Retrovirology Poster presentation **Open Access** # P16-23. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance S Tenzer¹, E Wee⁶, A Burgevin², G Stewart-Jones⁶, L Friis⁶, K Lamberth³, C Chang⁶, M Harndahl³, M Weimershaus², J Gerstoft⁴, N Akkad², P Klenerman⁶, L Fugger⁶, EY Jones⁶, AJ McMichael⁶, S Buus³, H Schild¹, P van Endert² and AK Iversen*^{5,6} Address: ¹University of Mainz, Mainz, Germany, ²INSERM, Unité 580, Université Paris-Descartes, Paris, France, ³University of Copenhagen, Copenhagen, Denmark, ⁴Rigshospitalet, The National University Hospital, Copenhagen, Denmark, ⁵Oxford University, Oxford, UK and ⁶Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, UK from AIDS Vaccine 2009 Paris, France. 19–22 October 2009 Published: 22 October 2009 Retrovirology 2009, 6(Suppl 3):P252 doi:10.1186/1742-4690-6-S3-P252 This abstract is available from: http://www.retrovirology.com/content/6/S3/P252 © 2009 Tenzer et al; licensee BioMed Central Ltd. ### **Background** Cytotoxic T cells (CTL) play a key role in limiting human immunodeficiency virus (HIV)-1 replication. However, although the cellular immune response in HIV-infected individuals can potentially target multiple virus epitopes, the same few are repeatedly recognized. Here we investigated the factors determining observed CTL response hierarchies in Gag p17 and p24. #### **Methods** We used constitutive and immuno-proteasomal digestion assays, transporter associated with antigen processing (TAP) binding assays, endoplasmatic reticulum aminopeptidase (ERAAP) trimming assays, HLA binding assays, T cell cloning and ELISpot assays to evaluate the contribution of each of these factors to final epitope presentation and recognition. Key findings were further examined using structural analyses. #### **Results** We show that CTL-immunodominance in regions of HIV-1 p17- and p24-Gag correlates with epitope abundance, which is influenced strongly by proteasomal digestion profiles, TAP-affinity and ERAAP-mediated trimming, and moderately by HLA affinity. Structural and functional analyses demonstrate that proteasomal cleavage-preferences modulate the number and length of epitope-containing peptides, thereby affecting T cell response avidity and clonality. Cleavage patterns were affected by both flanking and intra-epitope CTL-escape mutations. #### **Conclusion** Our analyses show that antigen processing shape CTL-response hierarchies, that viral evolution modify cleavage patterns, and suggest strategies for in vitro vaccine optimization. ^{*} Corresponding author