolved to infect
cells expressing low CD4 in presence of the small mole-
cule CADA was found to be highly susceptible to het-
erologous sera and was concordant with increased
sensitivity and resistance to sCD4 and anti-CD4 respec-
tively. In addition, Peters et al [79,84] demonstrated that
patient-derived Envs that were able to exploit low CD4
on cell surface were proportionately resistant and sensi-
tive to anti-CD4 antibody and sCD4 respectively.
In conclusion, in the present study, we have shown for

the first time the neutralization properties of HIV-1
India clade C Env clones obtained from patients fol-
lowed up with recent infection over time to their autolo-
gous antibodies during the natural course of infection
and investigated their genetic relatedness with sensitivity
to known broadly neutralizing monoclonal antibodies
and degree of exposure to CD4 for efficient entry.
While variations in autologous neutralization of viruses

are expected, all available data on the mechanisms of
resistance and sensitivity to neutralizing antibodies of
geographically diversified HIV-1 clade C that contributes
to major global HIV-1 pandemic will help designing
strategies fostering vaccine discovery.

Methods
Patient details, PBMC and plasma samples
All five recently infected study subjects acquired HIV-1
through heterosexual contacts and were ART naïve at
the time of blood collection. The mean CD4 counts ran-
ged from 328-606 cells per cubic millimeter (mm3).
Based on detuned ELISA results [85-87] and history of
exposure within the last 6 to 8 months, these patients
were selected as recently infected patients for further
characterization. Plasmas used for HIV-1 envelope
amplification and tested for antibody assays were
obtained at baseline, 6 and 12 months respectively.

Amplification and cloning of gp160
gp160 amplification from peripheral blood mononuclear
cell (PBMC) DNA and from reverse-transcribed plasma
viral RNA was carried out by nested PCR using 5’-
TAGAGCCCTGGAAGCATCCAGGAAG-3’ as forward
and 5’-TTGCTACTTGTGATTGCTCCATGT-3’ as
reverse primer in the first round and 5’-CACCGGCT-
TAGGCATCTCCTATGGCAGGAAGAA-3’ as forward
and 5’-TATCGGTACCAGTCTTGAGACGCTGCTCC-
TACTC-3’ as reverse primer in the second round by
using Platinum Taq proof reading polymerase (Invitro-
gen Inc.). Plasma viral RNA was purified by using a
nucleic acid isolation kit as described by the manufac-
turer (Roche Inc.). cDNA from diluted viral RNA was
prepared using Superscript III first strand synthesis kit
(Invitrogen Inc.). gp160 was amplified by two rounds of
nested PCR gp160 amplicons were purified and ligated
into either pcDNA 3.1/V5-His-TOPO (Invitrogen Inc)
or pSVIIIenv [84].

DNA sequencing and phylogenetic analysis
Sequence analysis was performed using cycle sequencing
and big dye terminator methods by automated genetic
analyzer (Applied Biosystems, Inc; Model 3730XL) as
described earlier [88]. Nucleotide and deduced amino
acid sequences were aligned using MEGA software and
phylogenetic tree was constructed by the neighbor-join-
ing method [88].

Pseudovirion preparation and measurement of virus titer
Pseudotyped viruses carrying patient Envelope were pro-
duced by cotransfection of env+ pSVIIIenv or env+

pcDNA 3.1/V5-His-TOPO with env-defective HIV-1
backbone vector (pSG3ΔEnv) [44,89], into 293T cells
during log growth phase in 6-well tissue culture trays
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(Corning Inc) using calcium phosphate (Promega Inc)
following manufacturer’s protocol. Cell supernatants
carrying progeny pseudotyped viruses were harvested at
48 hours post-transfection, and stored at -152°C until
further usage. The infectivity assays were done in TZM-
bl cells in 96-well microtiter plate and infectivity titers
determined by measuring the luciferase activity respec-
tively as described elsewhere [90].

Neutralization Assay
Patient plasma samples were evaluated for NAb activity
against Env pseudotyped viruses using a single round
reporter assay in TZM-bl cells as described previously
with few modification [90]. Briefly, 200 TCID50 of pseu-
dovirus was incubated with serial 3 fold dilutions of
plasma sample in duplicates in a total volume of 150 μl
for 1 hr at 37°C in 96-well flat-bottom culture plates.
Freshly trypsinized cells (10,000 cells in 100 μl of growth
medium containing 25 ug/ml DEAE Dextran) were
added to each well. One set of control wells received
cells plus pseudovirus (virus control) and another set
received cells only (background control). After 48 hours
of incubation, luciferase activity was measured by using
the Bright-Glo Luciferase Assay System (Promega Inc.).
The 50% inhibitory dose (ID50) was defined as either the
plasma dilution or sample concentration (in the case of
sCD4 and MAbs) that caused a 50% reduction in rela-
tive luminescence units (RLU) compared to virus con-
trol wells after subtraction of background RLU.

p24 antigen immunostaining
Immunostaining of HeLa cells infected with pseudo-
viruses was carried out as described earlier [84]. p24
positive cells were regarded as foci of infection, and
virus infectivity was estimated as focus-forming units
(FFU) per milliliter.

Nucleotide sequence accession numbers
All env sequences have been submitted to GenBank
(accession numbers: [GenBank:EU908214] to [GenBank:
EU908221], [GenBank:EU908224] to [GenBank:
EU908225], and [GenBank:GU945306] to [GenBank:
GU945333]).

Statistical analyses
Correlations between NAb response and magnitude of
envelope binding to sCD4, RC49 cells and anti-CD4 anti-
body (SIM.2) were assessed by calculating Spearman’s
non-parametric 2-tailed correlation co-efficient with 95%
confidence level using GraphPad Prism software. The
percent infectivity of Env clones in HeLa cells expressing
low CD4 (RC49) were plotted and compared by Mann-
Whitney and two-way ANNOVA tests using GraphPad
Prism software. Correlations were considered significant

with P values less than 0.05. To avoid digression of corre-
lation, one Env clone (4.2J45) was not included during
assessing the correlation between Env sensitivity to NAb
and sCD4 (Figure 5) and between NAb and HeLa cell
(RC49) (Figure 6B) infection as the sensitivity of this Env
clone to it autologous plasma was exceptionally higher
(ID50 greater than 6000; see Table 3).

Additional material

Additional file 1: Figure S1. Alignments of deduced amino acids of
Indian clade C patient envelopes obtained at different course of
infection. Nucleotide sequences were translated and aligned using Mega
4.1. The residues were started from KpnI site in gp120 and did not
include signal peptide. While dashes denote sequence identity in Env,
dots indicate gaps. Letters in lowercase in the consensus sequence
indicate residues under represented at that position in Envs obtained
from all the patients. Residues that differed significantly at a particular
position were denoted as X in the consensus sequence. Potential N-
linked glycosylation sites were underscored and highlighted.

Additional file 2: Table S1. 2F5 and 4E10 minimum motifs in MPER
domain in patient Envs and their corresponding sensitivities to 2F5 and
4E10 monoclonal antibodies.

Additional file 3: Figure S2. Variations in CD4 dependence of patient
Envs obtained at different time points in each patient. Note that the bar
represents the median percentage infectivity of pseudoviruses to RC49
cells expressing low CD receptors.

Abbreviations
Env: (envelope); NAb: (neutralizing antibody); sCD4: (soluble CD4); MAb:
(monoclonal antibody)
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