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Abstract
The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on 
the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play 
significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, 
and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-
1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 
proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/
apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular 
machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their 
effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the 
signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by 
stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in 
macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage 
signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis 
during HIV-1 infection.

Introduction
HIV-1 infection is characterized by sustained activation
of the immune system. As macrophages, along with other
cell types, are permissive to HIV-1 infection, they may be
infected by the virus, resulting in signaling modulation
[1]. Even uninfected macrophages may be activated by
the soluble gp120 HIV-1 protein, or gp120 virion, via sev-
eral signaling pathways. Additionally, soluble HIV-1 pro-
teins such as Nef, Tat, and Vpr have been detected in
serum of HIV-1 infected patients, possibly released by
infected/apoptotic cells. Soluble exogenous HIV-1 pro-
teins are able to enter macrophages and modulate both
cellular machinery and viral transcription. Deciphering
the signaling pathways involved in the activation of mac-
rophages in HIV infection is critical to a better under-
standing of AIDS pathogenesis as this could lead to
innovative therapeutic approaches.

HIV-1 Proteins and Macrophage Signaling
Nef
Nef is a 27-kDa myristylated protein which is expressed
early in the virus life cycle. Nef down-regulates the cell
surface expression of CD4, CD28, and MHC class I [2].
Nef also modulates several signaling pathways [3-8].
While Nef is not considered to be a secreted protein,
exogenous Nef has been detected in the sera of AIDS
patients and in cultures of HIV-1-infected cells [9]. There
is increasing evidence of the ability of extracellular Nef to
activate signaling pathways in uninfected cells [9-13].
Indeed, Nef is internalized by MDMs and dendritic cells,
but not by T cells [14], when added to cell cultures [14-
16]. Recently, Qiao et al. [11] reported that Nef was inter-
nalized in B cells in vitro, thereby suppressing CD40-
dependent immunoglobulin class switching. The pres-
ence of Nef in the sera of HIV-infected patients at con-
centrations ranging from 1 to 10 ng/mL has also been
described [9]. This concentration may be higher in the
lymphonodal germinal centers where virion-trapping
dendritic cells, as well as virion-infected CD4+ T cells
and macrophages, are densely packed [17,18]. Infected
cells may release Nef through a non-classical secretory
pathway or after lysis. Following this, bystander cells may
internalize Nef via endocytosis, pinocytosis or other yet-
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unknown mechanisms. Regarding intracellular signaling
induced by Nef treatment of MDMs, it has been reported
that Nef modulates the expression of a significant num-
ber of genes as early as 2 hours after treatment [19]. This
suggested that a prompt transcriptional cell reprogram-
ming induced by Nef leads to the synthesis and the
release of pro-inflammatory cytokines/chemokines,
which in turn, activate STAT1 and STAT3 signal trans-
ducers and transcription activators [20,21]. In line with
these results, Nef treatment of MDMs was reported to
induce rapid activation of IKK/NF-kB, MAPK and IRF-3
signalling pathways. Nef induces prompt phosphoryla-
tion of three MAPKs, i.e., ERK1/2, JNK, and p38
[13,22,23]. A Nef treatment as short as 15 minutes is able
to induce p38 phosphorylation, most likely due to rapid
recruitment and activation of p38 signaling upstream
intermediates. Exogenously added Nef induces rapid
phosphorylation of the transcription factor IRF-3, the
main regulator of IFN-β gene expression [24-26]. It has
also been shown to induce tyrosine phosphorylation of
STAT2, well known to be induced by type I IFN signaling,
at an early infection stage (8 to 16 h) [22].

Macrophage activation and production of pro-inflam-
matory cytokines by Nef involves NF-κB activation, espe-
cially its p50/p50 homodimeric and p65/p50
heterodimeric forms. This event leads to sustained LTR
activation [13,19,27]. The activation of NF-κB in mac-
rophages treated with exogenously added Nef occurs as
early as 2 hours after treatment [13,28]. NF-κB activation
in primary macrophages treated with recombinant Nef is
mediated via the canonical pathway, primarily involving
IKKβ phosphorylation [28]. Furthermore, many of the
transcripts induced in macrophages treated by Nef are
encoded by genes regulated by κB-like responsive ele-
ments [19] (Figure 1). Therefore, there is evidence that
exogenously added Nef plays a critical role in "hijacking"
the NF-κB signaling pathway, most likely upstream of
IKK, as observed after endogenous expression in mac-
rophages [29]. This observation is in line with the role of
Nef-mediated activation of NF-κB, which promotes HIV-
1 replication via both direct and cytokine-mediated
effects [13]. Thus, in monocyte-derived macrophages,
recombinant Nef enhances the production of cytokines
such as macrophage inflammatory protein-1 alpha
(MIP1α), MIP1β, TNFα, IL-1β and IL-6 involved in the
inflammatory response (Figure 1). Additionally, features
observed in promonocytic cells and primary mac-
rophages following exposure to recombinant Nef are very
similar to those observed following TNFα treatment [30].
Both recombinant Nef and TNFα activate NF-κB, AP-1
and JNK. That recombinant Nef and TNFα activate these
signaling pathways suggests the two events might modu-
late the cellular machinery in a similar way. Therefore,
they may have the same effects on HIV-1 replication in

mononuclear phagocytes [28]. Exogenous Nef may mod-
ulate intracellular signaling pathways downstream of the
TNFα receptors (TNFRs), and thus mimic the effects of
TNFα on primary macrophages [13].

Tat
HIV-1 Tat is a virally encoded transactivating protein
which plays a critical role in viral replication and is con-
served in genomes of primate lentiviruses [31,32]. Tat is a
HIV-1 protein reportedly detected in the sera of infected

Figure 1 HIV-1 proteins modulate signaling in the macrophage. 
The HIV-1 proteins Nef, Tat, Vpr, and gp120 alter cell signaling path-
ways, both in infected and uninfected macrophages. The presence of 
exogenous Nef, Tat and Vpr has been reported in sera of AIDS patients, 
which have the ability to enter the cells. HIV-1 proteins activate multi-
ple transcription factors in macrophages including NF-κB, Sp-1 and AP-
1, which have binding sites in the long terminal repeat (LTR) of HIV-1. 
The induction of these factors results in increased viral production. Fur-
thermore, the activation of these transcription factors enhances cy-
tokine production by macrophages primarily involved in AIDS 
pathogenesis. TNF promoter is shown as a prototype containing bind-
ing sites of NF-κB, Sp-1, and AP-1. Exogenous Nef and Vpr may en-
hance Tat-mediated transcription in addition to their effect on 
transcription factors. Moreover, the viral glycoprotein gp120 activates 
MAPK in uninfected and infected cells, resulting in increased TNFα pro-
duction through ATF-2 binding sites of its promoter. Tat also stimu-
lates CXCR4/CCR5 surface co-receptor expression, thus enhancing 
viral entry in cells. Besides LTR activation through transcription factors, 
Vpr-induced cell cycle arrest facilitates LTR stimulation.

UNINFECTED M�

CXCR4
CCR5

Cell cycle
arrest

+ +

INFECTED M�

+

� Viral 
TranscriptionHIV-1 LTR

Tat

MAPK

NF-�B, AP-1, Sp-1

Vpr

Nef

Lyn

PI3Kgp120

TNF promoter

MAPK

CXCR4
CCR5

� Production 
of TNF

gp120

Lyn PI3K

CXCR4
CCR5

ATF-2

ATF-2

AP
-1

AP
-1

N
F-

�B

N
F-

�B
TA

R

Sp
-1

Sp
-1

AP
-1

N
F-

�B

N
F-

�B

AT
F-

2

Sp
-1

Sp
-1

Sp
-1

� Production 
of TNF

TNF promoter

Vpr

Vpr

Tat

Tat

Nef

Nef

+

HIV-1 infection

HIV-1 infection

AP
-1

N
F-

�B

N
F-

�B

AT
F-

2

Sp
-1

Sp
-1

Sp
-1

CXCR4
CCR5

NF-�B, AP-1, Sp-1



Herbein et al. Retrovirology 2010, 7:34
http://www.retrovirology.com/content/7/1/34

Page 3 of 13
patients as well as in the media of infected cells [33]. This
suggests that it might have a role both as endogenous
modulator of cellular functions within infected cells and
act on bystander cells. Tat activates monocytes, mac-
rophages, and microglial cells.
Tat Action on monocytes, macrophages, and monocytic cell 
lines
The HIV-1 Tat protein is essential for efficient transcrip-
tion of viral genes and for viral replication. It also regu-
lates the expression of several cellular genes and
interferes with intracellular signaling [34,35]. The mature
protein has a variable size, ranging from 86 to 101 amino
acids. It is organized in functional domains required for
transactivation activity. The C-terminus contains an
RDG motif which mediates cell adhesion and Tat binding
to integrin receptors [36]. Specific Tat binding has been
reported for at least three cell surface molecules includ-
ing heparin sulfate, beta-integrin and chemokine recep-
tors. Tat as well as peptides spanning its cysteine-rich
region compete with cognate ligands to bind CXCR4,
CCR2, and CCR3 chemokine receptors in primary
human monocytes and PBMCs. Tat has also been
reported to trigger Ca2+ mobilization in macrophages in a
concentration-dependent manner through CCR2 and
CCR3 [37,38]. Moreover, Tat induces the expression of
CCR3, CCR5 and CXCR4 in monocytes/macrophages in
a concentration-dependent manner, possibly promoting
HIV-1 infection [39]. Finally, Tat has been shown to serve
as chemoattractant for monocytes, and pretreatment
with Tat enhanced the monocyte invasive properties
[40,41].

Functional consequences of Tat activation include
TNFα release from macrophages, monocytes and THP-1
monocytic cell lines [42]. Tat-induced TNFα release was
dependent on NF-κB activation and mediated through
the activation of protein kinase A, phospholipase C (PLC)
and protein tyrosine kinase pathways [43]. Transient
[Ca2+]i release was observed in macrophages through IP3
receptor-regulated intracellular Ca2+ stores [43]. This Tat-
induced [Ca2+]i elevation was not dependent on extracel-
lular Ca2+ or caffeine-sensitive ryanodine receptor-regu-
lated intracellular Ca2+ stores but rather on the PLC,
protein kinase C (PKC) and Gi/0 protein pathways. Tat-
induced calcium signaling in macrophages leads to the
production of pro-inflammatory cytokines and chemok-
ines, possibly contributing to inflammation and HIV-1
neuropathogenesis.

Thus, Tat displays biological activities mimicking those
mediated by TNFα [28]. HIV-1 Tat may induce the
expression of TNFα and various cytokines, including IL-
6, TNFβ and TGFβ as well as the expression of cytokine
receptors such as the IL-4 receptor [44-49]. Like TNFα,
Tat may activate NF-κB, AP-1 and MAPK, including c-
Jun N-terminal kinase/stress-activated protein kinase

(JNK/SAPK) [50]. Tat activates NF-κB, JNK, and AP-1,
but not MEK [50]. These results suggest that HIV-1 Tat
and TNFα act through different mechanisms and that
HIV-1 Tat does not activate all of the kinases involved in
TNFR signaling [51]. In short, like Nef, Tat mimics the
effects of TNFα resulting in the enhancement of viral rep-
lication via activation of NF-κB, AP-1, JNK, and MAPK.
Action of Tat on microglia
Tat protein is actively produced and released in the cen-
tral nervous system (CNS) by infected cells [52]. Elevated
Tat mRNA levels have been detected in the brain of AIDS
patients [53], where Tat is believed to play a significant
role in the pathogenesis of HAD through not only its
direct neurotoxicity, but also through the release of dele-
terious products in microglial cells [54]. Although they
act as CNS macrophages, microglia cells differ in many
aspects from peripheral macrophages. Their morphologi-
cal and functional specificity responds to cell-cell con-
tacts and secreted factors from surrounding astrocytes
and neurons. The strict separation of microglia cells from
blood components is due to the blood brain barrier
(BBB). This results in a down-regulated "surveillance"
phenotype [55]. Microglial cells are nevertheless able to
undergo activation and acquire typical macrophage func-
tions such as phagocytosis of microbes or apoptotic bod-
ies and the secretion of inflammatory or anti-
inflammatory mediators [56,57].

Tat activates microglia and impairs major molecular
mechanisms that normally prevent or shorten microglial
activation. As is the case in macrophages, Tat increases
microglial production of free radicals as well as pro-
inflammatory cytokines and chemokines [42,43,58,59].
Tat induction of NO and inducible NO synthase (iNOS)
is enhanced by IFN-γ [60]. This suggests that Tat and
IFN-γ cooperatively contribute to the severity of brain
damage observed in brain tissues from AIDS patients and
animal HAD models.

The transcription factor NF-κB plays a central role in
the regulation of inflammatory gene expression and is
involved in most Tat-induced effects in microglial cul-
tures [61]. In surveillance microglia, signals provided by
astrocytes actively contribute to NF-κB down-modula-
tion [62]. Elevated immunoreactivity for p50/p65 het-
erodimer subunits was found in microglia and brain
macrophages of children with HIV encephalitis [63]
despite repression by the surrounding cells. Likewise,
nuclear staining for NF-κB in the perivascular microglia/
macrophages of deep white matter and basal ganglia cor-
related with the severity of HIV-associated dementia in
AIDS patients [64]. Interestingly, Tat-induced formation
of free radicals in microglial cells occurs independently
from NF-κB activation [65,66], as lipid peroxidation and
oxidative stress still occur in microglial cultures exposed
to Tat in the presence of NF-κB inhibitors [65]. Likewise,
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the pro-oxidant activities of Tat in the N9 microglial cell
line depend on MAP kinase activation [66]. Additionally,
antioxidants abrogate oxidative stress rather than the
other Tat-induced functions such as IL-1β, NO, and
TNF-α production or IkBα degradation [65]. Thus, Tat-
induced NF-κB activation in microglia may not require
the formation of free radicals, although oxidative stress is
contributive to its activation [67].

In different cell types, including macrophages and
microglia, Tat influences cell function by modifying Ca2+

homeostasis [43]. Indeed, Tat possesses a cysteine-
cysteine-phenylalanine domain, enabling Tat to mimic
beta chemokine effects on both Ca2+ movements and
chemotaxis [38]. In microglia, Ca2+ mobilization and cell
migration by Tat are sensitive to pertussis toxin (PTX),
but not cholera toxin. This observation supports the
involvement of Gi rather than Gs type proteins, as
expected for chemokine receptor stimulation [37]. Fur-
thermore, cross-desensitization studies revealed CCR3
receptor involvement. Similar to findings in monocytes,
Tat-induced Ca2+ signals in human microglia are charac-
terized by rapid desensitization [68].

Nanomolar concentrations of recombinant Tat have
been shown to decrease in a dose- and time-dependent
manner, cAMP accumulation induced in microglial cul-
tures by the β-adrenergic receptor agonist isoproterenol,
or by forskolin, an activator of adenylyl cyclase [69]. In
microglia, increased cAMP accumulation lowers poten-
tially neurotoxic pro-inflammatory molecules [70-76]
and promotes the production of neuroprotective or
immunosuppressive substances [70]. Thus, Tat may inter-
fere with cAMP's control on microglial activation.

Among the ion channels expressed by microglial cells,
there are two major classes of K+-permeable channels:
the delayed-outward-rectifying (Kdr) and the inward-rec-
tifying (Kir) channels. Their expression differs in mac-
rophages and microglia. Their expression is finely
modulated by both activation and differentiation [77-81].
Chronic microglial cell treatment with high Tat concen-
tration (≥ 100 ng/mL) up-regulates Kdr currents due to
NF-κB-dependent increase in channel expression without
a significant increase in Kdr currents [82]. Therefore, the
hyperpolarization thus induced by Tat may has several
consequences. Ca2+ influx depends on a hyperpolarized
membrane potential and Tat's β-chemokine mimicry may
thus be favored by Kdr currents. Kdr currents may also
modulate the microglial respiratory burst and the trans-
port of amino acids through voltage-dependent trans-
porters. The latter is likely to modify the availability of
amino acids for protein synthesis [83,84], as well as the
dynamics of glutamate exchange between intracellular
and extracellular pools. This may affect the regulation of
both extracellular glutamate concentration in the vicinity

of glutamate-sensitive neurons and glutathione synthesis
rate in microglia [85-87].

Vpr
Vpr is a 96 amino acid-long virion-associated protein
located in the cytoplasm and nucleus of HIV-infected
cells [88-93]. Vpr is not essential for viral replication in T
cells, but critical for HIV replication in non-dividing cells
such as macrophages [94-99]. Vpr has pleiotropic effects
on viral replication, cellular proliferation and differentia-
tion, cytokine production, NF-κB-mediated transcription
and apoptosis [100-103].

Vpr has been shown to induce cell cycle arrest at the G2
cell cycle phase [104-107]. G2 cell cycle arrest correlates
with the inhibition of Cdc2 activity and parallels
enhanced viral replication [108-110]. G2 cell cycle arrest
is followed by apoptosis in HIV-infected and Vpr-
expressing cells [111]. Apoptosis is mediated through the
interaction of Vpr with the mitochondrion permeability
transition pore. This interaction opens the pore, causing
mitochondrial swelling, release of cytochrome C as well
as caspase 9 and caspase 3 activation [111]. p53 tumor
suppressor protein may be implicated in cell cycle arrest
and apoptosis mediated by Vpr in certain cell types [107].

Vpr transactivates the viral promoter and HIV-1 LTR
resulting in increased viral replication. The G2 cell cycle
arrest is concomitant with high levels of viral replication
in primary human CD4+ T cells. An interaction between
Vpr, Sp1 and TFIIB transcription factors is required for
Vpr-mediated transcriptional enhancement of HIV-1
LTR [112,113].

Vpr-mediated transactivation necessitates intact NF-κB
sites and depends on Vpr's ability to stimulate p300/CBP
coactivator function, which promotes cooperative inter-
action between the RelA subunit of NF-κB and the cyclin
B1Cdc2 [114]. A structural and functional interaction
between Vpr and Tat has been reported, synergistically
enhancing the transcriptional activity of the HIV-1 LTR
[114].

The activity of recombinant Vpr (rVpr) in macrophages
has been investigated. High concentrations of rVpr as
well as the carboxy-terminal Vpr peptide are cytotoxic to
macrophages. However, at low concentrations rVpr was
shown to enhance the activity of several transcription
factors including AP-1, c-Jun, and, NF-κB [115]. Amino-
and carboxy-terminal Vpr peptides retained transcription
factor activation properties, albeit to a lesser extent than
with the full-length rVpr. Similarly to Vpr expressed in
infected cells, rVpr stimulated HIV-1 replication in
acutely infected primary macrophages. Furthermore,
reduced p24 production by macrophages infected with
Vpr-deficient virus could be rescued by adding rVpr to
culture medium [116]. Exposure to rVpr also increased
transcription and p21/waf1 levels in macrophages [117].
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These Vpr effects on macrophages may reflect the mech-
anisms by which Vpr activates the HIV-1 LTR and
enhances virus replication in acutely and latently infected
cells [88]. Although primarily considered to be a regula-
tor of viral promoter transactivation, transcription factor
activation may have significant effects on macrophage
cellular functions [117,118]. Additionally, macrophages
and PBLs produce less chemokines following recombi-
nant Vpr treatment. This observation suggests that Vpr
modulates cytokine production by interfering with NF-
κB-mediated transcription [119,120].

gp120
HIV-1 infects human T cells and monocytes/mac-
rophages through the interaction of gp120 with CD4 and
the CXCR4 or CCR5 co-receptor, which determines the
cellular tropism [121-131]. HIV-1 gp120 down-regulates
CD4 expression in primary human macrophages through
induction of endogenous TNFα [121,132-136]. Actually,
TNFα down-regulates both surface and total CD4 expres-
sion in primary human macrophages at the transcription
level [134,137-140]. TNFα inhibits R5 and R5/X4 HIV-1
entry into primary macrophages via downregulation of
both cell surface CD4 and CCR5 and via enhanced secre-
tion of CC-chemokines, MIP-1α, MIP-1β and RANTES
[129,137,141-146]. An iterative pretreatment of primary
macrophages with TNFα prior to HIV infection inhibits
HIV-1 replication in primary macrophages [142]. The
inhibition of HIV-1 entry into primary macrophages fol-
lowing TNFα pretreatment involves TNFR2 and is medi-
ated by the secretion of CC-chemokines such as
RANTES, MIP-1α, and MIP-1β[140,141]. TNFα induces
the production of RANTES, MIP-1α, and MIP-1β, which
in turn down-regulate cell surface CCR5 expression on
primary macrophages, resulting in the inhibition of R5
HIV-1 entry [147-151]. In agreement with this observa-
tion RANTES inhibits HIV-1 envelope-mediated mem-
brane fusion in primary macrophages [152] and inhibits
the activity of the RANTES promoter containing four
NF-κB binding sites which is up-regulated by TNFα
[153].

Many studies conducted over the past two decades
have shown that besides infection, exposure of mac-
rophages to intact virions or soluble gp120 may exert var-
ious functional effects on macrophages, including
cytokine secretion activation [121,135,154]. However, the
specific pathways involved in gp120-induced responses
have only been defined recently. The presence of non-
infectious virion particles in excess of infectious virus, the
ability of gp120 to dissociate from the transmembrane
gp41 portion of Env as well as detection of circulating
gp120 in infected patients [155] have raised the question
of what biological activities this protein is involved in
aside from mediating infection. Such studies have dem-

onstrated the ability of gp120 to activate intracellular sig-
naling in multiple cell types as a result of its binding to
receptor/co-receptor complex. Although gp120-induced
signaling has been extensively investigated in CD4+ T
cells, gp120 has also been reported to activate intracellu-
lar signals in macrophages [156].

In primary human macrophages, both R5 and X4 gp120
induce calcium mobilization, although R5 gp120 elicited
higher peaks and more sustained elevations than X4
gp120 [157,158]. Single-cell patch-clamp recording com-
bined with pharmacological antagonists and current
reversal potential analysis identified the ion channels
associated with CCR5 and CXCR4 activation: chloride,
calcium-activated potassium, and non-selective cation
(NSC) channels [157]. These responses to HIV-1 gp120
were mediated by chemokine receptors, but not by CD4,
since the responses to R5 Env were absent in mac-
rophages from patients lacking cell surface CCR5 expres-
sion (CCR5Δ 32); responses to X4 gp120 were inhibited
by a small molecule CXCR4 antagonist [157,159]. While
R5 and X4 gp120 generally induced similar signals
through CCR5 and CXCR4, respectively, certain differ-
ences were noted. R5 Env opened the calcium-activated
outward K+ channels more frequently than X4 gp120, and
induced Cl- currents of greater amplitude. Gp120,
instead of CXCR4 or CCR5 binding chemokines, acti-
vated the NSC channel [160].

In addition, gp120 has been shown to activate all three
MAPK family members (ERK1/2, JNK, and p38) in mac-
rophages. R5 gp120 triggered macrophage release of
MIP-1, MCP-1, and TNFα. The secretion of these prod-
ucts was blocked by small molecule inhibitors of ERK1/2
and p38 MAPKs [39,161].

The src kinases Lyn and Hck are highly expressed in
macrophages, and recent in vitro kinase assays demon-
strated that R5 gp120 and MIP-1β activated Lyn in mac-
rophages [162]. Neither R5 gp120 nor MIP-1β activated
Lyn in macrophages derived from CCR5Δ 32 donors or in
cells treated with a small molecule CCR5 inhibitor, indi-
cating that Lyn activation was elicited through CCR5
receptor. Unlike Lyn, Hck activation did not occur in
response to gp120 or chemokine stimulation [162,163].
Both a Lyn-specific peptide pseudo-substrate inhibitor
and PP2, a broad src family kinase inhibitor, suppressed
gp120-induced TNFα production. These results are sug-
gestive of a signaling cascade initiated by gp120 through
CCR5, involving Lyn activation of the MAPK pathway,
resulting in gp120-induced TNFα release.

Several lines of evidence indicate that HIV-1 gp120/
chemokine receptor interactions activate PI3K in mac-
rophages [39,164]. This finding is based upon R5 gp120
activation of protein kinase B (PKB), a downstream target
for class I PI3K and a useful indirect indicator of its acti-
vation. Furthermore, several small molecule PI3K inhibi-
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tors blocked gp120-induced CCR5-mediated ERK1/2 and
p38 phosphorylation, as well as TNFα release. These
results not only suggest a role for PI3Ks in CCR5 signal-
ing but also indicate that, like Lyn, PI3K acts upstream of
MAPKs in the regulation of cytokine production through
this pathway [39]. It is unclear which PI3K isoform is
involved in these R5 gp120-induced signals, and the rela-
tionship between PI3K and Lyn remains to be deter-
mined.

Besides chemokine receptors, interactions between
HIV-1 gp120 and CD4 stimulate signal transduction
pathways, such as activation of PKC, generation of PKC-
dependent phosphorylation of CD4, and activation of the
ERK/MAPK pathway, which in turn stimulates transcrip-
tion factors such as NF-kB, AP-1, and Elk-1, as well as
induction of cytokine and chemokine gene expression
[115,165-172]. Early inflammatory gene products such as
TNFα, may stimulate HIV-1 replication in the absence of
HIV-1 Tat protein. Thus, the activation of cellular signal-
ing pathways leading to the production of cytokine and
chemokine genes by HIV-1 gp120 could facilitate viral
replication in the early phases of the viral life cycle [50].

Proline-rich tyrosine kinase 2 (Pyk2) activation has
been suggested as a critical signalling mechanism for
integrin-mediated formation of adhesion contacts in
macrophages known as podosomes. Pyk2 is known to be
activated by chemokines, triggering cell migration
[173,174]. CCR5 and CXCR4 are both linked to Pyk2,
which is activated by R5 gp120 and MIP-1β as well as X4
gp120 and SDF-1α [161]. Recently, a functional role for
Pyk2 in the migration of macrophages has been demon-
strated using Pyk2 knockout mice [175], suggesting that
gp120 may be involved in macrophage migration.

Macrophage Signaling and HIV-1 Pathogenesis
In this section, we report that several HIV-1 proteins may
modulate the macrophage signaling pathway resulting in
T lymphocytes depletion and viral cellular reservoir for-
mation, especially in macrophages [176].

Macrophage signaling and T cell apoptosis
Increased spontaneous and activation-induced apoptosis
of peripheral CD4+ T cells from HIV-infected patients is
observed ex vivo in lymph nodes of HIV-infected patients
and of SIV-infected macaques [177-180]. Deciphering the
molecular mechanisms involved in CD4+ T cell apoptosis
in HIV-infected patients is critical to understanding HIV
pathogenesis.

In macrophages, Nef has been shown to activate multi-
ple cellular pathways, possibly leading to increased infec-
tion of adjacent T cells through bystander mechanisms
involving T cell activation (Figure 2). It has been shown
that Nef-expressing macrophages enhance resting CD4+
T cell permissiveness through a complex cellular and sol-

uble interaction involving macrophages, B cells, and
CD4+ T cells [29]. Nef expression within macrophages
via adenoviral vectors has been shown to induce the
secretion of soluble CD23 and ICAM, resulting in up-reg-
ulation of costimulatory B cell receptors, including CD22,
CD54, CD58, and CD80. This leads to T cell activation
upon interaction with B cells via these costimulatory
receptors, thus enabling the generation of non-produc-
tive or productive reservoirs, depending on the interac-
tions [29].

Furthermore, Nef has been reported to prevent Fas-
and TNF-receptor-mediated deaths observed in HIV-
infected T cells via interaction with the apoptosis signal
regulating kinase-1 (ASK-1). Nef inhibits ASK-1, caspase
3 and caspase 8 activation, resulting in apoptosis block-
ade in HIV-infected cells [181-184]. Apoptosis was mea-
sured in productively infected CD4+ T lymphocytes
using a reporter virus and a recombinant HIV infectious
clone expressing the green fluorescent protein (GFP) in
the presence and absence of autologous macrophages.
The survival of productively infected CD4+ T lympho-
cytes has been shown to require Nef expression and acti-

Figure 2 A model of HIV-1 pathogenesis based on interactions 
between macrophages and T cells which account for increased 
immune suppression and cellular virion reservoirs. a) Viral glyco-
protein gp120 activates the production of pro-inflammatory cytokines 
and chemokines by macrophages, attracting T cells in the vicinity of 
macrophages, thereby increasing the number of infected cells and fu-
eling the viral reservoirs. HIV-1 proteins Nef, Tat, and Vpr activate the 
long terminal repeat (LTR) of HIV-1, resulting in sustained viral growth 
while also activating anti-apoptotic pathways that favor viral persis-
tence and formation of viral reservoir. b) Viral protein Tat participates in 
CD4+ T cell death through TRAIL secretion by HIV-1 infected mac-
rophages. Viral gp120 glycoproteins increase the expression of TNF 
and TNFR on macrophages and T cells, leading to CD8+ T cell apopto-
sis. Thus, macrophage signaling using viral proteins accounts for both 
viral persistence and immune suppression during HIV-1 infection.
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vation by TNFα expressed on macrophage surface,
thereby participating in the formation and maintenance
of viral reservoirs in HIV-infected patients [184].

In addition to the macrophage-mediated formation of
T cell reservoirs, in vitro culture models demonstrate that
uninfected CD4+ T cells undergo apoptosis upon contact
with HIV-infected cells; for example mononuclear phago-
cytes [180]. Macrophages play a major role in this pro-
cess, suggesting that apoptosis-inducing ligands
expressed by macrophages mediate apoptosis of suscepti-
ble CD4+ T cells [159,185-187]. Activated macrophages
produce TNFα following HIV infection in vitro [135].
TNFα is released as a soluble factor or expressed on the
surface of macrophages under a membrane-bound form
that primarily targets TNFR2 rather than TNFR1
[188,189]. TNFR2 stimulation may trigger T cell apopto-
sis, especially in CD8+ T cells [188]. TNFα and TNF
receptors are increased in HIV-infected patients and
inversely correlated with CD4+ T cell counts [190]. TNFα
is expressed on the surface of activated macrophages, and
cell surface TNFR2 is not increased on CD4+ infected T
cells. Therefore, for the most part, the apoptosis of CD4+
T lymphocytes is mediated via Fas/Fas ligand interaction
[185,186,191]. TNFα causes death at a later stage than Fas
and may be transduced through TNFR2, which does not
contain homology to the Fas death domain and uses dif-
ferent signaling pathways than TNFR1 [115,185].
Recently, Tat has been reported to induce secretion of
soluble TNF-related apoptosis-induced ligand (TRAIL)
in human macrophages, leading to the death of bystander
CD4+ T lymphocytes [73]. Thus, the production of
TRAIL by Tat-stimulated monocytes/macrophages is
likely to be an additional mechanism by which HIV-1
infection destroys uninfected bystander cells.

CD8+ T cell apoptosis during HIV infection has been
shown to result from the interaction between membrane-
bound TNFα expressed on the surface of activated mac-
rophages and TNFR2 expressed on the surface of acti-
vated CD8+ T cells [158]. Both membrane-bound TNFα
and TNFR2 are up-regulated on macrophages and CD8+
T cells, respectively, following CXCR4 stimulation by
HIV gp120. However, CCR5 may also play a role, albeit
minor [158]. TNFR2 stimulation of T cells results in
decreased intracellular levels of apoptosis protective pro-
tein Bcl-XL, a member of the Bcl-2 family [192]. Impaired
induction of Bcl-XL has been observed in PBMC isolated
from HIV-infected patients [193]. Therefore, TNFR2
stimulation of CD8+ T cells by membrane-bound TNFα
expressed on the surface of macrophages might decrease
the intracellular levels of anti-apoptotic proteins resulting
in CD8+ T cell death.

Additionally, chemokines and activated macrophages
have been reported to play a role in HIV-1 gp120-induced
neuronal apoptosis [194,195].

Macrophage signaling and formation of viral reservoirs
Whereas CD4+ T cells die within a few days after becom-
ing infected with HIV, infected macrophages seem to per-
sist for months, continuing to release viruses. Several
reasons may explain why macrophages are a major cellu-
lar reservoir of virions during infection (Figure 2). Mac-
rophages are more resistant than T cells to HIV-induced
apoptosis and therefore allow for sustained viral produc-
tion without fatal cell death. Persistent HIV infection of
macrophages results in increased NF-κB levels, involved
in the resistance to TNFα-induced apoptosis. Mac-
rophages release CC-chemokines which have the ability
to attract CD4+ and CD8+ T lymphocytes in their vicin-
ity [196]. They may also block the entry of R5 HIV-1 viri-
ons into CD4+ target cells [122]. CC-chemokine
production is often associated with that of pro-inflamma-
tory cytokines, such as TNFα and IL-1β, which stimulate
the transcription of HIV LTR via activation of NF-kB
[197,198]. Additionally, TNFα may block entry of R5
HIV-1 strains into macrophages via a decreased expres-
sion of CCR5 on cell surfaces [137,141,142,147]. Thus,
CC-chemokines and pro-inflammatory cytokines facili-
tate the recruitment and productive infection of CD4+ T
lymphocytes via increased viral transcription, while regu-
lating the entry of virions into macrophages, thereby pre-
venting macrophage superinfection. Additionally,
apoptosis inhibition in HIV-1 infected T cells enhances
virus production and facilitates persistent infection [199].
HIV-1 proteins, by modulation of the TNFR signaling
pathway, lead to the formation of viral reservoirs, espe-
cially in primary macrophages [50]. Altogether, the data
indicate that both viral and cellular factors are involved in
the controlled and sustained production of virions in
infected CD4+ T lymphocytes and macrophages, thereby
expanding the viral reservoir which fuels disease progres-
sion.

Conclusion
The macrophage is essential in the loss of T lymphocytes
and formation of viral reservoirs; it plays a critical role in
HIV-1 disease progression. Several HIV-1 proteins mod-
ulate signaling in infected and bystander macrophages,
thereby facilitating disease progression. A better under-
standing of the manner by which HIV-1 modulates sig-
naling in macrophages may be instrumental in the
development of new therapeutic approaches that may
ultimately restrict or decrease the size of cellular virion
reservoirs in HIV-1-infected patients.
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