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Abstract
Background: This study was designed to investigate, for the first time, the short-term molecular
evolution of the HIV-2 C2, V3 and C3 envelope regions and its association with the immune
response. Clonal sequences of the env C2V3C3 region were obtained from a cohort of eighteen
HIV-2 chronically infected patients followed prospectively during 2–4 years. Genetic diversity,
divergence, positive selection and glycosylation in the  C2V3C3 region were analysed as a function
of the number of CD4+ T cells and the  anti-C2V3C3 IgG and IgA antibody reactivity

Results: The mean intra-host nucleotide diversity was 2.1% (SD, 1.1%), increasing along the course
of infection in most patients. Diversity at the amino acid level was significantly lower for the V3
region and higher for the C2 region. The average divergence rate was 0.014 substitutions/site/year,
which is similar to that reported in chronic HIV-1 infection. The number and position of positively
selected sites was highly variable, except for codons 267 and 270 in C2 that were under strong and
persistent positive selection in most patients. N-glycosylation sites located in C2 and V3 were
conserved in all patients along the course of infection. Intra-host variation of C2V3C3-specific IgG
response over time was inversely associated with the variation in nucleotide and amino acid
diversity of the C2V3C3 region. Variation of the C2V3C3-specific IgA response was inversely
associated with variation in the number of N-glycosylation sites.

Conclusion: The evolutionary dynamics of HIV-2 envelope during chronic aviremic infection is
similar to HIV-1 implying that the virus should be actively replicating in cellular compartments.
Convergent evolution of N-glycosylation in C2 and V3, and the limited diversification of V3,
indicates that there are important functional constraints to the potential diversity of the HIV-2
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envelope. C2V3C3-specific IgG antibodies are effective at reducing viral population size limiting the
number of virus escape mutants. The C3 region seems to be a target for IgA antibodies and
increasing N-linked glycosylation may prevent HIV-2 envelope recognition by these antibodies. Our
results provide new insights into the biology of HIV-2 and its relation with the human host and may
have important implications for vaccine design.

Background
The etiologic agents of AIDS, HIV-1 and HIV-2, are two
distinct human lentiviruses with similar structural and
genomic organization but sharing only 50% of genetic
similarity [1]. Compared to HIV-1, the infection by HIV-2
is associated with better prognosis, slower disease progres-
sion and transmission, longer latency period and reduced
mortality rate [2-6]. Moreover, most HIV-2 patients have
normal CD4+ T cell counts and low or undetectable plas-
matic viral levels [7,8]. Two possible explanations for
these differences may be the slower replication capacity of
HIV-2 and a more efficient immune control of HIV-2 [9-
13].

The env gene codes for the viral envelope glycoproteins,
which are responsible for HIV entry into cells [14]. Rapid
evolutionary changes and high genetic variability are two
major characteristics of the HIV env gene [15]. In HIV-1
infection, conflicting associations have been reported
between disease status and within-patient env gene evolu-
tion. Hence, some studies have shown that genetic diver-
sity and divergence from the infecting strain increase
during HIV-1 infection but become stable or even
decrease in the advanced stage of disease, with the lower
CD4+ T cell counts and progression to AIDS [16-18].
Other authors have shown that higher genetic diversity
and divergence are found in patients with rapid progres-
sion to disease than in slow- or non-progressors [19,20].
There is also a positive correlation between viral replica-
tion and intrahost HIV-1 evolution in elite controllers and
long-term nonprogressors [21].

The number of studies investigating within-patient HIV-2
molecular evolution and their association with clinical
and immunological evolution is limited. In one transver-
sal study, we have shown that the genetic diversity of the
HIV-2 env may be directly related to the period of infec-
tion [22]. Longitudinal studies performed in Senegal have
shown that higher variability in the env V3 region is gen-
erally found in patients with faster disease progression to
AIDS [23] and that in elite controllers (patients infected
for ≈ 10 years with normal CD4+ T cell counts without
antiretroviral therapy and with low or undetectable viral
load) the rate of env gene diversification may be positively
associated with the rate of CD4+ T cell number decrease
[24].

Higher rate of molecular evolution, with predominance of
nonsynonymous amino acid substitutions, tends to occur
in regions of the HIV-1 env gene submitted to strong selec-
tive pressure from the immune system [15,25-28]. A struc-
ture of particular importance in this process is the V3 loop
of the surface glycoprotein which is essential for HIV core-
ceptor usage [29-32] and for inducing the production of
neutralizing and nonneutralizing antibodies in HIV
infected individuals [33]. Neutralizing antibody
responses, both autologous [34-36] and heterologous
[36,37] may be more common in HIV-2 than in HIV-1
infection. Still, little is known about the role of humoral
immunity in the evolution of the HIV-2 env gene. In the
present study we analyze, for the first time, the molecular
evolution of the env C2V3C3 regions in chronically HIV-2
infected patients over a two to four year period in the con-
text of their antibody response (IgG and IgA) against the
same envelope region.

Methods
Patients
Eighteen HIV-2 patients attending different hospitals in
Lisbon, Portugal, were followed prospectively during 2–4
years (Table 1). Fourteen patients were taking reverse tran-
scriptase and/or protease inhibitors. During the follow-up
period three patients (PTHCC20, PTHSM9 and
PTHSM10) had detectable plasma viral load. Eight
patients had < 200 CD4+ T cells/μl (AIDS defining condi-
tion).

Quantification of HIV-2 plasma viremia
HIV-2 viremia in the plasma was quantified with a quan-
titative-competitive RT-PCR assay as described elsewhere
[38].

DNA extraction, PCR amplification, cloning and 
sequencing
PBMCs from all patients were co-cultivated with normal
PBMCs to try to isolate virus [39]. At the end of the culture
period, which is when the culture was positive (mean, 15
days), cells were harvested and DNA was extracted with
the Wizard® Genomic DNA Purification kit (Promega) for
subsequent analysis. A fragment of the C2V3C3 region
(378 bp) of the HIV-2 env gene was amplified in a nested
Polymerase Chain Reaction (PCR) as described previously
[22]. PCR fragments were cloned into pCR®4-TOPO® vec-
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tor (Invitrogen) and transformed into One Shot®

Match1™-T1R competent cells (Invitrogen). Cloned plas-
mids were extracted [40], purified and sequenced using
BigDye Terminator Cycle sequencing kit (Applied Biosys-
tems), with M13 Forward and Reverse primers, and an
automated sequencer (ABI Prism 3100, Applied Biosys-
tems). For each patient an average of 13 clones (range 7–
21) was sequenced per sampling year.

Sequence analysis and phylogenetic studies
The nucleotide sequences were aligned using Clustal X
[41] and manual adjustments were made using Genedoc
[42]. Genetic distances between sequences were calcu-
lated using the maximum composite likelihood method
implemented in the MEGA version 4 [43]. Inter- and
intra-sample synonymous (dS) and nonsynonymous
(dN) distances were estimated using the modified Nei-

Gojobory method with the Jukes-Cantor correction, also
implemented in the MEGA software package.

Maximum likelihood analyses [44] were performed using
the best-fit model of molecular evolution estimated by
Modeltest under the Akaike information criterion [45].
The chosen model was TVM+G+I. Tree searches were con-
ducted in PAUP version 4.0 using the nearest-neighbor
interchange (NNI) and tree bisection and reconnection
(TBR) heuristic search strategies [46], and bootstrap resa-
mpling [47]. The nucleotide divergence rate was estimated
using an adaptation of the methodology previously
described by Salazar-Gonzalez et al. [48]. Firstly, maxi-
mum likelihood trees were constructed for each patient
using all clonal sequences from each time point and
rooted with the consensus sequences from other patients.
Then, assuming a molecular clock, the branch lengths

Table 1: Virological and immunological characterization of the patients

Patient Year of diagnosis Sample CD4+ T cells/μl RNA copies/ml Antiretroviral 
therapy

Antibody reactivity against C2V3C3 
(OD/cut-off)

IgG IgA

PTHCC1 2001 2003 308 <200 + 14.4 1.41
2005 319 na 13.3 1.49

PTHCC2 2003 2003 358 <200 + 24.3 1.69
PTHCC4 2000 2003 240 <200 + 9.6 3.26
PTHCC5 1993 2003 480 <200 + 20.1 2.40

2004 na <200 22.4 2.14
PTHCC7 2002 2003 144 <200 + 22.9 1.93

2005 43 <200 22.1 2.42
PTHCC8 2000 2003 141 <200 + 19.4 3.98

2005 350 na 17.1 3.69
PTHCC12 1995 2003 66 <200 - 28.0 5.79

2004 84 na 25.5 2.67
PTHCC13 2004 2005 954 <200 - na na
PTHCC14 1998 2003 184 <200 + 23.6 3.82
PTHCC17 1998 2003 367 <200 + 22.5 2.74

2004 270 <200 18.5 2.66
PTHCC19 2003 2003 175 na + 26.5 1.82

2004 400 <200 22.3 2.22
2005 60 na 18.7 2.01

PTHCC20 1998 2003 78 na + 24.5 1.57
2004 73 5246 20.0 1.66
2005 85 <200 19.9 1.37

PTHSM2 2002 2003 275 <200 + 5.9 1.55
2004 65 <200 6.2 1.57
2005 122 <200 10.9 1.93
2006 172 <200 4.7 2.09

PTHSM3 1993 2005 1452 <200 - 7.7 3.47
PTHSM6 2001 2005 471 <200 + 13.9 5.24
PTHSM7 1996 2003 587 na - 11.4 2.39
PTHSM9 1996 2003 15 <200 + neg 0.82

2004 na 484 neg 0.79
PTHSM10 2001 2003 342 5804 + neg 3.56

2004 265 4792 neg 3.54
2005 212 na neg 3.79

na, not available; neg, no reactivity; +, yes; -, no.
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between the leafs and the root of the tree were calculated
by using Branchlength Calculator [49] and plotted against
time in years.

Natural selection of specific amino acids was examined
using Codeml, models M0 and M3, with the HYPHY pack-
age [50]. Potential N-glycosylation sites were identified
using N-Glycosite [51]. The entropy at each position in
protein alignment was measured with Shannon Entropy
[52].

Humoral antibody response against the env C2V3C3 
regions
IgG and IgA antibody response against the env C2V3C3
region was quantified with the ELISA-HIV2 test developed
in our laboratory, as described elsewhere with some mod-
ifications [53]. Briefly, microtiter plates (96-well) were
coated with rgp36 and rpC2-C3 by overnight incubation
at 4°C and blocked with 1% gelatine in Tris-buffered
saline (TBS). HIV-2-positive plasma samples were added
to the antigen coated wells at a 1:100 dilution. Bound
antibodies were detected by using alkaline phosphatase
(AP)-conjugated goat anti-human IgG (diluted 1:2000 in
TBS) or horseradish peroxidase (HPR)-conjugated rabbit
anti-human IgA (diluted 1:2000 in phosphate-buffer
saline) (Sigma-Aldrich). The colour was developed using
p-nitrophenilphosphate (p-NPP Tablets, Sigma-Aldrich)
as chromogenic substrate to AP and o-phenylenediamine
dihydrochloride (OPD) to HPR. Optical density (OD)
was measured with an automated microplate reader LP
400 (Bio-Rad) at 405 and 492 nm against a reference
wavelength of 620 nm. The clinical cut-off value of the
assay, calculated as the mean OD value of HIV-seronega-
tive samples plus three times the standard deviation [SD],
was determined using samples from healthy HIV-seroneg-
ative subjects. The results of the assay are expressed quan-
titatively as ODclinical sample(S)/ODcut-off(CO) ratios. For ratio
values >1 the sample is considered as seroreactive.

Statistical analysis
Statistical analysis was performed in GraphPad Prism ver-
sion 4.00 for Windows (GraphPad Software), with a level
of significance of 5%. For the inter-patient statistical anal-
ysis across time, only information obtained from one
time point (one sample) per patient was considered in
order to guarantee the independence of the data analyzed.
Thus, to maximize the number of observations in the
analysis, we chose the first sample (first time point) avail-
able for each patient. Nonparametric tests were used to
compare means and medians between variables: paired
data was analyzed with Wilcoxon-matched pairs test and
Friedman test; unpaired variables were tested with Mann
Whitney U test and Kruskal-Wallis test. To study how two
variables varied together linear regression was performed
and Spearman correlation coefficients were computed.

Finally, Deming linear regression was used to study the
overall variation (slopes) of intra-patient data with time
(longitudinal analysis).

GenBank accession numbers
Sequences have been assigned the following GenBank
accession numbers: EU358115–EU358499, EU358501,
EU358504, EU358507, EU358509, EU358513,
EU358517, EU358519–EU358521, EU358524,
EU358525, EU358527–EU358531, EU358533,
EU358536–EU358538, EU358541, EU358543,
EU358546–EU358549, EU358551–EU358567,
EU360797–EU360799.

Results
Phylogenetic relationships, genetic diversity and 
divergence
To investigate the molecular evolution of the HIV-2 env
gene we have amplified, cloned and sequenced the env
gene fragment coding for the C2, V3 and C3 regions using
yearly samples collected from 18 patients followed pro-
spectively for 2–4 years. A total of 431 clonal sequences
were obtained from 18 patients (average of 13 sequences
per patient per sampling year). Phylogenetic analysis
showed that all sequences clustered together within HIV-
2 group A and that each patient sequences formed mono-
phyletic sub-clusters with high bootstrap supporting val-
ues (Figure 1). Phylogenetic analysis also showed that
with the exceptions of patients PTHCC1, PTHCC5 and
PTHCC20, sequences from most patients were not segre-
gated according to sampling years, a clear indication that
there were no major shifts in virus population structure
from one year to the other.

The mean evolutionary distance between different nucle-
otide sequences from each sample/year (nucleotide diver-
sity) was 2.1% (standard deviation = 1.1) (additional file
1). Nucleotide diversity was neither associated with clini-
cal status (2.1% mean median genetic distance in AIDS
patients vs 1.4% in the other patients; p = 0.203) nor with
plasma viremia (2.3% in viremic patients vs 1.8% in
aviremic patients; p = 0.386) (n = 18).

Considering the first and the last samples of each patient,
nucleotide diversity increased along the course of infec-
tion in all patients, except for patient PTHCC5 (additional
file 1). Shannon's entropy was used to measure the rela-
tive amino acid variability in our set of sequences [52].
The sum of entropy values of the amino acid alignments
varied between regions (p < 0.001), being significantly
lower for the V3 region (p < 0.001) and higher for the C2
region (p < 0.005) (additional file 1).

Within-patient nucleotide divergence rate was on average
0.014 substitutions per site per year for the C2V3C3
Page 4 of 12
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358115
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358499
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358501
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358504
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358507
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358509
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358513
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358517
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358519
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358521
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358524
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358525
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358527
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358531
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358533
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358536
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358538
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358541
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358543
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358546
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358549
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358551
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU358567
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU360797
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU360799


Retrovirology 2008, 5:78 http://www.retrovirology.com/content/5/1/78

Page 5 of 12
(page number not for citation purposes)

Maximum-likelihood phylogenetic analysisFigure 1
Maximum-likelihood phylogenetic analysis. The phylogenetic tree was constructed with reference sequences from HIV-
2 groups A, B and G, under the TVM+G+I evolutionary model, using the NNI heuristic search strategy and 1000 bootstrap 
replications. The triangles represent the compressed subtrees containing clonal sequences obtained from all samples collected 
for each patient. The length of the triangle represents the intra-patient nucleotide diversity and its thickness is proportional to 
the number of sequences. The bootstrap values supporting the internal branches are shown. The scale bar represents evolu-
tionary distances in substitutions per site. The inset contains the subtrees of patient PTHCC1 (A), PTHCC20 (B) and PTHCC5 
(C) (Yellow circle – 2003; green circle – 2004; blue circle – 2005).
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region, but it varied widely between patients (SD =
0.011). There was no association between the divergence
rate and the variation in the number of CD4+ T cells over
time (Deming regression analysis, F = 0.058, p = 0.816).
Likewise, the divergence rate of the C2V3C3 regions was
not related with the level of IgG antibodies produced
against the homologous peptide over time (F = 0.192, p =
0.675).

Selection analysis and adaptation rate of the C2, V3, and 
C3 regions
Intra-patient analysis showed that the overall C2V3C3
region was under purifying selection (dN/dS ratio < 1)
along the course of infection in all patients (additional file
1). Analysis of the number and location of positively
selected codons is useful to identify particular amino acids
that may be under the selective pressure of the immune
system, regions that can define potential neutralizing
epitopes or that are functionally important for the protein
[15,25-28]. In the present study, higher number of sites
under positive selection tended to be found in patients
with detectable viremia compared to patients with unde-
tectable viremia (median, 15 sites vs 2; p = 0.061) (n = 18)
(additional file 1). Otherwise, the number of positively
selected sites was highly variable in number and position
in most patients (Figure 2). Notable exceptions were
amino acids at positions 267 and 270 in C2 (numbered
according to the reference HIV-2ALI strain) that were
under strong positive selection in all patients. Selection at
these two sites persisted for at least two years in 9 patients
(Figure 2). Because of these two sites, the median number
of positively selected codons per sample was higher in the
C2 region compared with the other regions (p < 0.005) (n
= 18). Finally, using linear regression analysis we found

that within each patient an average of 1.0 (SD = 3.8) pos-
itively selected site varied per year (adaptation rate).

Glycosylation of the HIV-2 env C2-C3 region
Since the glycosylation pattern of the HIV-1 env gene may
influence neutralization escape to the immune system,
viral tropism and clinical progression [32,36,54-57], we
determined the number of potential N-glycosylation sites
in our sequences and examined its variation as a function
of time and other parameters analyzed in this study. The
number of N-glycosylation sites ranged from 5 to 8
(median, 7) and tended to be conserved along the infec-
tion in each patient, the exception being patient PTHCC1
with an increase in two sites over the three years of follow
up (Figure 3). The number of glycosylation sites varied
significantly between C2, V3 and C3 (p < 0.001), being
concentrated particularly in C2 (p < 0.001) (n = 18). At the
intra- and inter-patient level, the most conserved N-glyco-
sylation sites were located in C2 and V3. With one excep-
tion, all sites that varied over time were located in C3. The
number of N-linked glycosylation sites was directly asso-
ciated with the number of positively selected sites (r2 =
0.301; p = 0.018).

Molecular evolution of the C2, V3 and C3 regions as a 
function of the antibody response
All patients produced IgA antibodies against the C2V3C3
region whereas IgG antibodies were detected in all but
two patients, PTHSM9 and PTHSM10 (Table 1). Intra-
patient analysis revealed that along the course of the infec-
tion the variation of C2V3C3-specific IgG response was
inversely associated with the variation of nucleotide diver-
sity (F = 22.09; p = 0.002) as well as with the dN rate (F =
22.800; p = 0.002) and amino acid diversity (Shannon's

Frequency, intensity and distribution of positively selected sites in the C2, V3 and C3 regions along the course of HIV-2 infec-tionFigure 2
Frequency, intensity and distribution of positively selected sites in the C2, V3 and C3 regions along the course 
of HIV-2 infection. Positively selected codons (obtained with Codeml, model M3) were classified in two categories according 
to the ω ratio:ω>6, codons under strong selective pressure; 1<ω<6, codons under weak selective pressure. The frequency and 
distribution of positively selected sites in the C2, V3 and C3 regions are shown in each infection year. Higher frequency posi-
tively selected sites are shown in bold letters. Sites were numbered according to the reference HIV-2ALI strain. (na, not avail-
able)
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Frequency and distribution of potential N-glycosylation sites in the C2, V3 and C3 regions along the course of infectionFigure 3
Frequency and distribution of potential N-glycosylation sites in the C2, V3 and C3 regions along the course of 
infection. The frequency and distribution of potential N-linked glycosylation sites in the C2, V3 and C3 regions are shown in 
each infection year. Higher frequency glycosylation sites are shown in bold letters. Sites were numbered according to the ref-
erence HIV-2ALI strain. (na, not available)
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entropy, F = 23.610; p = 0.002), particularly in the V3 (F =
11.660; p = 0.014) and C3 regions (F = 6.214; p = 0.041)
(n = 9) (Figure 4). Variation of the C2V3C3- specific IgA
response over time was inversely associated with variation
in the number of N-linked glycosylation sites (F = 22.090;
p = 0.042; n = 4) which occurred in four patients particu-
larly in the C3 region (Figure 4).

Discussion
In this study we have examined, for the first time, the
molecular evolution of the envelope C2, V3 and C3
regions during chronic HIV-2 infection and its correlation
with the antibody response against the same regions. Our
cohort was constituted by long-term infected patients
showing, in general, low CD4+ T cell counts and undetec-
table plasma viremia.

Nucleotide diversity increased with time in all but one
patient with values similar to those obtained in an earlier
study performed with HIV-2 elite controllers (2.1%, this
study, vs 1.7%; p = 0.3440) [24]. This value is also similar
to the 2.5% median diversity reported for chronically
HIV-1 infected patients [58] and to the 3.0% mean diver-
sity reported for some long-term nonprogressors with low
viral load [21].

In phylogenetic analysis we found low quasispecies com-
plexity in most patients, i.e. virus populations from most
patients were mostly homogeneous during the follow up
period. This was expected since HIV-2 is generally seen as
a slowly evolving virus and over a short period of time one
would expect to observe few evolutionary changes

[22,24,59]. However, in three patients there was evidence
for segregation of virus quasispecies according to the year
of infection, which implies high rate of evolutionary
change and immune selection in these patients [15,60].
Consistent with this, we found that the nucleotide diver-
gence rate varied widely between patients. Moreover, the
average nucleotide divergence rate (0.014 substitutions
per site per year) was very high when compared to that
reported for HIV-2 elite controllers (mean, 0.23%) [24]
and for HIV-1 long-term non progressors with low plasma
viral load (mean, 0.27%) [21]. Even though we could not
detect any association between nucleotide divergence and
the number of CD4+ T cells, the higher net divergence
observed in our patients might be related to their high
immune deterioration, as higher genetic divergence is
generally found in HIV-1 rapid progressors compared to
slow- or non-progressors [19,20]. In fact, the 0.014
annual divergence rate found in our patients is similar to
that found in chronically HIV-1 infected patients
(between 1.0% and 1.5% per year) [17,58]. In conclusion,
the sampling schedule used in our study, and possibly the
fact that we have analyzed the virus present inside the cells
and not in the plasma, has enabled us to demonstrate that
the evolutionary dynamics of HIV-2 during chronic infec-
tion is surprisingly similar to HIV-1. This implies that
HIV-2 is actively replicating during chronic infection, pos-
sibly in the lymphoid tissue, as in HIV-2 patients the
mononuclear cells in the lymph nodes are heavily
infected, even more than the mononuclear cells in the
peripheral blood [61,62]. Future studies of HIV-2 nucle-
otide divergence should include also the virus popula-

C2V3C3 sequence evolution along the course of infection as a function of antibody responseFigure 4
C2V3C3 sequence evolution along the course of infection as a function of antibody response. Deming regression 
analysis. (A) Annual variation (slope) of the C2V3C3-IgG response vs Annual variation (slope) of the mean nucleotide diversity; 
(B) Annual variation (slope) of the C2V3C3-IgA response vs Annual variation (slope) of the number of potential N-glycosyla-
tion sites.
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tions present in the lymphoid tissue and other cellular
compartments (e.g. GI tract).

Despite the high nucleotide divergence rate, most of the
substitutions were of a synonymous nature such that the
dN/dS ratio of the C2V3C3 region was always below one
and, most importantly, it decreased over time in most
patients. These results are in agreement with previous
reports that have examined the C2V3C3 region [22,24]
and with the observation that, globally, the HIV-2 env
gene is under purifying selection [25]. Consistent with
previous studies of a cross-sectional nature, we found that
C2 and C3, but not V3, were the fastest evolving regions at
the nucleotide and amino acid level contributing signifi-
cantly to the high within-patient nucleotide divergence
rate [22,63]. The conservation of the V3 region in vivo
implies that in HIV-2, as in HIV-1, this region is submitted
to strong structural and conformational constraints which
are probably related to its crucial functional roles at the
level of coreceptor binding and cell entry [29-32].

It is probable that adaptation to immune pressure is the
main driver of the rapid intra-host evolution of the C2
and C3 regions in HIV-2 [15,25,58,60,64-66]. Indeed, we
found that most of the amino acids under selection are
located in C2, including the two amino acids that are
under strongest positive selection in all patients (posi-
tions 267 and 270). Moreover, selection at these two sites
persisted for at least two years in the majority of the
patients which is a clear indication that they are under
continued immune pressure in vivo [60,67]. The equiva-
lent amino acids in HIV-1 are not under positive selection
[67], are located in the hidden surface of envelope glyco-
protein complex [58] and define a cytotoxic T cell epitope
[68]. Thus, our results also suggest that the antigenic pres-
entation of the C2, and perhaps the C3 region (see
below), in the envelope complex of HIV-2 differs substan-
tially from that of HIV-1.

Glycans on HIV-1 envelope protein play an important
role in the folding of the glycoproteins, in infection and in
evasion from the host immune response (reviewed in
[69]). We found that, as for HIV-1 [51,58], the majority of
potential N-glycosylation sites were concentrated in the
C2 region. The four N-glycosylation sites in C2 and the
site in the beginning of V3 were highly conserved in all
patients throughout infection which is strongly indicative
of convergent evolution at these glycosylation hotspots
and suggests an unexpected constraint on the potential
diversity of the HIV-2 envelope [70,71]. The convergent
evolution of glycosylation sites may have important
implications for both vaccine design and antiviral thera-
peutic [69].

To try to identify the immune correlates of the molecular
evolution of HIV-2 C2, V3 and C3 regions we have looked
into all possible associations between the number of
CD4+ T cells or the IgA and IgG antibody levels and differ-
ent parameters that reflect viral molecular evolution. In
longitudinal analysis there was no significant association
between the number of CD4+ T cells and nucleotide diver-
sity, amino acid entropy, nucleotide divergence, dN/dS
ratio and number of positively selected sites. These results
are in partial contrast to those of MacNeil et al. [24], who
found a direct association between the rates of HIV-2
diversification and rates of CD4+ T cell decline in long-
term non progressors followed for a decade in Senegal.
The short term follow-up and the associated modest vari-
ation in the number of CD4 + T cells might have prevented
the detection of this type of association in our patients.

Strikingly, however, there was a close relationship
between virus diversification and evolution and C2V3C3-
specific antibody response over time. In fact, higher IgG
response was significantly associated with lower viral var-
iability at the nucleotide and amino acid levels as well as
with lower frequency of nonsynonymous substitutions.
These results imply that the anti-C2V3C3 IgG antibodies
are effective at reducing viral population size limiting the
number of virus escape mutants [72]. This is in striking
contrast to the majority of acute and chronic HIV-1 infec-
tions where the virus quickly escapes from anti-V3 and
anti-C3 autologous neutralizing antibodies [33,73-76].
Consistent with the lower capacity of HIV-2 to escape
from C2V3C3- neutralizing antibodies when compared to
HIV-1, we found that on average HIV-2 has a five-fold
lower adaptation rate in vivo than HIV-1 (1 positively
selected site per year vs 5 sites per year) [60,77]. The HIV-
2 low adaptation rate may be related to its low replicative
capacity and low plasma viral load [12,13,78]. Overall,
these results provide support for a crucial role of neutral-
izing antibody response in the effective containment of
viral replication in HIV-2 infection in vivo [36].

Surprisingly, in some patients addition of glycans to the
C3 region was associated with a reduction in the IgA
immunogenicity of the C2V3C3 region. Envelope-specific
plasma IgA antibodies, mostly binding to the gp36 trans-
membrane glycoprotein, have been found to neutralize
HIV-2 [79]. Increasing the number of N-glycans in the
envelope gp120 surface glycoprotein, or varying the posi-
tion of glycosylation sites, has been associated with escape
from IgG neutralizing antibody response in simian immu-
nodeficiency virus (SIV) and HIV-1 infection [57,80-82].
Hence, one plausible explanation for the inverse associa-
tion between IgA response and N-glycosylation is that the
C3 envelope region induces IgA neutralizing antibodies to
which HIV-2 escapes through the occlusion of the C3
region with N-linked glycans. This may have important
Page 9 of 12
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implications for vaccine design. Ongoing studies will
determine whether C2V3C3- specific IgA antibodies
present in these patients effectively neutralize their autol-
ogous virus.

Conclusion
The evolutionary dynamics of HIV-2 envelope during
chronic and highly suppressed infection is surprisingly
similar to HIV-1 implying that the virus is actively repli-
cating in cellular compartments. Convergent evolution of
N-glycosylation in C2 and V3, as well as the limited diver-
sification of V3, indicates however that there are impor-
tant functional constraints to the potential diversity of the
HIV-2 envelope. HIV-2 envelope diversification is
inversely related to the C2V3C3-specific IgG antibody
response over time implying that these antibodies are
effective at reducing viral population size, limiting the
number of virus escape mutants. The C3 region seems to
be a target for IgA antibodies and increasing N-linked gly-
cosylation may prevent HIV-2 envelope recognition by
these antibodies. Our results provide new insights into the
biology of HIV-2 and its relation with the human host and
may have important implications for vaccine design.
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