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GPG-NH2 acts via the metabolite aHGA to target
HIV-1 Env to the ER-associated protein
degradation pathway
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Abstract

Background: The synthetic peptide glycyl-prolyl-glycine amide (GPG-NH2) was previously shown to abolish the
ability of HIV-1 particles to fuse with the target cells, by reducing the content of the viral envelope glycoprotein
(Env) in progeny HIV-1 particles. The loss of Env was found to result from GPG-NH2 targeting the Env precursor
protein gp160 to the ER-associated protein degradation (ERAD) pathway during its maturation. However, the anti-
viral effect of GPG-NH2 has been shown to be mediated by its metabolite a-hydroxy-glycineamide (aHGA), which
is produced in the presence of fetal bovine serum, but not human serum. In accordance, we wanted to investigate
whether the targeting of gp160 to the ERAD pathway by GPG-NH2 was attributed to its metabolite aHGA.
Results: In the presence of fetal bovine serum, GPG-NH2, its intermediary metabolite glycine amide (G-NH2), and
final metabolite aHGA all induced the degradation of gp160 through the ERAD pathway. However, when fetal
bovine serum was replaced with human serum only aHGA showed an effect on gp160, and this activity was
further shown to be completely independent of serum. This indicated that GPG-NH2 acts as a pro-drug, which was
supported by the observation that it had to be added earlier to the cell cultures than aHGA to induce the
degradation of gp160. Furthermore, the substantial reduction of Env incorporation into HIV-1 particles that occurs
during GPG-NH2 treatment was also achieved by treating HIV-1 infected cells with aHGA.
Conclusions: The previously observed specificity of GPG-NH2 towards gp160 in HIV-1 infected cells, resulting in the
production of Env (gp120/gp41) deficient fusion incompetent HIV-1 particles, was most probably due to the action
of the GPG-NH2 metabolite aHGA.

Background
The HIV-1 envelope glycoprotein (Env) is co-transla-
tionally translocated into the endoplasmic reticulum
(ER) as the precursor protein gp160. It is a is a type 1
membrane protein that in the ER obtains ~30 N-linked
glycans and forms 10 disulphide bonds during a slow
and extensive folding process [1]. The mature gp160 tri-
merizes prior to its export to the Golgi, where it is
being processed into the trans-membrane unit, gp41,
and the highly glycosylated surface unit, gp120, which
remain non-covalently associated to each other [2,3].
These trimeric gp120/gp41 complexes are then trans-
ported to the cell surface for incorporation into the
assembling particles.

The HIV-1 infection is initiated by its Env, where
gp120 directs binding to the target cell, and gp41 med-
iates the fusion of the viral membrane with the host cell
plasma membrane, which results in the delivery of the
viral content into the cell [4]. Prevention of viral spread-
ing by targeting viral entry can be achieved by inhibiting
the function of gp120/gp41 [5,6]. However, it might also
be accomplished late in the viral replication cycle by
negatively affecting the maturation of gp160. This has
been attempted by targeting the glycosylation of gp160
through the use of various glycosylation inhibitors, but
these compounds are very non-specific and have thus
far failed as therapeutic agents [7-9]. We have recently
shown that the maturation of gp160 within the ER can
be targeted rather specifically. Treatment of HIV-1
infected cells with the synthetic peptide glycyl-prolyl-
glycine amide (GPG-NH2) targets gp160 to the
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ER-associated protein degradation (ERAD) pathway. To
be initiated, this process requires the ER quality control
machinery to recognize gp160 as terminally misfolded
and results in its retro-translocation to the cytoplasm.
In the cytoplasm the N-linked glycans are removed
from the peptide chain by the N-glycanase, which gra-
dually decreases the gp160 molecular mass prior to its
degradation by the proteasome (Fig. 1) [10]. Thus, HIV-
1 particles produced in the presence of GPG-NH2 have

a significantly reduced content of gp120/gp41 on their
surface [10].
During the course of studying its anti-viral mechanism

it was discovered that GPG-NH2 is metabolized via gly-
cine amide (G-NH2) into a-hydroxy-glycine amide
(aHGA) in cell culture media containing fetal bovine
serum (FBS) (Fig. 2A) [11,12]. Both metabolites have
been found to retain the ability to inhibit HIV-1 propa-
gation in the presence of FBS and in serum from several
other species [11]. However, in HS only aHGA still pos-
sesses its anti-viral activity against HIV-1, which indi-
cates that the unidentified enzyme responsible for the
transition of G-NH2 into aHGA is not present in HS
[11]. This strongly suggests that the anti-viral activity
previously ascribed to GPG-NH2 is actually an attribute
of its final metabolite aHGA. In this study we therefore
further examined if the potent ability of GPG-NH2 to
target gp160 for ERAD is also dependent on it metabo-
lizing into aHGA.

Results
GPG-NH2, G-NH2 and aHGA treatment all decrease the
molecular mass, steady-state levels and processing
of gp160
To evaluate whether the targeting of gp160 to the ERAD
pathway is due to the action of GPG-NH2, its intermedi-
ate metabolite G-NH2, or its final metabolite aHGA
(the structures are depicted in Fig. 2A) the respective
drugs were added to HeLa-tat III cells at indicated con-
centrations 2 h after transfection with the gp160 expres-
sing plasmid pNL1.5EU. Twenty hours post transfection,
the cells were lysed and analyzed by immunoblotting
against gp41. The mobility and steady-state levels of
gp160 were affected at 50 μM and 100 μM GPG-NH2

(Fig. 2B, lanes 2-4). In comparison to GPG-NH2, both
G-NH2 and aHGA showed a more potent activity as
neither gp160 nor its processing to gp41 were detectable
at 50 μM (Fig. 2B, compare lanes 6 and 9 to 3, Fig. 2C).

aHGA does not require FBS to affect gp160
To examine if the previously shown anti-viral activity of
aHGA in HS correlates with its ability to target gp160
for ERAD, HeLa-tat III cells were transfected to express
gp160 and cultured in RPMI containing HS and various
concentrations of the respective drugs. As expected,
GPG-NH2 and G-NH2 showed no effect, while aHGA
retained its ability to target gp160 (Fig. 3, upper panel).
To further test if HS is a requirement for the activity of
aHGA on gp160, the transfected HeLa-tat III cells were
cultured in Advanced RPMI without serum and treated
with the respective drugs. Under these serum-free con-
ditions aHGA was still able to target gp160 (Fig. 3,
lower panel). Surprisingly, G-NH2 still had some activity
towards gp160 in the absence of serum (Fig. 3, lower

Figure 1 A proposed model for how GPG-NH2 or its
metabolites target gp160 for ERAD. Initially, gp160 is co-
translationally translocated into the ER, where its growing peptide
backbone becomes glycosylated and starts to fold. (1) In the
presence of GPG-NH2 or its metabolites gp160 folds incorrectly
which targets it to ERAD. (2) Subsequently, gp160 is retro-
translocated to the cytoplasm, (3) where it becomes deglycosylated
by the cytosolic N-glycanase prior to (4) degradation of its peptide
backbone by the proteasome.
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Figure 2 GPG-NH2 and its metabolites G-NH2 and aHGA decrease gp160 mobility and steady-state levels. (A) Scheme of GPG-NH2 being
metabolized in cell culture medium supplemented with 10% FBS. GPG-NH2 is processed by CD26 (peptidyl peptidase V) to G-NH2 and
subsequently modified into aHGA by an unidentified enzyme. (B) HeLa-tat III cells were transfected to express gp160. Two hours post
transfection the cells were treated with the indicated concentrations of GPG-NH2, G-NH2 or aHGA and harvested 20 h post transfection. The cell
lysates were separated by SDS-PAGE and immunoblotted with mAb towards gp41. (C) Densitometric measurement of gp160 and degradation
products (left panel) and gp41 (right panel) given as percentage of total gp160 or gp41 respectively in untreated cells in (B), lane 1. The results
represent the average of two experiments.
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panel). Together these results support that the targeting
of gp160 to for ERAD is dependent on the GPG-NH2

metabolite aHGA.

aHGA targets gp160 for degradation more rapidly
than GPG-NH2

To investigate the temporal processing of GPG-NH2 to
the active metabolite aHGA, the required time of cellu-
lar exposure to the respective drug for a detectable
effect on gp160 was examined. HeLa-tat III cells were
transfected to express gp160 and treated with 20 μM or
100 μM GPG-NH2 or aHGA at various time points
prior to or post transfection and the cells were har-
vested 24 h post transfection. The strongest effect of
GPG-NH2 on gp160, at both concentrations, was
obtained when treatment was initiated 18 h prior to
transfection (Fig. 4A, upper and lower panels, lane 2,

and Fig. 4B). Treatment with GPG-NH2 starting at 4
and 8 h post transfection still significantly affected
gp160 at 100 μM, but addition at 20 h and 23 h post
transfection, i.e. 4 h and 1 h prior to harvesting, did not
affect gp160 (Fig. 4A, lower panel, and Fig. 4B). Interest-
ingly, the addition of 20 μM and 100 μM aHGA 18 h
prior to transfection had a slightly milder effect on
gp160 as compared to GPG-NH2 (Fig. 4C, compare lane
2 to 4A, lane 2). Thus, aHGA treatment did not benefit
from early addition to the cell cultures as did GPG-
NH2. Instead, the strongest decrease in the gp160
steady-state levels and molecular mass occurred when
aHGA was added 4 or 8 h post transfection (Fig. 4C,
upper and lower panels, lanes 3 and 4, Fig. 4D). Addi-
tion of aHGA, 20 h post transfection, i.e. 4 hours prior
to harvest of the cells, still had an effect on gp160, while
addition at 1 h prior to harvest did not (Fig. 4C upper

Figure 3 aHGA acts on gp160 independently of supplemented serum in cell culture medium. HeLa-tat III cells were cultured in cell
culture medium supplemented with 10% FBS and transfected to express gp160 for 20 h. Two hours upon transfection the cell culture
supernatants were carefully removed, the cells rinsed twice in PBS and provided with culture medium containing either 10% HS (upper panel) or
no serum (lower panel) and indicated concentrations of GPG-NH2, G-NH2 or aHGA. The cell lysates were immunoblotted with mAb towards
gp41.
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Figure 4 aHGA targets gp160 for degradation more rapidly than GPG-NH2. (A) HeLa-tat III cells were transfected to express gp160 and
treated with 20 μM (upper panel) or 100 μM GPG-NH2 (lower panel) for the indicated times pre- or post-transfection. The cells were harvested
24 h post transfection and immunoblotted with mAb towards gp41. (B) Densitometric measurements of gp160 and degradation products in
samples treated with 20 μM (left panel) or 100 μM GPG-NH2 (right panel) as described in (A) and given as percentage of total gp160 in
untreated cells in (A), lane 1. (C) As in (A), except the cells were treated with aHGA at 20 μM (upper panel) or 100 μM (lower panel). (D)
Densitometric measurements as described in (B) of samples treated with aHGA at 20 μM (left panel) or 100 μM (right panel) described in (C). (E)
Glycoprotein blot of HeLa-tat III cell lysates collected from cells treated with the indicated concentrations of aHGA for 24 h and stained for total
protein and subsequently probed with the lectin Concanavalin A. The asterisks highlight the decreased molecular mass species.
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and lower panels, lanes 5 and 6, Fig. 4D). Thus, the
activity of aHGA towards gp160 requires a much
shorter exposure time than that of GPG-NH2, support-
ing that GPG-NH2 must first be metabolized into
aHGA to become active towards gp160.
We have previously shown that GPG-NH2 does not

generally effect cellular glycoproteins, but acts rather
selectively on gp160 [10]. Here, we examined the glyco-
protein expression profile in the HeLa-tat III cells upon
treatment with aHGA added to the cultures at seeding
and collected 24 h and 48 h later. The total protein con-
tent increased two fold and three fold, respectively, dur-
ing incubation time (data not shown). As for GPG-NH2,
aHGA showed no general effect on glycoproteins at
24 h or 48 h as only a single unidentified high-molecular-
mass-protein (~150 kDa) slightly increased its mobility at
50 μM and 100 μM aHGA (Fig. 4E; only 24 h blot is
shown).

aHGA decreases the content of Env in HIV-1 particles
The production of viral particles from the chronically
infected ACH-2 cells, monitored by measuring the extra
cellular capsid protein p24, was not affected in the pre-
sence of 10-100 μM aHGA (Fig. 5A). In addition,
aHGA did not affect the viral particle content of the
precursor protein p55Gag or its processing to p24 (Fig.
5B). However, treatment with aHGA resulted in a sig-
nificant dose-dependent decrease in the gp120/gp41
content in the viral particles as the ratio of gp41 to p24
decreased by 85% at 20 μM aHGA to undetectable
levels of gp41 at 50 μM aHGA (Fig. 5C). Also HIV-1
particles generated from ACH-2 cells in the absence or
presence of 50 μM aHGA were examined for their
gp120/gp41 content by immunogold labeling and trans-
mission electron microscopy (TEM) (Fig. 5D). This
further showed that aHGA decreased the incorporation
of gp120/gp41 as the ratio of immuno gold labeled gp41
to the number of viral particles decreased from 0.46
(total particle number: 984) in the untreated sample to
0.07 (total particle number: 1841).

Discussion
In this study we examined whether either of the two
GPG-NH2-metabolites retained the ability to target
gp160 for destruction in the same manner as GPG-NH2.
Here we show that when replacing FBS with HS or in
complete absence of serum the effect of GPG-NH2 on
gp160 was completely abolished, which strongly indi-
cates that GPG-NH2 is not the molecule responsible for
targeting gp160 for ERAD. aHGA, on the other hand
was active against gp160 both in the presence of HS and
under serum free conditions. The intermediate metabo-
lite G-NH2 was not able to target gp160 for destruction
in HS but showed some activity in absence of serum.

This means that either some of the enzymatic activity
converting G-NH2 to aHGA remained after washing of
the cells and HS prevented its conversion to aHGA or
G-NH2 was able to affect gp160 by itself but was inhib-
ited by HS. GPG-NH2 had to be added much earlier
than aHGA to the cell cultures in order to be effective
against gp160. The comparably slow onset of GPG-NH2

also supports that GPG-NH2 needs conversion to
aHGA to target gp160 for ERAD. In addition, viral par-
ticles produced in the presence of aHGA showed a dra-
matic loss in their gp120/gp41 content with respect to
the capsid protein p24. Therefore, the effect on gp160
resulting in reduced gp120/gp41 content in progeny
viral particles rendering them fusion incompetent that
was previously ascribed to GPG-NH2 is most likely due
to its metabolite aHGA. Although, deletion of the 19
N-terminal amino acids (aa) of the 30 aa long gp160 sig-
nal sequence has been shown to render gp160 resistant
to aHGA treatment, the exact site of aHGA interaction
remains to be identified [10].
We have previously shown that aHGA also causes a

diversity of abnormal capsid formations in progeny viral
particles [11]. These two effects may be completely
independent of each other as aHGA is believed to bind
to the hinge region of p24 thereby preventing it from
forming proper capsids [11]. However, the gp41 defi-
ciency in the particles could also contribute to the dis-
torted capsid formation. The exceptionally long
cytosolic tail of gp41, which stretches 150 aa into the
particles, interacts with p55Gag and cellular proteins
and may therefore play a role in the formation of proper
internal viral structures [13-16]. Although important, it
is difficult to evaluate which of the two effects is mostly
responsible for the overall antiviral effect and whether
they are related or are two separate phenomena. In an
effort to solve this, we are now trying to induce the
aHGA resistant gp160 signal sequence mutations into
infectious clones of HIV-1 to see if the resulting clones
are infectious and if so whether aHGA retains its anti-
viral activity to such mutated virus.

Conclusions
In this study, we have reported that it is not GPG-NH2

but its small metabolite (90 Da) aHGA that targets
gp160 for destruction via the ERAD pathway, which
results in production of gp120/gp41 deficient HIV-1
progeny particles.

Methods
Reagents and Antibodies
GPG-NH2 and G-NH2 were purchased from Bachem
Feinchemikalien and aHGA from Chemilia AB. The
monoclonal antibody to gp41 (Chessie 8) [17] was
obtained through the NIH AIDS Research and
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Reference Reagent Program, and the antibody to p24
(EF7) has previously been described [18].

Cell Lines and Plasmids
The cell lines HeLa-tat III and ACH-2 [19,20] and the
infectious HIV-1 expressing plasmid pNL4-3 [21] were
obtained through NIH AIDS Research and Reference
Reagent Program. The expression plasmids for gp160
from the HIV-1 strain NL43 (pNL1.5EU) [22] and for
Rev (pBRev) were kindly provided by Dr. S. Schwartz

(Uppsala University, Sweden). PCRR3.1/CAT expresses
chloroamphenichol acetyltransferase and was purchased
from Invitrogen.

Transfection and drug treatments
HeLa-tat III cells (~3 × 105 cells/dish) were treated with
the indicated concentrations of GPG-NH2, G-NH2 and
aHGA prior to or post transfection with the gp160, and
the transfection efficiency control CAT expressing plas-
mids using FuGENE 6 (Roche). The cells were rinsed

Figure 5 aHGA treatment reduces HIV-1 particle content of Env. (A) Chronically infected ACH-2 cells were induced with PMA for HIV-1
production and treated with the indicated concentrations of aHGA for 72 h. The viral production was determined by measuring extracellular
p24 concentrations by ELISA. (B) Virus particles were produced as described in (A) and precipitated with polyethylene glycol followed by
immunoblotting towards p24. (C) Immunoblot showing the amount of gp41 present in polyethylene glycol-precipitated HIV-1 particles,
produced by ACH-2 as described in (A) for 48 h. The HIV-1 particle content was standardized to the extracellular p24 concentrations measured
by ELISA and the gp41/p24 ratio was calculated by densitometry. (D) EM images of immuno-gold labeled gp41 in viral particles surrounding
untreated or treated ACH-2 cells with 50 μM aHGA and induced with PMA for 72 h prior to fixation. Arrows indicate labeling of gp41 and the
bars represent 100 nm.

Jejcic et al. Retrovirology 2010, 7:20
http://www.retrovirology.com/content/7/1/20

Page 7 of 9



twice in PBS and lysed 20-24 h post transfection in
RIPA buffer containing 50 mM Tris-HCl pH 7.4, 1%
Triton-X-100, 1% deoxycholate, 150 mM NaCl, 1 mM
EDTA, 0.1% SDS and supplemented with Complete pro-
tease inhibitor cocktail (Roche).

PNGase F digestion
Cell lysates in RIPA buffer were supplemented with 1%
b-mercaptoethenol and denaturated for 10 min at 95°C.
Addition of 1% NP-40 and 16 U PNGase F (New Eng-
land Biolabs) was followed by incubation at 37°C for
1 h.

Western Blot and ELISA
Cells and precipitated virus were lysed in RIPA buffer,
standardized to CAT or p24 levels respectively, dena-
tured and resolved by SDS-PAGE, transferred to nitro-
cellulose membranes and immunoblotted. The
membranes were exposed to film for the appropriate
time and band intensities were quantified using Gene-
Tools analysis software (SynGene). For probing against
cellular glycoproteins peroxidase conjugated Concanava-
lin A (Sigma) was used according to manufacturer’s pro-
tocol. In brief, the membranes were incubated in PBS
containing 2% Tween, rinsed in PBS and probed over
night in solution containing 2 μg/ml Concanavalin A,
0,05%Tween, 1 mM of CaCl2, MnCl2 and MgCl2. For
detection of total protein the membranes were stained
with 0.1% Naphthol Blue Black (Sigma) dissolved in 25%
isopropanol and 10% acetic acid. P24 levels in cell cul-
ture supernatants were quantified using p24-ELISA [23]
and CAT concentrations in cell lysates were quantified
using the CAT ELISA kit (Roche).

Virus expression, precipitation of HIV-1 particles and
immune EM
ACH-2 cells (8 × 105 cells/ml) were cultured with
100 nM 12-phorbol-13-myristate acetate (PMA) and
with or without aHGA. Three days later the cell culture
supernatants were collected, cleared by centrifugation at
300 × g for 10 min, passed through 0.45 μm filters and
the particles were precipitated at 4°C for 48 h in 1:6 (v/v)
with 40% poly ethylene glycol 6000 containing 0.667 M
NaCl. The precipitated particles were allowed to sedi-
ment at 16,000 × g for 20 minutes at 4°C and the virus
pellets were then dissolved in RIPA buffer. Sample pre-
paration of hydrated ACH-2 cells for immunocytochem-
ical analysis was performed as previously described using
10 nm colloidal gold labeling of anti-gp41 monoclonal
antibody [17,24]. Areas surrounding the infected cells
were used for calculating the number of Au-labeled
particles.
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