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Abstract
Human APOBEC3G is an antiretroviral protein that was described to act via deamination of
retroviral cDNA. However, it was suggested that APOBEC proteins might act with antiviral activity
by yet other mechanisms and may also possess RNA deamination activity. As a consequence there
is an ongoing debate whether APOBEC proteins might also act with antiviral activity on other RNA
viruses. Influenza A viruses are single-stranded RNA viruses, capable of inducing a variety of
antiviral gene products. In searching for novel antiviral genes against these pathogens, we detected
a strong induction of APOBEC3G but not APOBEC3F gene transcription in infected cells. This
upregulation appeared to be induced by the accumulation of viral RNA species within the infected
cell and occurred in an NF-κB dependent, but MAP kinase independent manner. It further turned
out that APOBEC expression is part of a general IFNβ response to infection. However, although
strongly induced, APOBEC3G does not negatively affect influenza A virus propagation.

Findings
In patients infected with HIV-1, the expression of human
apolipoprotein (apo) B mRNA editing enzyme catalytic
polypeptide 1-like protein 3G (APOBEC3G) was observed
to be elevated [1], although this was not confirmed in cell
culture experiments [2,3]. Members of the APOBEC3 fam-
ily are known to act with anti-retroviral activity against
HIV [4,5], but they also inhibit replication of hepatitis B
virus (HBV) [6], and adeno-associated virus type 2 [7].
The anti-retroviral activity of human APOBEC3 proteins is
probably conferred by cytidine deamination of the newly
synthesized first viral cDNA strand. This mechanism is
counteracted by the HIV-1 protein virion infectivity factor

(Vif) [8-12]. However, human APOBEC3 proteins may
not only have anti-retroviral or anti-HBV activity. Two
findings have triggered a broader interest in these proteins
with regard to a potential antiviral action against RNA
viruses. First, besides its DNA deamination activity,
human APOBEC3 proteins were reported to also possess
RNA deamination activity [13]. Second, DNA deamina-
tion activity may not be the only antiviral action of these
proteins [13-16] suggesting that APOBEC3s might possess
functions that render them effective against other viruses,
which do not have any DNA-intermediates during replica-
tion such as influenza A virus.
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In global gene expression profiling studies of influenza A
virus-infected cells, we observed strongly elevated tran-
scription of human APOBEC3G. This finding was verified
by quantitative Real-time PCR (qRT-PCR) [17] with spe-
cific primers against APOBEC3G and APOBEC3F (Figure
1A) [18-20] in lung epithelial cells (A549) (Figure 1B) and
in primary human endothelial cells (HUVEC) (Figure 1C)
infected with the human influenza virus A/Puerto Rico/8/
34 H1N1 (PR8). The upregulation of APOBEC3G was also
confirmed on protein level as determined in Western blot
analysis (Figure 1E). Protein expression steadily increased
with time up to 16 hours post infection but dropped again
at 24 hours p.i (Figure 1E) most likely due to host cell pro-
tein shut-off induced by the virus. Interestingly, such an
upregulation of human APOBEC3G transcription was not
reported for cells infected with HIV-1 [2,3], although
higher expression levels of human APOBEC3G in HIV-1
infected patients is described in the literature [1]. Upregu-
lation of APOBEC3G was also confirmed in cells infected
with the human H5N1 influenza virus isolate A/Thailand/
(KAN-1)/2004 (H5N1) (data not shown), suggesting that
transcriptional induction of APOBEC3G is a general phe-
nomenon in influenza A virus infected cells. Interestingly,
the paralogue human APOBEC3F was not found to be
upregulated in A549 cells and was only marginally
induced in HUVEC (Figure 1B and 1C). This is notewor-
thy, since human APOBEC3F and human APOBEC3G
share more than 90% promoter sequence similarity and
appear to be transcriptionally co-regulated [4,5]. How-
ever, co-regulated induction of expression was not
observed in our experiments. Instead we found that the
mRNA copy number of APOBEC3F remains at a constant
high level in uninfected and infected A549 cells, while the
copy numbers of APOBEC3G are at a low level in unin-
fected cells and rise upon viral infection (Figure 1D), sug-
gesting distinct transcriptional regulation despite high
promoter sequence similarity.

Given the particular strong induction of human
APOBEC3G in influenza A virus-infected cells, we
addressed the question which virus-induced intracellular
signalling pathways are required for human APOBEC3G
mRNA transcription. Influenza virus infection induces a
variety of signalling pathways such as the Raf/MEK/ERK
kinase cascade, the p38 signalling pathway and the IKK/
NFκB pathway [21,22]. PMA, an effective inducer of the
classical Raf/MEK/ERK cascade, has been reported to
induce human APOBEC3G gene expression in H9 cells via
PKC [23]. However, in the cell types used in our study,
PMA (100–200 ng/ml) was only a weak inducer of
APOBEC3G expression, and inhibition of the Raf/MEK/
ERK cascade by the MEK inhibitor U0126 (2–10 μg/ml)
did not result in reduced human APOBEC3G mRNA lev-
els in virus-infected A549 cells (data not shown). Activa-
tion of the p38 signalling cascade by virus infection

involves the phosphorylation of p38 by the MAP kinase
kinase, MKK6. To block the pathway at this level of the
cascade we overexpressed a dominant negative mutant of
MKK6 (MKK6Ala) that was previously shown to effi-
ciently suppress the activation of p38 [24]. Successful
transduction of the retroviral vector pEGZ-MKK6Ala was
monitored by FACS-analysis of GFP (data not shown) that
is expressed from a second reading frame of the mRNA of
the transgene [24]. Inhibition of the p38 phosphorylation
by either stable overexpression of the dominant-negative
form of MKK6 (Figure 2A) or application of the p38
inhibitor SB203580 (20 μM) (data not shown) did not
affect the induced transcription of APOBEC3G. These
findings argue against a prominent role of either, ERK or
p38 MAPK cascade in viral APOBEC3G induction.

The IKK2/NF-κB module is another influenza virus-acti-
vated signalling cascade that is known to regulate a variety
of genes. This includes IFNβ transcription, which is con-
trolled by an enhanceosome, composed of the transcrip-
tion factors IRF3/7, NF-κB, and AP-1 [22]. To assess the
involvement of IKK2 and NF-κB in virus-induced
APOBEC3G expression, we used A549 cells that were ret-
rovirally transduced with the vector pEGZ-IKK2KD. This
transduction allows for the stable expression of the dom-
inant negative mutant of IκB kinase 2 (IKK2), an
approach that has been successfully used previously to
efficiently blunt NF-κB activity [25,26]. Upon infection of
these mutant-expressing cells, APOBEC3G mRNA levels
were reduced compared to control cells (Figure 2A) to a
similar extent that was observed for the IFNβ gene (Figure
2B). The same pattern of APOBEC3G expression was also
observed in infected cells pre-treated with the NF-κB
inhibitor BAY 11–7085 (40 μM) (Figure 2C). Thus, NF-κB
activity appeared to be crucial for viral APOBEC3G induc-
tion.

To independently analyse whether NF-κB might play a
role in APOBEC3G induction, we stimulated cells with
TNFα (20 ng/ml), a very strong activator of NF-κB [27].
However, TNFα stimulation did not result in enhanced
APOBEC3G gene transcription (data not shown), indicat-
ing that NF-κB activity alone is not sufficient to induce
human APOBEC3G gene transcription.

Influenza virus infection results in type I IFN production
(Figure 2B) and subsequent expression of IFN-responsive
genes [28-30]. So far, it was not clear from the literature
whether human APOBEC3 genes are induced by type I
IFNs. While IFN-dependency was reported for the
hepatoma cell lines HepG2 and Huh7 [18,31] and for
macrophages [32], human APOBEC3 proteins are not
inducible in H9 cells by type I and type II IFN [23]. To spe-
cifically address this issue for the lung epithelial cell line
used in our study, A549 cells were incubated for different
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time periods with recombinant IFNβ (100 U/ml) (PBL),
and the levels of human APOBEC3G and human
APOBEC3F mRNAs were determined by qRT-PCR (Figure
2D).

IFNβ stimulation led to a nearly 20-fold induction of the
human APOBEC3G mRNA (Figure 2D), which could also
be observed at the protein level (Figure 2E); by contrast,
the human APOBEC3F mRNA was not affected at all (Fig-
ure 2D). Strikingly, this pattern of human APOBEC3G
versus human APOBEC3F expression exactly matched the
results obtained upon virus infection (Figure 1B). This
suggests that IFNβ, expressed upon virus infection in an
NF-κB dependent manner, may be an indirect trigger of
human APOBEC3G expression, leaving still open the
question about the initial viral inducer.

IFNβ transcription in infected cells is known to be mainly
induced by single-stranded or partially double-stranded
RNA. Such RNA species accumulate during infection
within the host cell and serve as a pathogen pattern sensed
by cells [33,34]. To examine whether different RNA spe-
cies serve as inducer of APOBEC3G gene expression, total
RNAs isolated from influenza virus infected ("viral RNA")
or uninfected cells ("cellular RNA"), or the dsRNA ana-
logue poly (I:C), or short ssRNA bearing a 5'-triphosphate
were used as stimuli to elicit a gene response. These RNAs
were transfected into A549 cells, and mRNA levels of
human APOBEC3G and IFNβ were determined (Figure
3A–D). While transfection of RNA from uninfected cells
led to no significant gene induction, RNA from virally
infected cells resulted in upregulation of both, human
APOBEC3G and IFNβ transcription (Figure 3A and 3B).
Stimulation using either poly (I:C) or 5'-triphosphate

RNA led to even a stronger induction of APOBEC3G (Fig-
ure 3C and 3D). In summary, our findings indicate that
human APOBEC3G is induced upon viral infection as a
part of the antiviral response mediated by type I IFN. This
response is triggered by the recognition of different RNA
species by distinct receptors such as TLR3, RIG-I and/or
MDA-5. Interestingly, we did not observe any human
APOBEC3F induction, neither upon viral infection nor
with IFNβ stimulation (Figure 1B and 2D), albeit both
promoters carry ISRE elements [35]. Thus, we hypothe-
sized that human APOBEC3G may be selectively induced
and may confer a specific antiviral activity in influenza
virus infected cells.

To test this assumption we first transiently over expressed
HA-tagged human APOBEC3G (Figure 4B) and assessed
the efficiency of viral propagation in these cells. Surpris-
ingly, in the presence of human APOBEC3G, progeny
virus titres were slightly elevated compared to the vector
control (Figure 4A, white bars). This correlated with a
slightly higher expression level of the viral polymerase
subunit PB1 (Figure 4B). To circumvent potential tran-
sient transfection artefacts and to enhance the number of
transgene-expressing cells, we generated cell lines, stably
expressing human APOBEC3G (Figure 4C and 4D). After
selection of stably APOBEC3G expressing cells by antibi-
otic treatment, the cells were infected with different influ-
enza A virus strains at various multiplicities of infection
(MOI) (Figure 4A, grey and black bars). In contrast to the
transient situation, viral propagation was not affected in
these stably transfected cells, although the transgene was
expressed well in MDCK cells (Figure 4C) as well as in
A549 cells (Figure 4D). Thus, although influenza A virus
induces human APOBEC3G transcription in an NF-κB

Virus-induced human APOBEC3G gene transcriptionFigure 1 (see previous page)
Virus-induced human APOBEC3G gene transcription. (A) Determination of the binding specificity of human 
APOBEC3F and human APOBEC3G primers in quantitative real time PCR (qRT-PCR). Serial dilutions of the C-terminally HA-
tagged plasmids pcDNA_huAPOBEC3F (hA3F) (described by H. Muckenfuss and colleagues) or pcDNA_huAPOBEC3G (gen-
erously provided by Nathaniel R. Landau) were analysed using either human APOBEC3F or APOBEC3G specific primer pairs 
in qRT-PCR. The copy number of each plasmid and the corresponding CT-values (cycle number of the first detectable signal) 
are given. Low CT-values indicate high amounts of the DNA-sequence of interest. CT-values above 30 are commonly consid-
ered as non-specific signals. The qRT-PRC-program is limited to 40 cycles; due to that fact that CT-values >40 indicate unde-
tectable amounts of DNA. (B-E) The influenza virus strain A/Puerto Rico/8/34 H1N1 (PR8) was diluted in PBS containing 0.6% 
sterile BSA and 1% penicillin/streptomycin and used to infect A549 cells (B and D-E) or HUVEC (C) (MOI = 5) for the time 
points indicated. At two-hourly intervals post infection, RNA was isolated using the RNeasy mini-kit (Qiagen), and 3 μg of total 
RNA were transcribed into cDNA using 0.5 μg oligo dT-primer (16 mer) and 200 U Revert Aid H- (Fermentas) according to 
the manufacture's protocol. mRNA levels of IFNβ, human APOBEC3F and human APOBEC3G were assessed by qRT-PCR 
using primer pairs for human APOBEC3F and 3G; or for human IFNβ as follows: IFNβ_fwd 5'-GGC CAT GAC CAA CAA 
GTG TCT CCT CC-3' and IFNβ_rev 5'-GCG CTC AGT TTC GGA GGT AAC CTG T-3'. Induced transcription of mRNA 
was calculated as n-fold using GAPDH as reference gene. (D) Determination of the copy numbers per cell of human 
APOBEC3F or human APOBEC3G. (E) Infected A549 cells were lysed at the time points indicated. Endogenous expression of 
human APOBEC3G was determined with the hA3G specific antibody ApoC17 (NIH AIDS Research and Reference Reagent 
Program) in Western blots. An anti-tubulin (B5-1-2, Sigma) blot served as a loading control.
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and IFNβ dependent manner, the forced expression of
human APOBEC3G did not result in any antiviral effect
on this virus. This is different from the situation with HIV-
1. APOBEC3G shows antiviral activity against HIV-1 and
other retroviruses [8,2]. However, HIV-1 does not induce
APOBEC3G transcription in cell culture [2,3]. In support
of a specific rather than broad antiviral activity of

APOBEC3G, Kremer et al. [36] had reported that overex-
pressed human APOBEC3G also has no antiviral effect
against vaccinia virus (VACV). In summary, we conclude
that human APOBEC3G is induced by influenza A viral
RNA, via an NF-κB dependent mechanism as part of the
antiviral IFN response program but does not exhibit an
antiviral effect against influenza A virus.

IFNβ-induced transcription of human APOBEC3GFigure 2
IFNβ-induced transcription of human APOBEC3G. (A and B) A549 cells stably overexpressing the dominant negative 
mutants IKK2KD or MKK6Ala. These mutant kinases were cloned in the retroviral pEGZ-vector. In this vector GFP is 
expressed by an internal ribosomal entry site (IRES) from the same mRNA as the IKK2KD and MKK6Ala transgenes, allowing 
transgene expression to be monitored by FACS-analysis (data not shown). MKK6Ala and IKK2KD overexpressing cells were 
infected for 10 hours with the influenza A virus strain PR8 (MOI = 5). Following infection, RNA was isolated with the RNeasy 
mini kit (Qiagen), reverse transcribed as described above, and cDNA was subjected to qRT-PCR. (C) A549 cells were pre-
treated for 30 minutes with the NF-κB specific inhibitor BAY 11–7085 (40 μM) before infection with PR8 (MOI = 5) for 10 
hours. RNA was subjected to qRT-PCR. The mRNA levels of human APOBEC3G (A and C) or IFNβ (B) were assessed by 
qRT-PCR. (D) A549 cells were stimulated with IFNβ (100 U/ml) (Invitrogen) for the time points indicated. The mRNA levels of 
human APOBEC3F and human APOBEC3G were determined by means of qRT-PCR. Induction of gene transcription was cal-
culated as n-fold of untreated cells, which was arbitrarily set as 1, as described by Livak and Schmittgen. (E) A549 cells were 
stimulated as in (D), and cell lysates were subjected to Western blots using the hA3G specific antibody ApoC17 (NIH)
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Induction of human APOBEC3G mRNA by different RNA speciesFigure 3
Induction of human APOBEC3G mRNA by different RNA species. (A and B) A549 cells (1.5 × 106/6 cm dish) were 
transfected with indicated amounts of total RNA from virally infected ("viral RNA") or uninfected ("cellular RNA") A549 cells. 
RNA from uninfected or virally infected cells was generated by isolation of total RNA from cells either infected with PR8 (MOI 
= 5) or from uninfected cells using the Qiagen RNeasy kit according to the manufacturer's instructions. For stimulation, these 
RNAs were transfected for 10 hours using Lipofectamine 2000 (L2000) (Invitrogen) according to the manufacturer's protocol. 
(C) A549 cells were transfected with either different amounts of poly (I:C) (Amersham Biosciences) or with 5'-triphosphate 
RNA (D). 5'-triphosphate RNA was generated by reverse transcription of a short PCR product using the MEGAshortscript kit 
(Ambion) according to the manufacturer's instructions. mRNA levels of IFNβ (B) or human APOBEC3G (A, C and D) were 
determined by qRT-PCR as described. Levels of gene induction were calculated as n-fold of the background of untreated cells, 
which was arbitrarily set as 1.
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Influence of the human APOBEC3G protein on viral replicationFigure 4 (see previous page)
Influence of the human APOBEC3G protein on viral replication. (A) Transiently (white bars) or stably human 
APOBEC3G transfected (light and dark grey bars) MDCK cells were infected with avian influenza virus A/FPV/Bratislava/79 
(H7N7) (FPV) (MOI = 0.05) for 9 hours or A/Puerto Rico/8/34 H1N1 (PR8) (MOI = 0.1) virus for 16 hours. Both virus strains 
were originally taken from the collection of the Institute of Virology, University of Giessen, Germany. Stably transfected A549 
cells (black bars) were infected with PR8 for 16 hours (MOI = 0.01). Supernatants were taken, and virus titres were deter-
mined by means of plaque assay. (B and C) MDCK cells or (D) A549 cells were transfected with 3 μg DNA/6 well dish pcDNA-
APOBEC3G or pcDNA3.1 empty vector using L2000 (Invitrogen) according to manufacturer's instructions. To generate a bulk 
amount of stable expressing cells, MDCK cells (C) or A549 cells (D) were treated with G418 300 μg/ml for selection of 
APOBEC3G expression for four weeks. Thereafter, cells were infected with FPV at MOI = 0.05 (B) or at MOI = 0.1 for 9 
hours (C) or with PR8 at MOI = 0.001 for 16 hors (D). Expression of HA-tagged human-APOBEC3G was detected by anti-HA 
3F10 (Roche) antibody. To control equivalent protein loading, ERK2 or JNK were detected by anti-ERK2 (Santa Cruz) or anti-
JNK antibody (Santa Cruz). Viral replication was monitored by detection of the viral polymerase protein using an anti-PB1 anti-
body (Santa Cruz).
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