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Abstract

load.

Background: Several studies have demonstrated that SIV infection progresses more slowly to experimental AIDS in
Chinese rhesus macaques (Ch Rhs) than in Indian rhesus macaques (Ind Rhs). Here we investigated the dynamic
and functional changes in dendritic cell (DC) subsets in SIVmac239-infected Ch Rhs.

Results: The numbers of both mDC and pDC strongly fluctuated but were not significantly changed during the
acute and chronic phases of infection. However, the concentration of both poly (1:C)-induced IL-12 and HSV-1-
induced IFN-au significantly increased in the acute phase of infection but returned to normal levels at the chronic
phase of infection. The peak of IFN-a. emerged earlier than that of IL-12, and it had a significantly positive
correlation with IL-12, which indicated that IFN-a. may initiate the immune activation. We also found that only the
concentration of IFN-a. was positively correlated with CD4+ T-cell counts, but it was negatively correlated with viral

Conclusion: High levels of IFN-a in the early stage of infection may contribute to effective control of virus
replication, and normal levels of IFN-a. during chronic infection may help Ch Rhs resist the disease progression. The
change in DC subsets dynamics and cytokine production may help further our understanding of why Ch Rhs are
able to live longer without progressing to an AIDS-like illness.

Background

Dendritic cells (DC) are a heterogeneous population of
APC, essential in linking the innate and acquired
immune response [1]. Two major DC subsets, CD11c+
myeloid DC (mDC) and CD123+ plasmacytoid DC
(pDC), have been described in human [2] and non-
human primates [3]. mDC play an important role in the
acquired immune response by acquiring and processing
viral antigens into peptides for major histocompatibility
complex (MHC) presentation to T cells in secondary
lymphoid organs [4]. As one of the DC precursors, pDC
are located in blood and secondary lymphoid organs.
They are specialized in rapidly secreting massive
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amounts of type 1 IFN following different viral (HIV,
HSV-1) stimulations [5]. Then virus-activated pDC dif-
ferentiate into a unique type of mature DC, which prob-
ably play a role in the initiation of the T-cell response
in a manner similar to that of mDC [6]. Initially, mDC
and pDC were thought to prime primarily type 1 and
type 2 T-cell responses, respectively [7]. However, sub-
sequent data suggested that pDC activated by influenza
virus and CD40L are capable of priming type 1 response
in an IL-12 and IFN-a-dependent fashion [8]. Type 1
responses are very important for controlling viral infec-
tions such as HIV.

DC are considered the first immune cells to encounter
HIV and are involved in every stage of HIV infection. In
vitro, both mDC and pDC are susceptible to infection
by R5 and X4 HIV-1 isolates, although mDC are more
efficiently infected by R5 HIV-1 [9]. Meanwhile, DCs
may act as reservoirs for hiding HIV-1 and may then
transmit HIV-1 to CD4 T-cells after DC migration into
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the lymph node [10,11]. In vivo, several studies have
shown that both DC subsets are significantly reduced in
HIV-infected patients’ blood [12-17], with the decline
being inversely correlated with viral load and reduced
CD4" T-cell numbers [13,14]. This might be relative to
the hypothesis that apoptosis of DC induced by HIV and/
or migration of mature DC into the lymph node. The
function of DC was impaired accompanying with the
decline of cell number. Both mDC and pDC were severely
impaired in their ability to stimulate T-lymphocyte prolif-
eration in HIV-infected patients [18]. The IFN-a produc-
tion of pDC with viral stimulation was also decreased in
AIDS patients [15,19]. In addition to an IFN-o production
deficit, antigen-presenting cells (APC) from HIV-infected
subjects had reduced IL-12 production [20]. However,
most studies in humans have been limited to the chronic
stage of HIV infection, and animal models have mostly
been used to investigate the early stage of infection.

The immune systems of non-human primates (NHP)
closely resemble those of humans. The similar results
were also observed that mDC and pDC were lost from
the blood of SIV-infected Indian rhesus macaques (Ind
Rhs) [21]. Chinese rhesus macaques (Ch Rhs) have
recently been used in AIDS research as substitutes for
their Indian counterparts. Compared with Ind Rhs, the
SIVmac pathogenesis in Ch Rhs is closer to HIV-1 infec-
tion in untreated adult humans [22]. More and more
reports have demonstrated that pDC could influence the
disease progression by secreting IFN-a, so we suspect
that DC subsets may be the main cause of the difference
in progression to AIDS between Ch and Ind Rhs.

Here, we investigated the dynamics and function of
blood DC subsets during acute and chronic SIVmac239
infection of Ch Rhs. We found that the numbers of
mDC and pDC fluctuated strongly but were not signifi-
cantly changed after SIVmac239 infection. The concen-
tration of IL-12 and IFN-a significantly increased at the
acute phase of infection, but remained at a normal level
at the chronic phase of infection. The trends of change
were more likely with African green monkeys, but not
with Ind Rhs. This difference in change may be impor-
tant in determining the AIDS progression.

Results

Virological outcome and CD4+ T-cell counts in challenged
macaques

The dynamics of viral load were investigated for each Ch
Rhs. Each specimen sampled at different time points after
infection was tested, and the samples spanned the acute
and chronic phases of infection. Inoculation of rhesus
macaques with SIVmac239 resulted in a high viraemia
peak at day 14 post-infection (p.i) and a gradual persistent
decline, with no animals studied completely controlling
virus replication. The dynamics of viral load in the eight
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Ch Rhs are presented in Figure 1A. A different picture was
observed for the two other Ch Rhs, 98081 and 00317,
whose virus load increased significantly at the post-chronic
phases and who died early p.i. because of AIDS.

The mean count of blood CD4+ T cells significantly
decreased on days 10~34 p.i (P < 0.035), except on day
15. These returned to baseline level on days 48 to 202.
They then decreased again on days 265 and 568 (P <
0.042), followed by a slower recovery (Figure 1B).

The numbers of mDC and pDC showed no significant
change during SIVmac239 infection

For quantification of mDC and pDC, peripheral blood
mononuclear cells (PBMC) (R1, Figure 2) and TruCount
beads (R2, Figure 2) were first gated appropriately in the
forward-scatter/side-scatter (FSC/SSC) scattergram
using SSC as threshold. Lineage negative cells (R3, Fig-
ure 2) were gated from PBMC; HLA-DR*CD11c" of
these cells were mDC (R4, Figure 2), while HLA-DR
"CD123" were pDC (R5, Figure 2) [21,23]. The absolute
cell count was calculated as follows: Cells concentration
= (events in cells regionxtotal number of beads in Tru-
Count tube)/(events in beads regionxsample volume).

The mean count of mDC before infection in the eight
Ch Rhs was 70.7 cells/ul (range, 13.7 to 260.1 cells/pl);
this fell to 25.0 cells/pl (range, 4 to 44.5 cells/ul) on day
15 p.i with an acute decrease, which may be explained by
the migration of DC into the lymph node. Then the value
gradually returned to the subnormal baseline level before
day 76 and increased. Finally, the number declined and
remained at a low level because of the death of 00317
and 98081 (Figure 3A). The mean count of mDC reached
the highest site on days 202 and 265, but the value was
not significantly increased (P = 0.144 and P = 0.273,
respectively) because the higher count level of 00317 ele-
vated the mean value. mDC did not show a significant
increase or decrease during this period.

The change in pDC counts was different from that in
mDC at the early stage of infection. The mean count of
pDC showed an increase on day 6 p.i from 6.8 cells/pl
(range, 2.1 to 12.2 cells/pl) to 11.1 cells/pl (range, 1.6 to
27.2 cells/pl) but sharply decreased to the nadir on day
15 p.i (mean, 3.8 cells/pl; range, 1.2 to 6.4 cells/ul). It
returned to the subnormal level during the following
four weeks and reached its second nadir on day 108 p.i
(mean, 3.9 cells/pl; range, 1.5 to 5.1 cells/pl). The level
of pDC increased again and fluctuated around baseline
at the late stage of infection (Figure 3B).

IL-12 and IFN-o. produced by mDC and pDC, respectively,
increased during acute SIVmac239 infection

To determine whether the mDC and pDC functions
were impaired, the IL-12 or IFN-o concentrations in the
supernatants were investigated using TLR3L poly(I:C)- or
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Figure 1 The dynamics of viral load and CD4+ T-cell counts in Ch Rhs after SIVmac239 infection. (A) Plasma viral load in SIVmac239-
infected Ch Rhs; (B) Blood CD4+ T-cell counts during the infection.

TLRIL HSV-1-stimulated simian PBMC, respectively. As P = 0.012) compared with that on pre-infection (mean,
shown in Figure 4A, the mean amount of poly(I:C)-  562.3 pg/ml; range, 34 to 2194 pg/ml).

induced IL-12 was significantly increased on day 19 p.i The concentrations of HSV-1-induced IFN-a
(mean, 1021.7 pg/ml; range, 164 to 2984 pg/ml; also appeared transiently increased on day 6 p.i (mean,
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Figure 2 Flow cytometric analysis of Ch Rhs mDC and pDC. PBMC (R1) and TruCount beads (R2) were first gated on a forward-scatter/
side-scatter (FSC/SSC) scattergram. Then Lin™ cells (CD3'CD14CD207) were selected in the R3 region. CD11¢"HLA-DR™ and CD123" HLA-DR™ dots
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3298 pg/ml; range, 1398 to 5499 pg/ml; P = 0.012), which
was two weeks earlier than the increase in IL-12. They
decreased after a week on day 15 p.i (mean, 728.3 pg/ml;
range, 13 to 3591 pg/ml), and then recovered and remained
at a subnormal level until monkeys 98081 and 00079 lost
the ability for IFN-a production and died of AIDS (mean,
201 pg/ml; range, 0 to 604 pg/ml) (Figure 4B).

The increase in IL-12 and IFN-o during acute SIV
infection could induce strong immune activation, which
was considered to initiate AIDS progression in maca-
ques [24]. However, these cytokines, especially IFN-a,
are necessary to inhibit disease progression during
chronic infection. Noticeably, the trend in IFN-o secre-
tion in monkey 00317 was different from that in other
monkeys. The pDC of 00317 were weak in secreting

IFN-o pre-infection, but they were able to secret a high
level of IEN-a on day 6 p.i. They could not release an
abundance of IFN-a after day 48 and just kept to a sub-
normal level of the baseline. The low concentrations of
IFN-a in the post-chronic phase of infection may have
led to a quick death.

Enhanced IL-12 production per mDC and reduced IFN-o
production per pDC during acute SIVmac239 infection

At baseline, the mean amount of IL-12 produced by a
single mDC was 15.7 fg (range, 0.7 to 39.0 fg), and that
of IFN-a. produced by a single pDC was 489.1 fg (range,
12 to 1745 fg). The baseline value of IL-12 was half
lower than that in humans (34.7 fg). After infection, IL-
12 production per mDC was significantly increased from
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Figure 3 The dynamics of mDC counts and pDC counts in Ch Rhs after SIVmac239 infection. (A) Blood mDC counts during the infection;
(B) Blood pDC counts during the infection.

days 19 (mean, 57 fg; range, 2.0 to 205.8 fg; P = 0.025)
to 27 (mean, 77.6 fg; range, 0.8 to 405 fg; P = 0.043) p.i.
Afterward, the levels of IL-12 were gradually decreased
to a subnormal level (Figure 5A). The baseline value of
IFN-o produced by a single pDC was seven-fold higher
than that in humans (65.8 fg). The mean amount of
IFN-a significantly decreased on days 10 (mean, 316.3

fg; range, 5.0 to 1251.1 fg; P = 0.036), 15 (mean, 234.4
fg; range, 2.3 to 1282.5 fg; P = 0.012), and 27 (mean,
314.4 fg; range, 17.5 to 1091.5 fg; P = 0.05) p.i. The
IEN-o production was recovered following and then
reduced at day 528 (mean, 30.1 fg; range, 4.6 to 76.9 fg)
p. (Figure 5B). SIV infection significantly influenced the
cytokine-releasing capacity of DC subsets.
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Figure 4 The production of poly(l:C)-induced IL-12 or HSV-1-induced IFN-a in vitro. (A) IL-12 concentration in supernatants of Ch Rhs
PBMC stimulated with poly(l:Q); (B) IFN-o. concentration in supernatants of Ch Rhs PBMC stimulated with HSV-1.

Only IFN-a is positively correlated with CD4+ T-cell (Figure 6B). However, the pDC counts were positively
counts but is negatively correlated with viral load correlated with the CD4+ T-cell counts (r = 0.479,
through the infection P = 0.018) during the chronic phase of infection (76 to

There was no statistical correlation between the absolute 819 p.i), as previously reported [25]. A positive correlation
numbers of mDC with CD4+ T cells counts (Figure 6A)  was observed between the concentrations of IFN-o and
during infection, nor was this correlated with pDC  the CD4+ T-cell counts (Figure 6D; r = 0.399, P < 0.001),
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Figure 5 The production of poly(l:C)-induced IL-12 or HSV-1-induced IFN-a per individual mDC or pDC in vitro. (A) IL-12 production per
mDC in Ch Rhs; (B) IFN-a production per pDC in Ch Rhs.

while no correlation was found between the concentra-  with viral load. Only the concentrations of IFN-a. were
tions of IL-12 and the CD4+ T-cell counts (Figure 6C). negatively correlated with viral load (Figure 7D; r =

Both the counts of DC subsets (Figure 7A, B) and the -0.291, P = 0.004). In addition, the concentrations of
concentrations of IL-12 (Figure 7C) were not correlated IFN-a were also negatively correlated with the mDC
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counts (r = -0.268, P = 0.006)and positively correlated
with the pDC counts (r = 0.454, P < 0.001) and IL-12
concentrations (r = 0.311, P = 0.001). Our results
showed that IFN-o. may be a good choice for predicting
disease progression.

Discussion

In this study, we detected the dynamic and functional
changes in mDC and pDC in SIVmac239-infected Ch
Rhs. Both the mDC and pDC numbers were observed to
decrease on day 15 p.i, while the virus load achieved
culmination on that day. This decrease may be due to
the migration of DC into the lymph node [26,27]. mDC
returned to normal levels and showed no significant
increase or decrease. pDC increased within the first
week, which was also described using SIVmac251-
infected Ind Rhs [28]. This transient increase was also
observed in SIVmac251-infected young adult cynomol-
gus macaques (Macaca fascicularis) [29], but not in
SIVagm-infected African green monkeys (Chlorocebus
sabaeus) [25]. The results suggest pDC were sensitive to
the invading virus and accumulated in the blood after

Page 8 of 13

intravenous virus challenge. Different changes in pDC
were observed between Ch and Ind Rhs after the first
nadir. In SIV-infected Ch Rhs, the pDC numbers were
recovered during the chronic phase of infection, while
no appreciable recovery was observed in their Indian
counterparts [30]. As previously reported, Ch Rhs has
relatively slow progression to AIDS compared with Ind
Rhs [22]. The pDC trend in Ch Rhs was more similar to
that in African green monkeys [25] which are natural
hosts for SIVagm and generally do not progress to
AIDS, despite having high levels of plasma viral load.
Most studies have found that blood mDC and pDC
are severely depleted in HIV-infected patients [12-17] or
rhesus macaques with AIDS [21]. However, Soumelis
et al. [17] also showed there were high levels of pDC in
long-term survivors who had been infected for more
than 10 years with no clinical sign of disease. This sug-
gests that an increased pDC number may help protect
against disease development. The numbers and percen-
tages of mDC and pDC were not observed to be signifi-
cantly changed in this study, and they fluctuated around
the baseline level after SIVmac239 infection. It seems
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that Ch Rhs avoid the rapid depletion of the DC subsets,
and they may mount more potent immune responses to
SIVmac239 [31]. The numbers of both mDC and pDC
had no significant relationship with CD4+ T cells, as in
other reports [30]. However, the pDC counts were posi-
tively correlated with the CD4+ T-cell counts during the
chronic phase of SIV infection. The recovery of pDC
during the chronic phase of infection plays an important
role in prolonging the progress of SIV-infected Ch Rhs
toward AIDS.

Impaired DC functions may play important roles in
the immune deficiencies of SIVmac infection. The cyto-
kine-releasing capacity is a pivotal function of DC in
resisting virus infection. Circulating mDC preferentially
express TLR3 and exclusively secrete IL-12 stimulated
by poly(I:C) [32,33]. Stimulation by HSV-1 generally
occurs through TLRY, which is strongly expressed by
pDC. Several papers have demonstrated that pDC are
the major producers of IFN-a. when HSV-1 directly sti-
mulates the human or simian PBMC [6,34]. We exam-
ined the change in cytokine secretion of DC subsets
during SIV infection. The ability of mDC to secrete IL-
12 after viral infection has been investigated extensively

because this molecule is crucial to inducing Th1-skewed
antiviral responses in vivo [35]. In our study, the
amount of IL-12 significantly increased on day 19 p.i
and remained at a high level at most time points. The
increase was also observed by Byrnes et al. [36], who
found that patients with acute/early HIV infection
exhibited in vivo IL-12 production along with increased
maximal IL-12 production by their PBMC in vitro in
the absence and presence of HAART. This increase
showed significant immune activation at the acute/early
phase of HIV/SIV infection. However, keeping IL-12 at
a high level in the chronic stage is opposed to the find-
ing in previous research that the concentration of IL-12
produced by mDC was significantly reduced in chroni-
cally HIV-infected patients [32,37].

The IFN-o mainly secreted by pDC exerts a strong
anti-HIV activity not only directly, but also indirectly
through the activation of the immune system. During
SIVmac239 infection, the concentration of IFN-o stimu-
lated simian PBMC with HSV-1 significantly increased
within the first week, and kept normal levels later.
This transitory peak of IFN-a was previously found in
African green monkeys using the same method [25].
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IFN-o has proven to be beneficial in controlling HIV
replication during the early stages of infection [38]. Our
results indicated that pDC were motivated quickly to
eliminate SIV after infection in Ch Rhs. High-level IFN-
o was hard to control in rhesus macaques [39], which
could cause chronic immune activation, and finally lead
to CD4+ T-cell depletion and AIDS progression [40].
Nevertheless, low-level IEN-o. was useless in controlling
the disease progression during chronic infection. It has
long been known that there is a defect in IFN-a produc-
tion by PBMC or pDC in chronically HIV-infected
patients [15,19,37,41,42] and that IFN-a production is
higher in asymptomatic long-term survivors than in
uninfected controls [17]. The rebound of IFN-a produc-
tion during chronic infection may help Ch Rhs resist
the disease progression. Although there is a lack of
direct evidence for the IFN-a change in chronically
SIV-infected Ind Rhs, the persistent low counts and per-
centages of pDC could predict a low concentration of
IFN-o. Compared with African green monkeys, Ch Rhs
had a similar IFN-a change after SIV infection and had
slow progression toward AIDS. Our results also showed
that the concentration of IFN-a was significantly posi-
tively correlated with the CD4+ T-cell counts but nega-
tively correlated with viral load through the infection.
Thus, it can be used to predict AIDS progression.

When we excluded the impact of the number, we
found that the change in IFN-a production per pDC was
not statistically significant on day 6 p.i. Thus, the increase
in total IFN-o production was mainly determined by the
number of pDC, which significantly decreased on days
10, 15, and 27, and then returned to a normal level. This
result is inconsistent with Malleret et al. [29] who
reported that IFN-I production per pDC of cynomolgus
macaques was significantly lower in response to HSV-1
on day 35 after infection and recovered 9 months after
infection. However, this decline does not mean that the
pDC production capacity of IFN-a has been impaired,
since pDC retained largely normal functions in response
to TLR7 stimulation during acute SIV infection, as found
using a flow cytometric assay to detect IFN-a-producing
cells [28]. Human pDC rapidly become refractory to sec-
ondary stimulation [43], which was considered as the
cause of the decrease in IFN-a production in vitro in
patients infected with HIV [44]. Thus, the decrease in
IFN-a production per pDC in our study demonstrated
that pDC were quickly refractory to IFN-a production in
response to de novo stimulation. Indeed, we have also
detected a transient peak in IFN-a concentration in
plasma in the acute phase of infection (data not shown),
as previously found in SIV-infected Ind Rhs [45] and
African green monkeys [25] at around day 10 p.i. This
peak in IFN-a in plasma resulted from the intense stimu-
lation of pDC by the high plasma viral load in vivo.
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In contrast with IFN-a, IL-12 production per mDC
increased between days 10 and 27 p.i, and had no signif-
icant change in the following days of SIVmac239 infec-
tion in our study. Increased IL-12 production per mDC
was closely following with the increase of IFN-o con-
centration in plasma, and the peak of IFN-a level in
plasma was accordance with that of increased-IL-12.
There was a significant positive correlation between the
concentration of IFN-a and that of IL-12, but a negative
correlation was seen between the concentration of IFN-
o and mDC counts. HIV-activated pDC were able to
induce the bystander maturation of mDC through IFN-
o [46]. Thus, our results indicated that IFN-o might
prompt mDC to secrete more IL-12 after maturation. It
is a protective strategy of IFN-a to recruit more
immune cells, like mDC, to defend against HIV
infection.

Conclusions

In summary, our study revealed that the counts of mDC
and pDC did not significantly change during STVmac239
infection in Ch Rhs and had no relationship with CD4+
T cells or viral load. Poly(I:C)-induced IL-12 and HSV-
1-induced IFN-a significantly increased at the acute
phase of infection, but returned to normal levels there-
after. The concentration of IFN-o. showed a significantly
positive correlation with the CD4+ T-cell counts, but
had a negative correlation with viral load. High levels of
IFN-a in the early stage of infection contribute to the
effective control of virus replication and also initiated
the AIDS progression, while median levels of IFN-a
concentration during chronic infection may help Ch Rhs
resist the AIDS progression. The dynamics of IFN-a
secreted by pDC might be the main cause of the slow
progression to AIDS in SIV-infected Ch Rhs.

Materials and methods
Animals and infections
The eight Ch Rhs (Macaca mulatta) used in this study
were from the Kunming Primate Research Center, Chi-
nese Academy of Sciences (CAS), and housed at the
ABSL-3 laboratory in accordance with the Guide for the
Committee on Animals for KIZ, CAS, and the Animal
Welfare Act. The Ch Rhs were adult males between 5
and 11 years old; each weighed 6 to 12 kg. All eight
monkeys were negative for SIV, STLV, and SRV when
included in the study, as demonstrated by enzyme-
linked immunosorbent assay or PCR analyses.

Rhesus macaques were inoculated intravenously with
5 x 10 50% tissue culture infectious doses of STVmac239.
Four of these (00067, 00079, 00317, and 98081) were
observed for 819 days post-inoculation or until death from
AIDS. Two of the macaques, 00317 and 98081, progressed
to AIDS and died at 69 and 94 weeks post-inoculation,
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respectively. Four others (05049, 04029, 04039, and 01035)
were observed only during the early phase of infection (62
days p.i).

Quantification of viruses in plasma

The levels of viral RNA in plasma were measured by an in-
house real-time PCR method. Briefly, plasma was separated
from whole blood collected in EDTA-K,-containing tubes.
Viral RNA was extracted using the High Pure Viral RNA
Kit (Roche) according to the manufacturer’s instructions.
The samples were analyzed immediately for real-time PCR
or stored at -80°C until use. A two-step RT-qPCR assay
using the PrimeScript™ RT reagent Kit and Premix Ex
Taq™ (Takara) was performed on a 7500 Fast Real-Time
PCR System (Applied Biosystems). PCR reactions in a total
volume of 20 pl consisted of 10 pul of Premix Ex Taq, 2 pl
of the standard or samples, 0.4 pul ROX reference Dye II,
200 nM of each primer, and 100 nM of the TagMan
probe. The probe and primers were designed to bind
within the conserved SIVmac gag region. The sequences of
the primers used were: 5’-TCGGTCTTAGCTCCAT-
TAGTGCC-3" and 5-GCTTCCTCAGTGTGTTTCA-
CTTTC-3’; the TagMan probe sequence was: 5’
-CTTCTGCGTGAATGCACCAGATGACGC-3'. In the
probe the fluorescence reporter dye at the 5" end was FAM
(6-carboxyfluorescein), and the quencher dye at the 3’ end
was TAMRA (6-carboxytetramethylrhodamine). The
control template is an in vitro transcript pGEM-4Z-
SIVgag357containing the SIV gag fragment from
SIVmac239, prepared from the plasmid p239SpSp5’ kindly
provided by Dr. Bin Gao (Institute of Child Health, Univer-
sity College London, UK). RNA transcripts were diluted in
nuclease-free water and stored at -80°C in single-use ali-
quots. For each run, an RNA standard curve was generated
in in vitro transcripts ranging from 6~6 x 10° to the nom-
inal copy equivalents/reaction. One thousand copies per
ml were considered the limit of detection.

Flow cytometry

Flow cytometric analyses were performed using whole
blood. The number of T-cell subsets, mDC, and pDC in
peripheral blood was determined using the true-count
method, as previously described [23]. For identification
of DC subsets, whole blood was incubated in BD
TruCount tubes with a lineage (Lin) mixture of FITC-
conjugated mAb against CD3 (clone SP34; BD), CD14
(clone TUK4; Miltenyi), and CD20 (clone LT20; Milte-
nyi), with HLA-DR-PerCP (clone L243; BD). Then
CD11c-PE (clone 3.9; eBioscience), CD123-PE (clone
7G3; BD), or isotype mAbs were added separately into
each tube and incubated for 15 min at RT. FACS lysing
solution (BD Biosciences) was added into each tube to
lyse erythrocyte and fix samples. Around 30,000 cells
were acquired with three-color flow cytometry using
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FACSCalibur (Becton Dickinson) and then analyzed
through CellQuest software.

PBMC isolation and in vitro stimulation

PBMC were isolated by Ficoll-Paque (GE Healthcare)
density gradient centrifugation. PBMC were cultured in
24-well plates (Costar) at 4 x 10° cells/ml in RPMI 1640
supplemented with 10% fetal bovine serum. A total of
25 pg/ml poly(I:C) or HSV-1 at a MOI of 1.0 was added
to stimulate mDC or pDC, respectively. After 24 hours
of culture, cell-free supernatants were harvested and
kept at -80°C until assayed.

Cytokine assays

Samples of culture supernatants were analyzed for IL-12
(p40+p70) and IFN-o using a commercially available
ELISAP™ kit for human IL-12 (total) (Mabtech) and a
multi-subtype human IFN-o ELISA kit (PBL Biomedical
Laboratories) according to the manufacturer’s instruc-
tions. Per cell IL-12 or IFN-o production was calculated
using the formula described by Zhang et al. [32] as IL-
12/(mDC% x 4 x 10°) and IFN-0./(pDC% x 4 x 10°).

Statistical analysis

All data were analyzed using the SPSS 13.0 software.
The nonparametric Wilcoxon rank test was used to
compare data from the same macaque at different time
points before and after SIV infection. The nonpara-
metric Spearman rank correlation test was used to
investigate the relationship between parameters. For all
tests, two-sided p < 0.05 was considered to be
significant.
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