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Abstract
Background: Infection with HIV-1 has been shown to alter expression of a large array of host cell
genes. However, previous studies aimed at investigating the putative HIV-1-induced modulation of
host gene expression have been mostly performed in established human cell lines. To better
approximate natural conditions, we monitored gene expression changes in a cell population highly
enriched in human primary CD4+ T lymphocytes exposed to HIV-1 using commercial
oligonucleotide microarrays from Affymetrix.

Results: We report here that HIV-1 influences expression of genes related to many important
biological processes such as DNA repair, cellular cycle, RNA metabolism and apoptosis. Notably,
expression of the p53 tumor suppressor and genes involved in p53 homeostasis such as GADD34
were up-regulated by HIV-1 at the mRNA level. This observation is distinct from the previously
reported p53 phosphorylation and stabilization at the protein level, which precedes HIV-1-induced
apoptosis. We present evidence that the HIV-1-mediated increase in p53 gene expression is
associated with virus-mediated induction of type-I interferon (i.e. IFN-α and IFN-β).

Conclusion: These observations have important implications for our understanding of HIV-1
pathogenesis, particularly in respect to the virus-induced depletion of CD4+ T cells.

Background
Infection by human immunodeficiency virus type-1 (HIV-
1) is characterized by a progressive degradation of the
human immune system, a condition better known as the
acquired immunodeficiency syndrome (AIDS). The proc-
ess by which this breakdown occurs has been the subject
of intense research in the past few years. It appears that
HIV-1 causes a slow but progressive death of CD4+ T lym-
phocytes, which are key players of the immune system
that coordinate the humoral and cellular responses. How-

ever, the exact mechanism(s) leading to such a dramatic
depletion of CD4+ T cells in vivo is not well understood,
although it has been proposed that this phenomenon is
multifactorial [1]. It has been suggested that apoptosis or
programmed cell death plays a dominant role in the
observed HIV-1-mediated CD4+ T cell depletion. Recent
studies have identified numerous viral components that
can induce apoptosis via different pathways. Indeed, the
viral proteins Tat [2], Nef [3], Vpr [4] and gp120 [5] can
all elicit apoptosis in CD4+ T lymphocytes, at least under
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in vitro conditions. Even if the actual relevance and in vivo
impact of these studies remain to be established, it is clear
that HIV-1 interactions with its host are complex and mul-
tifaceted.

New technologies are rapidly expanding our analytical
power. Among the technical innovations developed in the
past few years, cDNA and oligonucleotide microarrays
have revolutionized the way we look at and understand
gene expression, allowing the rapid quantification of
thousands of genes at once in a given cell population.
Recently, microarrays have been used by different groups
to determine the effects of whole HIV-1 particles or single
viral proteins (e.g. Tat [6] and Nef [7]) on CD4+ T lym-
phoid cell lines, monocytoid cell lines, primary astrocytes
[8-11], primary macrophages [12] and jejunal biopsies
[13]. A comprehensive review of the 34 studies involving
HIV-1 and microarrays in the 2000–2006 period is avail-
able [14]. These studies yielded important data on HIV-1-
mediated effects on gene expression, providing new
insights into the intricate interactions occurring during
infection. Nevertheless, there is still a paucity of data
regarding the modifications in gene expression profiles
induced by HIV-1 in human primary CD4+ T lym-
phocytes, a cell type considered as a major target for HIV-
1. Only two recent studies have performed gene expres-
sion analyses in this major cell reservoir for HIV-1. A first
analysis has compared the genetic profiles between
viremic and aviremic HIV-1 positive individuals in a pop-
ulation of resting CD4+ T cells [15]. More recently, an ele-
gant study by Audigé and colleagues has examined the
impact of HIV-1 infection on resting CD4+ T cells
extracted from ex vivo tonsils [16]. Consequently, we felt it
was crucial to provide additional information on possible
changes in early gene expression following exposure of
activated human primary CD4+ T lymphocytes to HIV-1
particles. The rationale for such a study is provided by the
idea that cell lines, which have often been preferred over
primary cells for microarray studies involving HIV-1, are
either cancerous or transformed by viral proteins, and can
thus harbour numerous defects in multiple pathways
compared to primary cells, notably in their apoptosis-
related metabolism, cell cycle and DNA repair functions.
We thus decided to run a small-scale study focusing on
early transcriptional events following HIV-1 infection in
activated primary CD4+ T cells isolated from peripheral
blood.

We considered that focusing on early events following
exposure to HIV-1 had the potential to yield the most
interesting results as cell signalling events and gene
expression changes can occur in just a few hours. Our goal
was to identify a small set of regulated genes that could be
confirmed by quantitative real-time PCR (qRT-PCR) and
western blot analyses. Additionally, as our laboratory has

extensively characterized the effect of ICAM-1 incorpora-
tion in the virus lipid bilayer [17-23], we investigated
whether the presence of host-derived ICAM-1 onto HIV-1
would influence the virus-mediated changes in the tran-
scriptional profiles. In the current work, results depicting
the early gene modulation initiated by HIV-1 in a cell pop-
ulation highly enriched in CD4+ T lymphocytes using
Affymetrix microarray technology are presented.

Methods
Cell culture
Peripheral blood was obtained from normal healthy
donors and peripheral blood mononuclear cells (PBMCs)
were prepared by centrifugation on a Ficoll-Hypaque den-
sity gradient. Next, a cell population highly enriched in
CD4+ T cells was isolated through the use of the human
CD4+ T Cell Isolation Kit II™ (Miltenyi Biotec, Auburn,
CA) according to the manufacturer's instructions. Some
experiments have also been performed with another neg-
ative selection kit designed for the purification of human
CD4+ T cells (StemCell Technologies Inc., Vancouver, BC).
The purity of the negatively selected cell population was
estimated by quantifying the percentage of CD4-express-
ing cells. Next, cells were cultured at a concentration of 2
× 106/ml in complete RPMI-1640 medium (Invitrogen,
Burlington, ON) supplemented with 10% fetal bovine
serum (FBS) (Atlanta Biologicals, Norcross, GA), L-
glutamine (2 mM), penicillin G (100 U/ml), streptomycin
(100 μg/ml), phytohemagglutinin-L (1 μg/ml) and
recombinant human IL-2 (30 U/ml) for 3 days at 37°C
under a 5% CO2 atmosphere prior to virus infection.
Human embryonic kidney 293T cells and .HEK-Blue™
IFN-α/β cells (InvivoGen, San Diego, CA) were main-
tained in Dulbecco's modified Eagle medium (Invitrogen)
supplemented with 10% FBS, glutamine (2 mM), penicil-
lin G (100 U/ml) and streptomycin (100 mg/ml). Culture
media used for .HEK-Blue™ IFN-α/β cells was supple-
mented with 30 μg/ml of blasticidin and 100 μg/ml of
Zeocin.

Production of virus stocks
Isogenic virus particles differing only by the absence or the
presence of host-derived ICAM-1 proteins on their outer
membranes were produced by calcium phosphate trans-
fection in 293T cells using a commercial calcium phos-
phate co-precipitation kit according to the manufacturer's
instructions (CalPhos Mammalian Transfection kit, Clon-
tech Laboratories Inc., Palo Alto, CA). Briefly, parental
293T cells were transiently co-transfected with pNL4-3
(an infectious X4-tropic infectious molecular clone of
HIV-1) [24] to produce viruses lacking host ICAM-1
(called NL4-3 wt). Moreover, 293T cells engineered to
constitutively express a high level of ICAM-1 (i.e. 293T-
ICAM-1) [25] were similarly transfected with pNL4-3 to
produce ICAM-1-bearing viruses (called NL4-3 ICAM-1+).
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The NL4-3 vector was obtained from the NIH AIDS Repos-
itory Reagent Program (Germantown, MD). In some
experiments, the percentage of cells productively infected
with HIV-1 was estimated through the use of fully compe-
tent GFP-encoding viruses, which were produced by trans-
fecting 293T and 293T-ICAM-1 cells with the infectious
molecular clone NLENG1-IRES (NL4-3-based vector) (a
generous gift from D.N. Levy, New York University, NY)
[26]. Cell-free supernatants from such transiently trans-
fected cells were filtered through a 0.22-μm-pore-size cel-
lulose acetate membrane (Millipore, Bedford, MA). To
eliminate free p24, cell-free supernatants were treated
using Centricon® Plus-20 Biomax-100 filter devices (Mill-
ipore Corporation) or ultracentrifugation. Finally, sam-
ples were aliquoted before storage at -85°C. A p24
antibody capture assay developed in our laboratory was
used to normalize the p24 content in all viral preparations
[27]. All virus preparations underwent a single freeze-
thaw cycle before initiation of infection studies.

Flow cytometry
Flow cytometry analyses were performed with a total of
106 cells that were incubated with 100 μl of PBS (pH 7.4)
containing a saturating amount of a monoclonal anti-
CD4 or anti-CD14 antibody for 30 min on ice. Thereafter,
cells were treated with a pool of human serum for 30 min
at 4°C and then washed with cold PBS, in order to block
Fc receptors and non-specific sites. The cells were then
labelled for 30 min at 4°C with 100 μl of a saturating
amount of FITC-conjugated goat anti-mouse immu-
noglobulin G (Caltag, Invitrogen). Finally, cells were
washed, fixed in 2% paraformaldehyde for 30 min and
analyzed on a cytofluorometer (EPICS XL, Coulter Corp.,
Miami, FL).

Microarray experiments
A cell population highly enriched in CD4+ T cells was
either left unexposed or exposed to NL4-3 particles either
lacking (NL4-3 wt) or bearing host-derived ICAM-1 (NL4-
3 ICAM-1+) for 8 and 24 h at 37°C. A virus input of 10 ng
of p24 per 1 × 105 target cells was used in all studies. RNA
samples from five healthy donors were pooled together to

minimize experimental variations. Cell pellets were fro-
zen at -80°C until isolation of total mRNA was performed
using the RNeasy kit according to the manufacturer's pro-
tocol (Qiagen, Valencia, CA). All samples were processed
at the same time and using the same kit. The RNA quality
was controlled by electrophoresis on a denaturing gel as
specified in the Affymetrix's protocol. Gene expression
profiles were analyzed using commercial oligonucleotide
microarrays (HGU95Av2 GeneChips, Affymetrix, Santa
Clara, CA), which contain probe sets representing 12,627
transcripts. A total of six microarrays were used, i.e. mock-
infected, infected with NL4-3, or infected with NL4-3
ICAM-1+ at 8 and 24 h post-infection. Affymetrix stand-
ard protocols were followed throughout these experi-
ments. Data were globally normalized (target: 1000) and
present calls were determined using MAS 5.0 (Microarray
Suite v5.0, Affymetrix, Santa Clara, CA). Results were ana-
lyzed using GeneSpring 6.0 (Agilent Technologies, Santa
Clara, CA). Signal intensity was normalized for each
microarray and genes with a signal below 100 were
ignored. Fold changes of two times the control and higher
were considered as significant. GO overrepresentation
analysis was performed with the GO Tree Machine soft-
ware http://genereg.ornl.gov/gotm/ using the "interesting
gene list vs reference gene list" setting against the
affy_HG_U95AV2 reference list.

qRT-PCR analysis
The expression level of some specific transcripts was deter-
mined using a Rotor-Gene system (Corbett Life Science,
Sydney, Australia). Total RNA was isolated using the Qia-
gen RNA extraction kit and then digested with deoxyribo-
nuclease to remove any contaminating genomic DNA.
RNA was reverse-transcribed using AMV reverse tran-
scriptase (Promega). We then proceeded to qRT-PCR
quantification of transcripts using Taq polymerase (Ampl-
iTaq Gold® PCR Master Mix, Applied Biosystems) and Sybr
Green detection. Normalization on 18S mRNA levels was
performed to obtain final expression values. A standard
curve was drawn for each gene of interest by serial dilu-
tions of a pool of RNA. The sequence of primers we used
is presented in Table 1.

Table 1: Primers sequences used for qRT-PCR analysis

Primer name Sequence

p53 sense 5'-ACAGCACATGACGGAGGTTG-3'
p53 antisense 5'-CCCAGGACAGGCACAAACAC-3'
ribosomal 18S sense 5'-TGTTCAAAGCAGGCCCGAG-3'
ribosomal 18S antisense 5'-CGGAACTACGACGGTATCTGATC-3'
GADD34 sense 5'-AACCTCTACTTCTGCCTTGTCT-3'
GADD34 antisense 5'-CGCCTCTCCTGAACGATACTC-3'
TNFRSF25 sense 5'-GGAGAACCACCATAATTC-3'
TNFRSF25 antisense 5'-TCTTCCTATTCCTGAACC-3'
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Western blots
A cell population highly enriched in CD4+ T lymphocytes
was either left unexposed or exposed to viruses lacking
host-derived ICAM-1 (i.e. NL4-3 wt) for 24 and 48 h at
37°C. Thereafter, total cell extracts were heated at 100°C
for 10 min in 1× sample buffer (62 mM Tris-HCl [pH 6.8],
2% SDS, 5% β-mercaptoethanol, 9% glycerol and 0.002%
bromophenol blue) containing 1 mM PMSF. The samples
were then electrophoresed on a 7.5 to 20% gradient
sodium dodecyl sulfate-polyacrylamide gel and trans-
ferred to Immobilon polyvinylidene difluoride mem-
branes (Millipore, Bedford, MA). Immunoblotting was
performed using antibodies specific for p53 (clone DO-1,
Santa Cruz Biotechnology, Santa Cruz, CA), GADD34
(goat polyclonal antibody, Serotec, Raleigh, NC),
TNFRSF25 (rabbit polyclonal antibody DR3 Ab-2, Neo-
markers, Fremont, CA) and β-actin (mouse monoclonal
antibody, clone C-2, Santa Cruz Biotechnology). Mem-
branes were labelled with horseradish peroxidase-conju-
gated secondary anti-rabbit or anti-mouse antibodies
(Jackson ImmunoResearch, Mississauga, ON) at a
1:20,000 and 1:10,000 dilution, respectively. Signals were
revealed using the ECL™ Western blotting detection rea-
gent (Amersham, Piscataway, NJ). Densitometry analysis
was performed using the freely available image analysis
ImageJ software http://rsb.info.nih.gov/ij/.

Measurements of IFN- /  and blocking experiments
Levels of interferon-α (IFN-α) and IFN-β in cell-free
supernatants from the studied cell populations highly
enriched in CD4+ T cells either unexposed or exposed to
virus stocks were determined through the use of .HEK-
Blue™ IFN-α/β cells according to the manufacturer's pro-
tocol (InvivoGen, San Diego, CA). Supernatants were
collected at 1, 2, 4 and 6 h following virus exposure.
Virus was added in a reverse time course and all superna-
tants were harvested simultaneously. A standard curve of
IFN-α ranging from 1 to 1,000 Units/ml was used. In the
neutralizing experiments, antibodies that can inhibit
human IFN-α (MMHA-2 from PBL Interferon Source,
Piscataway, NJ or ab9660 from Abcam, Cambridge, MA)
and IFN-β (ab9662 from Abcam) were mixed together at
equal concentrations (i.e. 1 μg/ml) and added simulta-
neously with viruses. Appropriate isotype-matched con-
trol antibodies were also used. After an incubation
period of 24 h, total RNA was extracted and p53 and 18S
mRNA levels were quantified by qRT-PCR as previously
described.

Statistical analysis
Means were compared using the Student's test. P values of
less than 0.05 were considered statistically significant.
Microsoft Office Excel 2007 software was used for all sta-
tistical analyses.

Results
Characterization of the studied cell population
It is known that experiments involving human primary
cells are more difficult to perform than comparable stud-
ies using established cell lines, as one has to account for
the inherent variability between donors, such as the state
of cell activation and homogeneity of the isolated popula-
tion, notwithstanding differences in genetic background.
The purity of the studied CD4+ T cell population isolated
from PBMCs through a negative magnetic selection proce-
dure was assessed by flow cytometry. The two commercial
isolation kits used to purify human CD4+ T lymphocytes
(i.e. Miltenyi Biotec and StemCell Technologies Inc.) rou-
tinely yielded a degree of purity greater than 96%. How-
ever, flow cytometry analyses revealed the presence of
cells positive for both CD4 and CD14 in a proportion
ranging from 5 up to 15% in some rare cases (Fig. 1A),
thus suggesting a variable but reproducible contamina-
tion with cells of monocytic lineage. To reflect the fact that
the studied population of human primary cells was not
made exclusively of CD4+ T cells, we will refer to it as a cell
population highly enriched in CD4+ T cells.

HIV-1 infection rate is low in the studied cell population
We next considered that it was crucial to estimate virus
infection rates in our samples in order to accurately inter-
pret results we would obtain from the microarray data. To
this end, recombinant reporter virions were used to quan-
tify the percentage of cells productively infected with HIV-
1 at 1, 2, 5 and 7 days post-infection. Fully competent
eGFP-encoding virions were produced upon transient
transfection of parental 293T cells (to produce viruses
lacking ICAM-1) and 293T-ICAM-1 (to produce ICAM-1-
bearing virions) with the NLENG1-IRES vector. This infec-
tious molecular clone of HIV-1 contains an eGFP-IRES-
Nef construct in place of the Nef open reading frame
within the backbone of NL4-3 [26]. Consequently, eGFP
is expressed along with early genes, allowing for a rapid
and precise quantification of the percentage of cells pro-
ductively infected with HIV-1. Moreover, viruses pro-
duced by the NLENG1-IRES vector are fully infectious and
express all viral genes, unlike previously described HIV-1
reporter constructs that are deficient in nef, vpr and/or env.
Following exposure of the isolated cell population highly
enriched in CD4+ T cells to the viral input used (i.e. 10 ng
of p24 per 1 × 105 cells), we found that on average less
than 10% of cells are expressing the virus-encoded
reporter protein at 5 days post-infection when infection
was allowed to proceed with viruses lacking host-derived
ICAM-1 (i.e. NL4-3 wt) (Fig. 1B). As expected, the number
of cells that are productively infected is enhanced when
infection is performed with isogenic ICAM-1-bearing
HIV-1 particles (i.e. NL4-3 ICAM-1+) resulting in more
than 15% eGFP+ cells at five days post-infection. This
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observation is consistent with the reported increase in p24
production following infection with ICAM-1-bearing
viruses [19]. The viral infection rates that are seen follow-
ing exposure to HIV-1 either lacking or bearing host-
derived ICAM-1 are very low at the two time points stud-
ied in the microarray experiment (i.e. 8 and 24 h post-
infection). Next, comparative analyses were made to eval-
uate the permissiveness of human CD4+ T lymphoid cells
to the studied reporter viruses. To this end, Jurkat cells
were exposed to a similar input of eGFP-encoding virions
and the percentage of positive cells was monitored by flow
cytometry. In sharp contrast to the situation prevailing in
human primary CD4+ T cells, up to 50% of Jurkat cells
were productively infected with HIV-1 at 5 days post-
infection (data not shown).

HIV-1 rapidly modulates host gene expression
Having established some characteristics of the studied cell
population such as purity and permissiveness to produc-
tive viral infection, gene microarray analysis was per-
formed to measure the impact of HIV-1 on host gene
expression in CD4+ T lymphocytes. Cells were isolated
from five healthy donors and either left uninfected
(mock) or infected with isogenic NL4-3 wt or NL4-3
ICAM-1+ for 8 and 24 h (Fig. 1C). Next, RNA was
extracted, pooled and processed according to the manu-
facturer's instructions and then hybridized on HG-U95v2

oligonucleotide arrays (Affymetrix). Gene expression data
was obtained with the Affymetrix Microarray Suite soft-
ware (version 5.0). Analysis of the microarray data
revealed that HIV-1 significantly influenced the transcrip-
tomic profile of the cell population enriched in CD4+ T
cells in spite of the weak infection rate. Indeed, we deter-
mined that, out of the 4,289 genes with a present call in
all six arrays, 404 genes were modulated (either up- or
down-regulated) at least twofold by either viruses com-
pared to controls. A very limited number of cellular genes
were differentially regulated at 8 h post-infection (i.e. 8
genes modulated at least 2 fold by both virus stocks and
56 genes affected by either NL4-3 wt or NL4-3 ICAM-1+)
(Additional file 1), whereas the majority of changes were
observed at 24 h post-infection (i.e. 22 genes modulated
2 fold or more by both virus preparations and 363 genes
by either NL4-3 wt or NL4-3 ICAM-1+) (Additional file 2).
Interestingly, 28.5% of the genes modulated either by
NL4-3 wt or NL4-3 ICAM-1+ at 8 h post-infection are still
affected at the 24 h time point. The large discrepancy
between the numbers of genes modulated by both virus
preparations and by either of them hinted at large differ-
ences between the two viral preparations, suggesting that
ICAM-1 had a significant impact on transcriptional pro-
files of CD4+ T lymphocytes. However, when we com-
pared differences in gene expression between isogenic
virions either lacking or bearing host-derived ICAM-1, we

Characterization of the studied cell population and overview of the experimental designFigure 1
Characterization of the studied cell population and overview of the experimental design. (A) PBMCs were sub-
jected to magnetic-based CD4+ T cell negative selection. Percentages of CD4+ (left panel) and CD14+ cells (right panel) in the 
enriched population were estimated by flow cytometry immediately after selection. The right panel represents a worst-case 
scenario for contaminating CD14+ cells. (B) The studied cell population highly enriched in CD4+ T cells were infected with fully 
infectious eGFP-encoding viruses either lacking (NL4-3 wt) or bearing host-derived ICAM-1 (NL4-3 ICAM-1+) and the number 
of cells productively infected with HIV-1 (i.e. eGFP-positive) was estimated by flow cytometry at the listed days following infec-
tion. (C) A schematic representation of the experimental design used for the microarray studies is shown.

F
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found that the majority of the discordant genes were in
fact regulated in the same direction (either down- or up-
regulated), missing the twofold threshold for either virus
as monitored by hierarchical clustering. The correlation is
especially good for genes regulated at 8 h post-infection
(Fig. 2A). At 24 h post-infection, there is still an excellent
correlation between both virus stocks, although the mod-
ulation induced by NL4-3 wt is overall greater than for
ICAM-1+ viruses (Fig. 2B). This suggests that the faster
kinetics of infection with ICAM-1-bearing virions proba-
bly result in a faster return of gene expression to normal
levels. However, the low number of time points analysed
does not allow us to confirm this hypothesis. Neverthe-
less, the gene expression profiles with ICAM-1-bearing vir-
ions are still interesting for two reasons. First, they provide
strength to our microarray experimental design as gene
expression profiles induced by both viruses are highly
similar, thus indicating that genes induced by both viruses
are far less susceptible to be false positives. Second, our
findings suggest that the HIV-1-mediated gene expression
alterations are most likely occurring in uninfected/
bystander cells given that a 1.5-fold increase in the
number of infected cells is seen at 24 h post-infection with
ICAM-1-bearing virions compared to infection with
viruses lacking host-derived ICAM-1 while the number of
genes affected by NL4-3 wt is higher.

Multiple biological processes are affected by HIV-1
In order to identify the most dramatically affected biolog-
ical pathways, we performed statistical Gene Ontology
(GO) overrepresentation analysis on the microarray data.
This technique identifies biological processes, molecular
functions and cellular localization categories that contain
a high proportion of modulated genes. This approach is
useful for identifying the cellular processes that are the
most affected by the tested stimuli and for pointing out
biological areas that warrant further studies. A careful
analysis revealed that many major biological processes
were significantly affected by HIV-1 (P < 0.01). Among
these, we found that apoptosis, DNA repair, cell cycle and
RNA metabolism were the most influenced categories, as
determined by the number of modulated genes. A per-cat-
egory hierarchical cluster of the genes affected by HIV-1 in
those categories is depicted in Fig. 2C.

p53 is transcriptionally up-regulated by HIV-1
A closer analysis of the various genes modulated by HIV-
1 revealed that the tumor suppressor gene p53 is present
in three out of the four significantly modulated GO cate-
gories identified (i.e. apoptosis, DNA damage and cell
cycle) and is highly regulated by both viruses at both stud-
ied time points. Activation of p53 via phosphorylation
has been implicated in HIV-1-induced apoptosis and it
has been identified as the dominant apoptosis-inducing
factor elicited by the HIV-1 envelope along with the ubiq-

uitous mammalian transcription factor NF-κB [28]. It has
been demonstrated that p53 is mostly regulated at the
post-transcriptional level by HDM2 but the mecha-
nism(s) by which p53 is regulated at the transcriptional
level is still poorly understood [29]. Previous studies link-
ing HIV-1 and p53 refer to a post-transcriptional induc-
tion by phosphorylation. Therefore, we found interesting
to focus on the unexpected up-regulation of p53 mRNA in
our subsequent experiments as its transcriptional regula-
tion by HIV-1 is novel. A quantitative analysis of p53 by
qRT-PCR was next performed to confirm microarray data.
qRT-PCR data was consistent with the microarray results
since p53 was found to be up-regulated by HIV-1 at 8 and
24 h post-infection, returning to basal levels at the 48 h
time point (Fig. 3A). Western blot analyses were also per-
formed to examine the impact of HIV-1 on p53 expression
at the protein level. This protein was increased by HIV-1
(Figs. 3B and 3C) but at a later time point than expected
according to mRNA data. Indeed, the virus-mediated aug-
mentation in p53 protein level was only detected at 24 or
48 h post-infection while p53 mRNA was already
enhanced at 8 h post-infection. This pattern of delayed
protein production following mRNA up-regulation is well
described for p53 as it is regulated by HDM2 at the post-
translational level [30].

Other attractive HIV-1-induced candidate genes include
GADD34 (also called PP1R15A), which is indirectly
involved in p53 regulation via PP1 [31,32], and
TNFRSF25, a cell surface receptor that carries a death
domain. An increase in mRNA levels similar to microarray
data was confirmed by qRT-PCR at 8 and 24 h post-infec-
tion for both GADD34 (2.25 fold increase at 8 h and 2.65
fold increase at 24 h) and TNFRSF25 (2.4 fold increase at
8 h and 3.61 fold increase at 24 h) (data not shown).
Unfortunately, we could not assess the effect of HIV-1 on
these genes at the protein level because the commercial
anti-GADD34 and anti-TNFRSF25 antibodies we tested
displayed a very weak specificity (data not shown). This
severely impaired our ability to define their relevance in
the context of HIV-1 infection. We intend to revisit these
two candidates as soon as reliable antibodies are commer-
cially available.

HIV-1-mediated up-regulation of p53 mRNA is associated 
with secretion of type-I IFN
Next, we investigated the mechanism through which HIV-
1 can up-regulate p53 gene expression. The protein is
known to be regulated post-transcriptionally by HDM2,
which binds to and induces the ubiquitinylation of p53,
causing its destruction by the proteasome before it can act
as a potent transcription factor and induce apoptosis [29].
Phosphorylation of p53 allows it to escape HDM2 bind-
ing leading to its accumulation and activation of its tran-
scription factor capabilities. Although this phenomenon
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Hierarchical clustering and gene ontology analysis of microarray dataFigure 2
Hierarchical clustering and gene ontology analysis of microarray data. (A) A hierarchical clustering of the 56 genes 
that are modulated (down- or up-regulated) by either NL4-3 wt or NL4-3 ICAM-1+ at 8 h post-infection (as determined by a 
two-fold threshold) has been defined using the correlation function of GeneSpring 6.0. (B) A hierarchical clustering of the 363 
genes that are modulated (down- or up-regulated) by either NL4-3 wt or NL4-3 ICAM-1+ at 24 h post-infection (as deter-
mined by a two-fold threshold) has been defined using the correlation function of GeneSpring 6.0. (C) Hierarchical clustering of 
genes belonging to selected Gene Ontology categories identified by a Gene Ontology overrepresentation analysis as being sig-
nificantly enriched within the list of genes modulated by HIV-1 is shown.
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has been previously documented in the context of HIV-1-
induced apoptosis, our data suggest that p53 is also regu-
lated at the mRNA level, which represents a distinct and
previously uncharacterized process in the context of HIV-
1 infection. Takaoka and colleagues have reported that an
increase in p53 mRNA can be induced by type-I IFN [33],
a process that is associated with antiviral immunity as the
up-regulation of p53 mRNA would prepare neighbour
cells to undergo apoptosis, preventing the spread of viral
infection. It should be noted that the up-regulation of p53
mRNA does not necessarily lead to an immediate up-reg-
ulation of the protein, which is still tagged for degradation
by HDM2 until it is activated. Instead, the additional
mRNA prepares the cells to undergo apoptosis more
quickly and efficiently if they are infected. Many viruses
were identified in this study as being able to induce IFN-
mediated p53 mRNA up-regulation but there was no
mention of HIV-1. Thus, we investigated whether the
observed increase in p53 mRNA in our experimental cell

system was linked to the presence of type-I IFN in our cell
cultures. First, we measured the production of such solu-
ble factors in cell-free supernatants following exposure to
HIV-1 using ELISA detection kits specific for IFN-α and
IFN-β. We found that IFN-α was secreted at very low levels
upon HIV-1 infection since the amount of this cytokine
was found to be slightly above the detection limit of the
ELISA test (i.e. 10 pg/ml) (data not shown). We could not
detect the presence of IFN-β when using a commercial
ELISA test with a sensitivity of 300 pg/ml (data not
shown). Therefore, we used an alternative strategy to
measure the seemingly low doses of type-I IFN. To this
end we used the HEK-Blue™ IFN-α/β cells that can detect
the biologically active form of type-I IFN. As depicted in
Fig. 4A, a virus-dependent induction of type-I IFN was
seen shortly after exposure of the population highly
enriched in CD4+ T cells to HIV-1, which is consistent with
the rapid induction of p53 (i.e. 8 h). To corroborate the
contribution of IFN-α and IFN-β in the HIV-1-mediated
augmentation in p53 gene expression, we used another
experimental procedure based on neutralizing antibodies.
Data depicted in Fig. 4B indicate that the virus-dependent
increase in p53 mRNA is indeed linked with production
of type-I IFN (i.e. IFN-α and IFN-β) as the virus-mediated
increase in p53 mRNA was completely inhibited in pres-
ence of blocking antibodies.

Discussion
In this study, we used Affymetrix oligonucleotide microar-
rays as a survey tool to obtain an overview of the transcrip-
tional changes induced by HIV-1 in a population of
human primary cells highly enriched in CD4+ T lym-
phocytes. We also attempted to determine whether the
global gene expression pattern could be altered when tar-
get cells are interacting with virions bearing host-derived
ICAM-1 on their surface as compared to isogenic viruses
lacking this host molecule.

Experimental design in microarray studies essentially fol-
lows two different strategies. First, a replicate approach
where each experimental condition can be biologically
repeated multiple times and analyzed on multiple arrays.
Second, the pooling approach where RNA from different
experiments are combined together and assayed on one
array for each condition in an effort to reduce the inherent
biological variability. Ideally, the replicate strategy is pre-
ferred as it allows statistics to be used to identify signifi-
cantly modulated genes, controlling and reducing the
number of expected false positives. However, according to
Pan and co-workers, the statistical power gained from very
few replicates (i.e. less than 4) is negligible [34]. For exam-
ple, it was reported that no less than 4 to 8 replicates per
experimental condition are necessary to obtain significant
statistical power. Other studies have shown that RNA
pooling is a valid alternative to biological replicates [35-

Quantification of p53 by qRT-PCR and western blotFigure 3
Quantification of p53 by qRT-PCR and western blot. 
(A) The purified cell population highly enriched in CD4+ T 
lymphocytes was either left uninfected or infected with NL4-
3 wt for 8, 24, 48 and 72 h. Total RNA from the five original 
healthy donors and from six additional donors was isolated. 
Ribosomal 18S and p53 RNA levels were quantified by qRT-
PCR. Data shown is representative of all studied samples (i.e. 
a total of eleven) normalized on ribosomal 18S. (B) Cells 
were either left uninfected (mock) or infected with NL4-3 wt 
for the indicated time periods. Next, p53 and actin protein 
levels were estimated by western blot analysis using a specific 
antibody.
Page 8 of 14
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37] and that this strategy can provide the same statistical
power as the replicates approach [38] at a much reduced
cost when appropriate precautions are taken (see Methods
section). Therefore, we decided to use the pooling
approach to study the HIV-1-mediated changes in gene
expression profiles in a cell population highly enriched in
CD4+ T cells. The statistical significance and validity of our
findings are improved because results with the two virus
stocks tested are very similar and can be considered as
pseudo-replicates. Indeed, the virus-induced modulation
of global gene expression profiles with virions either lack-

ing or bearing host-derived ICAM-1 were found to be
comparable.

Characterization of the studied cell subpopulation is cru-
cial in microarray experiments. Ideally, the starting mate-
rial needs to be as homogenous as possible to avoid a
possible contamination with mRNAs from undesirable
cells [39,40]. In the present work, we used commercially
available CD4+ T cells negative selection kits from
Miltenyi Biotec and StemCell Technologies. A negative
selection procedure was preferred to avoid any putative
antibody-mediated signaling events. Although both man-
ufacturers claim that the purity of the isolated cell popu-
lation is high (i.e. > 95%), their recommended flow
cytometry analysis to assess cell purity only makes use of
an antibody against CD4, neglecting the fact that mono-
cytic cells (CD14+) can also express a lower level of this
cell surface marker. Furthermore, they used frozen-thawed
PBMCs, a process that can be deleterious to some CD4-
expressing cells such as dendritic cells and their precursors
[41]. In our hands, the vast majority of isolated cells were
indeed positive for CD4 (i.e. > 96%), but a fraction (i.e.
ranging from 5% up to 15% in some rare cases) also
expressed CD14, a marker for cells of the monocytic line-
age (e.g. monocytes). Although it is generally accepted
that peripheral blood monocytes are not productively
infected with HIV-1 [42], there is at least one report that
monocytes can sustain low levels of HIV-1 replication in
vivo [43]. This cell type can also indirectly affect gene
expression in CD4+ T cells through the production of sol-
uble factors. It should also be specified that plasmacytoid
dendritic cells are negative for CD14 but do express CD4.
It is unclear whether these cells are present in the studied
cell population since they represent a very small propor-
tion of PBMCs (i.e. < 1%) but could have been enriched
along with CD4+ T cells as they are not specifically tar-
geted by antibodies of the negative selection kits we used.
Interestingly, it has been shown that these cells can rap-
idly produce very large quantities of type-I IFN following
exposure to HIV-1 [44,45].

The virus infection rates seen under our experimental con-
ditions were extremely low in primary human cells com-
pared to Jurkat T lymphoid cells (i.e. at 8 and 24 h post-
infection). It is possible that the presence of type-I IFN
seen in our cell system could contribute to this low level
of virus infection. Given the very low percentage of cells
productively infected with HIV-1 and considering that
there were minor differences in gene expression profiles
following infection with NL4-3 wt and NL4-3 ICAM-1+, it
would thus be unlikely that the observed modulation of
host-cell gene expression is occurring exclusively in cells
productively infected with HIV-1. Therefore, it can be pro-
posed that the vast majority of alterations of the gene
expression profiles seen in this study are most likely tak-

Virus-induced type-I IFN secretion and blocking experiments with anti-IFN-α and -β antibodiesFigure 4
Virus-induced type-I IFN secretion and blocking 
experiments with anti-IFN-α and -β antibodies. (A) 
Cells were either left uninfected or infected with NL4-3 wt 
for the indicated times. Thereafter, .HEK-Blue™ IFN-α/β 
cells were exposed to the collected cell-free supernatants for 
24 h and type-I IFN levels were quantified according to man-
ufacturer's instructions. (B) The purified cell population 
highly enriched in CD4+ T lymphocytes was either left unin-
fected or infected with NL4-3 wt for 24 h. In some samples, 
neutralizing antibodies against human IFN-α and IFN-β were 
added in equal quantities (a final concentration of 1 μg/ml 
was used). Controls consisted of cells treated with isotype-
matched irrelevant antibodies (IgG). Thereafter, total RNA 
was isolated and p53 mRNA levels were estimated by qRT-
PCR. The data shown represents the mean ± standard devia-
tions of triplicate samples and are representative of three 
independent experiments. Asterisks denote statistically sig-
nificant differences from the uninfected control cells (*, P < 
0.05; **, P < 0.01; ***, P < 0.001).
Page 9 of 14
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ing place in uninfected/bystander cells. One way to eluci-
date whether the differential gene expression pattern is
seen in HIV-1-infected and/or uninfected/bystander cells
would be to infect target cells with replication competent
HIV-1 that would contain all viral genes but would code
also for a distinctive cell surface molecule. This tool would
allow isolation of cells productively infected with HIV-1
from bulk populations of cells and a large scale monitor-
ing of host cell gene expression in both virus-infected and
uninfected/bystander cells.

Analysis of modulated genes by a Gene Ontology-based
approach revealed that several major pathways were
affected by HIV-1 including apoptosis, RNA metabolism,
DNA repair and cell cycle. Interestingly, Corbeil and col-
leagues concluded that HIV-1 affects expression of genes
involved in DNA repair and apoptosis [46]. They sug-
gested that HIV-1 induces a DNA repair response follow-
ing its integration that ultimately leads to p53 activation
and caspase-dependent apoptosis. It has been established
that activation of p53 relies on its phosphorylation [47].
This activation results in induction of the pro-apoptotic
factor Bax and depolarization of mitochondrial mem-
branes, followed by caspase activation [48]. However,
they did not observe regulation of p53 at the mRNA level
even if they reported an increase of p53 at the protein level
following its phosphorylation. The fact that they used an
established cell line (i.e. CEM-GFP) instead of primary
human cells could account for the discrepant results.
Although some established cell lines display a higher sus-
ceptibility to productive HIV-1 infection than primary
human cells, the former can harbour multiples deficien-
cies in critical cellular pathways such as apoptosis, DNA
repair or cell cycle regulation. Thus, it is difficult to com-
pare our results with previous microarray studies involv-
ing HIV-1. Even for studies using primary cells, small
differences in experimental setup or the source of cells
(i.e. peripheral CD4+ T lymphocytes versus CD4+ T cells
isolated from lymphoid organ) can account for discrepan-
cies observed when such comparisons are made. Direct
comparison with large-scale proteomic studies such as
those published by Ringrose and Chan [49,50] are even
more problematic, as multiple layers of post-traductional
and post-translational regulation likely come into play
after mRNA modulation.

We focused our efforts on characterizing the up-regulation
of p53 at the mRNA level, which is an uncommon phe-
nomenon as the protein is highly regulated at the post-
transcriptional level. Moreover, its transcriptional regula-
tion was previously uncharacterized in the context of HIV-
1. Our interest for p53 was prompted by the relatively
high number of genes we found to be regulated by HIV-1
in the microarray experiment that interact with p53 either
directly or indirectly, such as HIV-1 Tat interacting protein

(HTATIP2), p300, GADD34 and TP53BP2. p53 is also
known to interact directly or indirectly with several HIV-1
proteins such as Tat [51], Nef [52], reverse transcriptase
[28] and Vpr [53]. Some of these interactions can inhibit
the function of p53 as a transcription factor, leading to a
reduced sensitivity to apoptosis in infected cells, which
can be considered as beneficial for the virus survival. On
the other hand, the precise effect of p53 with respect to the
viral promoter region is still unclear. Some reports claim
that p53 is essential for efficient viral transcription
[54,55], while others suggest that p53 can negatively
influence transcription from the viral promoter by inhib-
iting the transduction activity of Tat [56,57].

The p53-related gene GADD34 was identified as another
interesting candidate for future studies as GADD34 is a
PP1 subunit that impairs p53 dephosphorylation [32].
PP1 is one of the phosphatases responsible for dephos-
phorylating p53 [31], maintaining a delicate balance
between survival and apoptosis. Therefore, an up-regula-
tion of GADD34 might facilitate phosphorylation of p53,
which will in turn promote apoptosis in CD4+ T cells.
Another candidate of potential interest is TP53BP2, a p53-
binding gene that codes for two distinct proteins through
differential splicing, namely 53BP2S and 53BP2L (also
known as ASPP2) [58]. The biological significance of this
differential splicing is not yet well characterized. Both iso-
forms can bind p53 [59], Bcl-2 [60] and the p65 subunit
of NF-κB [61]. Interestingly, it appears that TP53BP2 can
also bind PP1 and interferes with p53 dephosphorylation
[62]. However, the late discovery of the second isoform
led to confusion and controversy about the biological role
and molecular function of TP53BP2. It has been proposed
that binding of TP53BP2 to p53 inhibits its potency as a
pro-apoptotic transcription factor [63], while others have
shown that overexpression of TP53BP2 results in apopto-
sis [64]. Comprehensive studies on those two promising
candidates were not carried out because commercial anti-
bodies of good quality are not available. We plan to eval-
uate the role played by GADD34 and both isoforms of
TP53BP2 in regard to HIV-1 and its relation with p53 in
the near future.

An elegant study has documented a mechanism involved
in transcriptional regulation of p53 that is mediated by
type-I IFN in response to viruses [33]. Moreover, a recent
study has shown that p53 itself can positively regulate
IFN-mediated signalling events and production from
infected cells [65], adding further evidence of the impor-
tance of p53 in the antiviral response. Although the type-
I IFN-mediated p53 mRNA induction has been character-
ized for many viruses, there is still no information with
respect to the importance of this process in the pathobiol-
ogy of HIV-1. Thus, we decided to assess the involvement
of type-I IFN in the HIV-1-mediated up-regulation of p53
Page 10 of 14
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mRNA. Results showed induction of type-I IFN by HIV-1
in our cell culture system and a complete inhibition of the
HIV-1-mediated increase in p53 gene expression in pres-
ence of a combination of blocking antibodies specific for
type-I IFN (i.e. IFN-α and IFN-β). This clearly establishes
a novel and direct link between p53, HIV-1 and type-I
IFN. Such a mechanism constitutes an essential part of the
antiviral immune response by increasing the intracellular
pool of p53 mRNA in response to virus infection. This
process is aimed at preventing the spread of infection by
allowing a more rapid induction of apoptosis. It is impor-
tant to note that an increase in p53 mRNA has no imme-
diate effect on the total p53 protein levels as the latter is
continuously degraded by the proteasome back to steady
state levels. Indeed, an additional signal such as DNA
damage is required to activate p53 by phosphorylation,
causing its escape from HDM2-induced degradation and
translocation to the nucleus where it can induce transcrip-
tion of pro-apoptotic genes. This might help to explain the
delay seen between the HIV-1-mediated induction of p53
expression at the mRNA and protein levels. Indeed, a 3 to
5-fold increase in p53 mRNA was detected as early as 8 h
following HIV-1 infection while an induction of p53 at
the protein level could be detected only after 24 to 48 h
following exposure to HIV-1, depending on the donor.
This suggests that post-translational control mechanisms
such as HDM2-mediated ubiquitinylation and proteas-
ome-dependent degradation of p53 at first counteract the
increase at the mRNA level. It can be proposed that the
type-I IFN-mediated induction of p53 mRNA serves to
avoid an uncontrolled up-regulation of this protein in
every single cell exposed to type-I IFN as this would lead
to massive and indiscriminate induction of apoptosis.
Instead, it can be postulated that an increase in p53
mRNA might prepare cells to undergo apoptosis rapidly
would the presence of an incoming menace (such as HIV-
1 or other retroviruses that can integrate within the host
genome) materialize. Indeed, following exposure to type-
I IFN, a faster apoptosis response in cells exposed to DNA
damage would be triggered as the larger p53 mRNA pool
would rapidly lead to more p53 protein. This would
induce a stronger activation of pro-apoptotic genes once
p53 escape the control of HDM2-mediated ubiquitinyla-
tion and proteasome-dependent degradation following its
phosphorylation.

It has been reported that CD4+/CD14+ cells (e.g. mono-
cytes) can produce type-I IFN in response to HIV-1 [12].
Also, it has been shown that HIV-1 can cause massive
type-I IFN production from plasmacytoid dendritic cells
(PDCs) [66]. It should be stated that this dendritic cell
subtype is short-lived under in vitro conditions without
the appropriate cytokines cocktail and constitutes a very
low percentage of the total PBMCs (i.e. < 1%). However,
in a study establishing a link between TRAIL induction

and HIV-1, Audigé and colleagues identified that a mini-
mal contamination of their CD4 population isolated from
tonsils with PDCs (less than 0.5%) was sufficient to pro-
duce enough type-I IFN to induce a TRAIL-dependent
apoptotic process [16]. It is highly probable that a similar
contamination is at least partly responsible for the pres-
ence of type-I IFN in our experimental system. It can thus
be proposed that the observed type-I IFN secretion in the
present study is due to contaminating monocytes and/or
PDCs. In vivo, other cell types can produce type-I IFN in
response to viruses and could contribute to the observed
phenomenon.

Based on the data we collected and previously published
studies, we propose the following hypothetical model
(Fig. 5). Exposure of human primary cells highly enriched
in CD4+ T cells to HIV-1 leads to a rapid production of sol-
uble factors such as type-I IFN and possibly other soluble
factors. This will result in engagement of various signal-
ling cascades and induction of several genes, including
p53, GADD34 and TNFRSF25 along with other genes
involved in apoptosis, DNA damage, RNA metabolism
and cell cycle. The increase in p53 mRNA will not imme-
diately affect p53 protein levels. Eventually, following its
activation by signals such as HIV-1-induced DNA damage,
p53 will escape HDM2 control, and quickly accumulate
due to the additional mRNA induced by type-I IFN.

Proposed working modelFigure 5
Proposed working model. This diagram depicts the possi-
ble sequence of events that is initiated following exposure of 
a cell population highly enriched in CD4+ T cells to HIV-1. 
The fourth step is hypothetical and is derived from data col-
lected in the literature.
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Finally, p53 will concentrate within the nucleus and pro-
mote transcription of pro-apoptotic genes such as Bax,
ultimately leading to induction of apoptosis. As discussed
above, viral proteins that can bind p53 might inhibit its
pro-apoptotic activity, allowing more cells to become
either productively or latently infected with HIV-1 [52]. It
can be postulated that the type-I IFN-mediated increase in
p53 mRNA could have evolved to overcome the capability
of some viruses to inhibit p53.

The findings presented in this paper have implications in
the context of the recently reported HIV-1-induced bacte-
rial translocation. It has been proposed that HIV-1 perme-
abilizes the gut allowing for bacterial products such as
lipopolysaccharide to circulate in the peripheral blood
resulting in secretion of type-I IFN [67]. This phenome-
non could lead to a sustained increase in p53 mRNA levels
and therefore to a higher susceptibility of CD4+ T cells to
pro-apoptotic signals such as HIV-1-induced DNA dam-
age.

In conclusion, we confirm that microarrays represent a
useful tool for elucidating the molecular details of the
complex interaction between HIV-1, its target cells and
uninfected/bystander cells. We demonstrate that even
small scale gene expression profiling can lead to a better
comprehension of host-defence strategies, which is essen-
tial for the design of a new generation of therapeutic
agents.
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