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Abstract

Background: APOBEC3 cytosine deaminases have been demonstrated to restrict infectivity of a
series of retroviruses, with different efficiencies depending on the retrovirus. In addition,
APOBECS proteins can severely restrict the intracellular transposition of a series of retroelements
with a strictly intracellular life cycle, including the murine IAP and MusD LTR-retrotransposons.

Results: Here we show that the IAPE element, which is the infectious progenitor of the strictly
intracellular IAP elements, and the infectious human endogenous retrovirus HERV-K are restricted
by both murine and human APOBEC3 proteins in an ex vivo assay for infectivity, with evidence in
most cases of strand-specific G-to-A editing of the proviruses, with the expected signatures. In silico
analysis of the naturally occurring genomic copies of the corresponding endogenous elements
performed on the mouse and human genomes discloses "traces" of APOBEC3-editing, with the
specific signature of the murine APOBEC3 and human APOBEC3G enzymes, respectively, and to
a variable extent depending on the family member.

Conclusion: These results indicate that the IAPE and HERV-K elements, which can only replicate
via an extracellular infection cycle, have been restricted at the time of their entry, amplification and
integration into their target host genomes by definite APOBEC3 proteins, most probably acting in
evolution to limit the mutagenic effect of these endogenized extracellular parasites.

Background when human APOBEC3G (hA3G) was reported to restrict
The APOBEC family of cytosine deaminases includes  HIV replication ([1]; reviewed in [2]). Human hA3G has
numerous members that can deaminate cytosine to uracil ~ been shown to trigger extensive deamination of cytosine
within DNA and/or RNA molecules. Among these in the negative viral DNA strand during reverse transcrip-
enzymes, the APOBEC3 sub-family has been discovered  tion and to lead to deleterious G-to-A mutations consid-
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ered as the hallmark of APOBEC3-editing activity.
Subsequently, several other human APOBEC3 proteins -
including APOBEC3A (hA3A) [3], APOBEC3B (hA3B)
[4,5], APOBEC3C (hA3C) [5], APOBEC3DE (hA3DE) [6],
APOBECS3F (hA3F) [7-9] and APOBEC3H (hA3H) [10] -
have been shown to exhibit antiviral effects against a vari-
ety of viruses, including numerous retroviruses - i.e. HIV,
SIV, MLV, HTLV and foamy viruses -, hepatitis B virus and
adeno-associated virus (AAV) (for review [11]). In con-
trast to humans, the mouse genome encodes only one
APOBEC3 (mA3) protein, which, like human APOBEC3
proteins, displays antiviral effects [12]. Aside from the
antiviral function of APOBEC3 proteins against exoge-
nous viruses, some inhibitory effects have been reported
on intracellular targets (for review [2]) and several studies
support the notion that the primary function of APOBEC3
proteins could be to prevent the propagation of mobile
elements. Indeed, mammalian genomes have accumu-
lated numerous transposable elements which account for
> 45% of the genomic DNA [13,14]. These elements can
be grouped into two main classes: the strictly intracellular
non-LTR (Long Terminal Repeat) retrotransposons,
namely long interspersed nuclear elements (LINEs) and
short interspersed nuclear elements (SINEs), which
account for ~30% of each mammalian genome, and the
LTR-containing retroelements (including the endogenous
retroviruses, ERVs), accounting for ~10% of the genomes
and closely related to retroviruses. The life cycle of ERVs
includes the formation of virus-like particles (VLPs) that,
in several instances - but not systematically - can remain
strictly intracellular as observed for the well-characterized
murine intracisternal A-particle (IAP) and MusD elements
(the so-called "intracellularized" ERVs, [15-18]), or that
can bud at the cell membrane for an extracellular cycle as
observed for the recently identified murine intracisternal
A-particle-related envelope-encoding (IAPE; [18]) and the
human endogenous retrovirus HERV-K(HML2) elements
[19,20]. Although most of these elements are no longer
active due to the accumulation of inactivating mutations,
some of them are still functional and have been cloned,
thus allowing direct ex vivo assay of the effect of APOBEC
proteins on their mobility. Accordingly, several APOBEC3
proteins, including hA3A, hA3B, hA3C and hA3F have
been demonstrated to restrict the retrotransposition of the
human LINE-1 (L1) elements [3,21,22], as well as the L1-
dependent transposition [23] of the human Alu SINE ele-
ments [24]. Moreover, although no effect on the retro-
transposition of L1 elements was observed in the presence
of hA3G [21,25-27], reports have shown that hA3G can
prevent the retrotransposition of Alu elements [27,28] by
sequestering Alu RNAs in cytoplasmic high-molecular-
mass (HMM) ribonucleoprotein complexes [28]. Simi-
larly, the cloning of active copies for the intracellular
murine IAP and MusD elements [15,17] made possible to
demonstrate susceptibility of these retroelements to
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murine APOBEC3 and to most of the human APOBEC3
proteins [24,26,29]. In addition, in silico analyses of the
naturally present genomic copies of these elements in the
murine genome have revealed "traces" of APOBEC3 edit-
ing on these elements ([26]; see also [30]), thus support-
ing the physiological relevance of the observed ex vivo
assays, and the genomic impact of APOBEC3 protein
activity.

Here we take advantage of the recent identification of the
infectious progenitor of the intracellularized IAP retro-
transposon, namely IAPE, to analyze the possible restric-
tion of a bona fide murine ERV, in a state close to that at
the time of its initial endogenization step when the ele-
ment still behaved as an infectious retrovirus, having not
yet reached its highly adapted "intracellularized" state
[18]. In parallel, we performed a similar analysis on the
human progenitor of the HERV-K(HML2) family mem-
bers that we had "reconstituted", resulting in the Phoenix
element which proved to be a bona fide endogenous retro-
virus, the element being able to enter cells by infection
and integrate with all the characteristic features of the
genomic copies presently found in the human genome
[19]. These two functional human and murine "extracel-
lular" ERVs were used to assess the effects of APOBEC3
proteins on mammalian endogenous retroviruses in
appropriate ex vivo assays, and refined in silico analyses of
the naturally present copies of these elements in their tar-
get host genomes finally unambiguously demonstrated
"traces" of APOBECS3 editing, with identifiable signatures.
Altogether, the data show that APOBEC3 proteins play a
role not only on the intracellular retrotransposons found
in humans and mice, but also on their retroviral "progen-
itors" endowed with an extracellular life style, thus de facto
filling the gap between the described effects of APOBEC3
proteins on bona fide exogenous retroviruses on the one
hand and intracellular retroelements on the other.

Results and discussion

Restriction of murine and human infectious ERVs by
APOBECS3 proteins

To assay whether the mouse IAPE element is restricted by
APOBEC3 proteins, we used the previously described
functional copy of IAPE-D (http://genome.ucsc.edu/;
mm9 July 2007 Assembly: chr12: 24,282,555-
24,290,874) [18] that was cloned under the control of the
CMYV promoter, and in which a neo resistance gene was
inserted in reverse orientation into the env gene (Figure
1A). The effect of APOBECS3 proteins on HERV-K was ana-
lyzed by using the "reconstituted" Phoenix element cloned
under the control of the CMV promoter, in which the env
gene is stopped and an anti-sense-oriented neo resistance
gene is inserted into its 3'-LTR (Figure 1). Proviral clones
of TAPE-D or HERV-K (4.5 ug), complemented with an
expression vector for a functional IAPE or VSV-G Env (0.5
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Figure | (see previous page)

Murine and human APOBECS3 proteins inhibit endogenous retroviruses. (A) Rationale of the assay for detection of infection
events by endogenous retroviruses in the presence of APOBEC3 proteins. The IAPE-D and HERV-K elements used in the
assay are marked with the neo reporter gene — inserted in reverse orientation — and carry their own functional genes, except
for the env gene which is supplied in trans, thus allowing only for single rounds of infection. Human 293T cells are co-trans-
fected with the indicated expression vectors for APOBEC3 family members, the supernatants collected 2-days post-transfec-
tion to infect Hela target cells, and infection events detected upon G418 selection. (B) Analysis of the activity of murine and
human APOBECS3 proteins on the indicated endogenous retroviruses. Viral titers are given as percentages relative to a control
(no apobec: expression vector with a nonfunctional hA3G; 622 and 549 G418R clones/ml for IAPE-D and HERV-K, respec-
tively). Data are the means + standard deviations (s.d.) for at least three independent experiments. Bottom: retrotransposition
frequency of an active autonomous IAP element marked with a neo indicator gene for retrotransposition [17] in the presence
of the corresponding APOBECS3 proteins; the assay was performed by cotransfection of Hela cells with the marked IAP and
APOBEC expression vector as previously described [26]; values are the means + standard deviations (s.d.) for at least three

independent experiments and are given as percentages relative to the control (no apobec; 1.3 X 10-3 G418R clones/cell).

ug) respectively, and the murine (mA3) or human (hA3A-
G) APOBECS3 proteins or a control plasmid (5 pg), were
transfected in 293T cells. Supernatants were harvested 48
h post-transfection, filtered through 0.45-um pore-size
PVDF membranes, supplemented with Polybrene (4 png/
ml), and transferred onto HeLa target cells. To increase
sensitivity, target cells were subjected to spinoculation at
1.200 x g for 2.5 h at 25°C. Infection events were detected
after G418 selection of target cells and viral titers
expressed as the number of G418R clones per mL of super-
natant. As illustrated in Figure 1, mA3 and hA3G protein
expression leads to a dramatic decrease in both the IAPE-
D and HERV-K viral titers (Figure 1B). In the case of the
murine IAPE-D element, only a limited effect - if any -
was observed with the human APOBEC3 proteins other
than hA3G, with for instance no effect of hA3A which oth-
erwise has a strong effect on the rate of retrotransposition
of its intracellular counterpatrt, i.e. the IAP element (Figure
1). In the case of the human HERV-K, at variance with
what is observed for the murine IAPE-D element, almost
all the APOBEC3 proteins (with the exception of hA3C)
have an effect, the highest activity being observed with
hA3B and hA3F.

We further assessed whether the observed decrease in viral
titers was associated with editing of the viral DNA by
sequencing a 800 or 1600 bp fragment of the de novo inte-
grated IAPE-D or HERV-K proviral DNA copies, respec-
tively, in 20-25 individual G418R clones. As illustrated in
Figure 2 numerous G-to-A transitions were observed in
the presence of mA3 or hA3G in both ERVs, as expected
for an APOBEC3-mediated editing. For HERV-K, G-to-A
editing was also observed with hA3B, hA3DE and hA3F,
but not with hA3A, as expected from previous characteri-
zation of this enzyme ([3,21,24,29]; reviewed in [11]).
Furthermore, mA3 and hA3G editing leads to G-to-A
mutations in a GXA or GG context, respectively, which are
the hallmarks previously described for each enzyme
[26,31,32]. For hA3B and hA3F, G-to-A editing was

observed in the GA context [2,33]. In addition, in spite of
a low number of G-to-A mutations, hA3DE editing seems
to preferentially take place in the GA/T context as expected
[6]. It has to be stressed that the editing rate is probably
underestimated because too heavily mutated neo genes
present in these ERV DNAs can no longer confer G418
resistance after integration.

Traces of APOBECS3 past activity on resident IAPE and
HERV-K elements in the murine and human genome
Since the murine IAPE-D and the human HERV-K ele-
ments are found to be restricted by APOBEC3 proteins in
the ex vivo assay above, we asked whether APOBEC3 pro-
teins might have actually impaired the in vivo amplifica-
tion of these elements in the past, by searching for
evidence of APOBEC3-editing on the endogenous copies
residing in the murine and human genome, respectively.
Accordingly, an in silico analysis was performed to assess
the levels of G-to-A mutations in two sets of full-length
genomic IAPE elements, originating from two different
subfamilies, namely IAPE-A and IAPE-D, and on full-
length HERV-K elements. Both the murine IAPE-D sub-
family and the human HERV-K elements have most prob-
ably been amplified by reinfection of the germline and
therefore could have been subjected to APOBEC3 editing.
Conversely, the IAPE-A subfamily has most probably been
amplified via gene duplication, with several elements —
essentially on the Y chromosome - disclosing identical
flanking sequences [34,35], and therefore should not
have undergone APOBEC3 editing: this family of ele-
ments - closely related to IAPE-D - can therefore be used
as an internal control for the in silico genomic analyses.
For all three families of elements, we selected by BLAST
analysis a set of twenty copies displaying the closest
sequence similarity to their cognate "master" copy: to the
functional "Phoenix" element for HERV-K, to the func-
tional copy used in the ex vivo assay for IAPE-D, and to the
unique full-length copy with preserved open reading
frames for IAPE-A. A consensus sequence was then derived
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Figure 2

APOBECS proteins induce specific G-to-A hypermutations. Two-entry tables showing nucleotide substitution preferences in
the presence of the indicated APOBECS3 proteins for the IAPE-D and HERV-K integrated proviruses. n, total number of bases
sequenced. The adjacent graphs represent the relative frequencies of observed G-to-A mutations as a function of the G neigh-
boring nucleotides (+2 position for the expected mA3 footprint, +1 position for the other APOBEC3s); for the two-entry
tables, p-values calculated by a Poisson regression in a log-linear model for the occurrence of the G-to-A versus C-to-T muta-
tions yielded p < 0.03 in all cases (except for hA3DE (p = 0.18) due to the low number of mutations); for the adjacent graphs,
p-values calculated by a chi square test were p < 0.01 in all cases (except again for hA3DE, p = 0.7); similar levels of significance
(or even higher) were obtained using the Kruskal Wallis test.
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for each family of elements, and each family member was
analyzed for mutations to the consensus. As illustrated in
Figure 3A, numerous mutations can be found for the three
families of elements, consistent with the million years of
genome evolution that have elapsed since the initial infec-
tion and/or amplification events. However, a specific
increase in G-base mutations can be observed for both the
IAPE-D and the HERV-K copies, not observed for the
IAPE-A copies. These mutations are essentially G-to-A sub-
stitutions, with the effect being most probably "strand-
specific", since the number of such mutations is almost
twice that of the C-to-T substitutions. In addition, this
bias is not observed for the IAPE-A elements, as expected
for a duplicated element which has amplified by chromo-
somal DNA duplication, without a reverse transcription
step prone to APOBEC3 mutagenesis. Interestingly, as
illustrated in Figure 3B, the observed G-to-A changes are
not randomly distributed but seem to be influenced by
the neighbouring nucleotides: the GXA triplet is the most
frequent "target" for the G-to-A substitutions in the IAPE-
D elements (see arrow in Figure 3B), in agreement with
previous reports — and data in Figure 2 - indicating that
mA3 preferentially targets GXA trinucleotide motifs
[26,31,33]. On the other hand, the G-to-A substitutions in
the HERV-K copies are most frequently observed in the
GG context (see arrow in Figure 3B), which corresponds
to the footprint of hA3G editing [31] and data in Figure 2.
There is no clear-cut evidence for G-to-A substitutions in
the GA and GT context, excluding any significant contri-
bution of hA3B, hA3DE or hA3F. Noteworthily, a "non-
specific" bias can be observed for the endogenous IAPE-A,
-D and HERV-K elements, which favors G-to-A mutations
in CG dinucleotides (Figure 3B), most probably reflecting
an APOBEC3-independent (since it is also observed for
the duplicated IAPE-A elements) deamination of methyl-
ated-CpG islands. Finally, examples of sub-genomic
regions of IAPE-D and HERV-K elements enriched in G-to-
A substitutions, are shown in Figure 3C, where the di- or
tri-nucleotide sequences specific for the hA3G and mA3
APOBEC proteins, respectively, are underlined. Alto-
gether, these in silico data strongly suggest that the IAPE
and HERV-K elements have been subjected to editing by
specific APOBECS3 proteins during their retroviral cycle of
amplification and insertion into their target host genome.

We further explored APOBEC3 editing by analyzing more
specifically the G-to-A substitutions at the mA3 and hA3G
target sites for each of the twenty IAPE-D and HERV-K pro-
viruses, respectively. As shown in Figure 4A-B, for each
proviral element, both the total number of G-to-A muta-
tions (grey plus hatched grey) and the number of G-to-A
mutations at the mA3- and hA3G-specific sites (hatched
grey) were measured, together with the number of C-to-T
"non-strand-specific' mutations as an internal control
(dark bars; also used to order the copies in the Figure). Fig-
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ure 4A-B then clearly shows that i) the total number of G-
to-A mutations is for most proviruses higher than that of
the "control" C-to-T mutations, ii) this increase is essen-
tially due to "specific" mutations at the respective
APOBECS sites, and iii) the extent of the observed muta-
tions is highly variable depending on the proviral copy.
Actually, for both the IAPE-D and HERV-K proviruses,
more G-to-A mutations than C-to-T mutations can be
observed, consistent with a strand specificity that can only
have occurred prior to integration; in addition, this excess
of G-to-A mutations is in general observed at GXA triplet
positions for the murine, mA3-sensitive IAPE-D (> 40% of
the G-to-A mutations for the majority of the proviruses,
namely thirteen out of twenty), and at GG doublet posi-
tions for the human, hA3G-sensitive HERV-K elements.
For the latter, it should be noted that the extent of specific
G-to-A mutations is rather limited (seventeen out of the
twenty HERV-K proviruses display < 30% of their G-to-A
mutations at GG positions), except for two proviruses
(ch3-1271 and ch21-0189) which are specifically hyper-
mutated (Figure 4B-C), with > 70% of their G-to-A muta-
tions in the GG context, without any evidence for a clear-
cut gradient along the proviral sequence (Figure 4C).
These results indicate that HERV-K can indeed be severely
edited by hA3G, and that APOBEC3G protein expression
at different times of HERV-K amplification in the human
genome must have been quite variable.

Conclusion

The restriction effects of APOBEC proteins on endog-
enous retroelements have essentially concerned retro-
transposons with a strictly intracellular life cycle, namely
the LINE/SINE non-LTR retrotransposons, and LTR-retro-
transposons including the yeast Ty1 element [36,37], and
the IAP and MusD murine elements [3,24,26,33]. In these
cases severe restriction has been observed, both in ex vivo
assays and by in silico analysis of the traces that APOBEC
proteins have left through DNA edition in the course of
reverse transcription of the retroelements [26]. Here we
show that similar effects take place at the level of endog-
enous retroviruses with an extracellular life cycle, with an
unambiguous restriction of the murine IAPE by a murine
APOBECS3 protein, and of the human HERV-K element by
a human APOBEC3 protein. Taking into account that an
infectious IAPE retrovirus with an extracellular life cycle
has been the progenitor of the IAP element, the restriction
observed for IAP by mA3 appears simply to be the conse-
quence of the restriction that initially controlled the pro-
genitor infectious IAPE invading the rodent ancestor, with
the effect being maintained in the evolution of the endog-
enized IAP retroelements. Although it concerns a heterol-
ogous - and therefore not necessarily very relevant-
situation, it is noteworthy that the human hA3A protein
can control the murine intracellular IAP retroelement, a
property not observed for the IAPE infectious progenitor.
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Figure 3 (see previous page)

Distribution of the nucleotide substitutions in the IAPE-D and HERV-K genomic copies residing in the mouse and human
genomes. Endogenous sequences were extracted from the mouse and the human genome databases, aligned and compared to
the derived consensus. (A) Upper panels: percentage of substitutions for each nucleotide, for the endogenous IAPE-D and
HERV-K elements (with the IAPE-A elements used as a control). Lower panels: two-entry tables showing nucleotide substitu-
tions preferences, with the G-to-A values in bold (higher that the "non-specific" C-to-T value for IAPE-D and HERV-K, and
identical in the case of the IAPE-A control). n, total number of nucleotides analyzed. (B) Influence of nucleotides at position -2,
-1, +1 and +2 on G-to-A mutations (the mutated G is at position 0). Data represent the percentage of indicated target di- or
trinucleotide sequences bearing G-to-A mutations. X represents any nucleotide. P-values calculated for the two-entry tables
(in A) by a Poisson regression in a log-linear model for the occurrence of the G-to-A versus C-to-T mutations yielded p <
0.003 for IAPE-D and HERV-K; in B, p-values calculated by a chi square test were p < 0.001; similar levels of significance were
obtained using the Kruskal Wallis test. (C) Example of G-to-A mutations present in twenty IAPE-D (upper panel) and HERV-K
(lower panel) sequences. GXA trinucleotides and GG dinucleotides are underlined in the consensus sequence of IAPE-D and

HERV-K, respectively.

This is most probably relevant to the localization of the
hA3A protein - in the nucleus - and to its rather atypical
mode of action - not involving editing of the reverse tran-
scribed DNA - which identifies this restriction factor as
more specifically devoted to intracellular retrotrans-
posons, consistent with the absence of reported effects of
this factor on - most - infectious retroviruses (reviewed in
[2]). Finally, in silico analysis of the genomic copies of the
elements demonstrates that APOBEC3 editing has taken
place in evolution for these amplified elements, with
clear-cut evidence for a severe heterogeneity in the extent
of the editing process.

Methods

Plasmids

The human (HERV-K) and murine (IAPE-D) neo-marked
ERV copies (pBS CMV-Kcons Stop Env neoAS and pCMV
RUS5 IAPE neoAS, respectively), the VSV-G and IAPE-D env
expression vectors, and the neo-marked autonomous
murine [AP retrotransposon (pGL3-IAP92L23 neo!NF)
have been previously described [17-19]. The APOBEC3
expression plasmids were obtained from M. Malim
(hA3A), the NIH AIDS Research and Reference Reagent
program (hA3B, hA3C and hA3F), Open Biosystems
(hA3DE), A. Hance (hA3G), and N. Landau (mA3). A
plasmid expressing a defective hA3G gene (with a prema-
ture stop codon) was used as a negative control. All the
APOBEC3 ORF-containing fragments were re-cloned into
the pcDNAG expression plasmid (Invitrogen).

Retrotransposition and infection assays

Retrotransposition assays with the neo-marked IAP were
as described previously [38]. For the infection assays,
293T cells seeded in 60-mm-diameter plates were trans-
fected using the Lipofectamine Plus kit (Invitrogen) with
4.5 ug of the neo-marked env-defective murine or human
ERV, 0.5 ug of the IAPE or VSV-G env expression vector,
and 5 pg of the APOBEC3 expression vector to be tested.
Supernatants were harvested 48 h post-transfection, fil-

tered through 0.45-um pore-size PVDF membranes, sup-
plemented with Polybrene (4 ug/ml), and used to infect
HelLa target cells by spinoculation (1.200 g for 2.5 h at
25°C). Infection events were detected upon G418 selec-
tion of target cells and viral titers quantified as the number
of G418R clones per mL of supernatant [18,19].

Analysis of integrated proviral DNAs

Cellular DNA from 20-25 individual G418R clones was
used to PCR-amplify a 996 bp fragment encompassing the
env to neo gene region (nt 6783-7779) of the IAPE-D ele-
ment and a 2049 bp fragment spanning the neo to gag
gene region (nt 1093-3142) of the HERV-K element (ini-
tial 3 min denaturation step at 94°C; 40 cycles: 94°C, 50
sec; 60°C, 50 sec; 68°C, 150 sec). PCR reactions were per-
formed with sets of appropriate primers in 50 pl contain-
ing 0.5 pg of cellular DNA, 1x Buffer II and 1.5 U
AccuPrime Taq DNA polymerase (Invitrogen). The PCR
products were electrophoresed on agarose gels, purified
with the Nucleospin Extract IT kit (Macherey-Nagel) and a
~800 bp or a ~1600 bp fragment was sequenced (Applied
Biosystem sequencing kit) for IAPE-D and HERV-K,
respectively.

Human and Mouse genome analyses

IAPE-D, IAPE-A and HERV-K endogenous retroviruses
were extracted from the mouse and human genome
sequence databases (Mouse GoldenPath mmS8, February
2006 assembly and Human GoldenPath hgl8, March
2006 assembly; http://genome.ucsc.edu/) by using as a
querying probe the sequence of the previously described
functional IAPE-D1 copy [18], the sequence of the IAPE-A
copy with intact gag-pol open reading frames (chrl4-
0436, [18]), and the sequence of the HERV-K element
(Phoenix-derived; [19]) used in the cell-based infection
assay. Twenty sequences displaying the highest homology
to their cognate probe were selected for the IAPE-D and
HERV-K elements. Twenty sequences with the highest
homology to the IAPE-A sequence and localized on the Y
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Variability of the number of G-to-A mutations within the endogenous IAPE-D and HERV-K proviruses depending on the ele-
ment. The total numbers of G-to-A mutations (plain + hatched grey bars) for each IAPE-D (A) and HERV-K (B) proviruses are
represented, together with that of the C-to-T (black bars) "none-strand-specific" mutations, given as an internal control (also
used for ordering the elements) indicative of the genetic drift-associated age-dependent amount of mutations for each copy
(same rank order as the sum of all non-G-to-A base substitutions). The number of G-to-A mutations specifically associated
with the mA3 or hA3G APOBEC footprints is indicated with hatched grey. (C) Positioned G-to-A mutations (red bars) specif-
ically associated with the hA3G APOBEC footprint ("GG") for the individual HERV-K elements in (B); yellow bars correspond
to deletions in the proviruses (relative to the Phoenix consensus sequence). The data and the image shown in figure 4C were
generated using the Hypermut 2.0 software available at the http://www.hiv.lanl.gov/ website.

chromosome were also selected to be used as a control
(see Results). Alignments were performed using the Clus-
talW and Editsequence softwares and consensus
sequences generated. Quantitative analysis of the nucleo-
tide substitutions within the IAPE-A, IAPE-D and HERV-K
elements was performed using Excel and Hypermut 2.0
(available at the http://www.hiv.lanl.gov/ website) soft-
wares, on the full-length retroviruses. The localization of
the analyzed sequences within the mouse and human
genomes are given in additional file 1.

Statistical analyses

Significance levels for the data in Figures 2 and 3 were cal-
culated using the Kruskal Wallis test (GrapPrism software
package). More refined analyses for the occurrence of the
G-to-A versus C-to-T mutations were performed using a
Poisson regression in a log-linear model. The genmod
procedure of the SAS software was used (version 9.1, SAS
Institute Inc, Cary, NC). The observed distributions of the
G-to-A mutations among the GA, GC, GG and GT contexts
for HERV-K or the GXA, GXC, GXG and GXT contexts for
IAPE were compared to the distribution of these di- or tri-
nucleotides by the chi square test.
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