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Abstract
Human APOBEC3 proteins are editing enzymes that can interfere with the replication of
exogenous retroviruses such as human immunodeficiency virus (HIV), hepadnaviruses such as
hepatitis B virus (HBV), and with the retrotransposition of endogenous retroelements such as long-
interspersed nuclear elements (LINE) and Alu. Here, we show that APOBEC3G, but not other
APOBEC3 family members, binds 7SL RNA, the common ancestor of Alu RNAs that is specifically
recruited into HIV virions. Our data further indicate that APOBEC3G recognizes 7SL RNA and Alu
RNA by its common structure, the Alu domain, suggesting a mechanism for APOBEC3G- mediated
inhibition of Alu retrotransposition. However, we also demonstrate that APOBEC3F and
APOBEC3G are normally recruited into and inhibit the infectivity of ΔVif HIV1 virions when
7SLRNA is prevented from accessing particles by RNA interference against SRP14 or by over
expression of SRP19, both components of the signal recognition particle. We thus conclude that
7SL RNA is not an essential mediator of the virion packaging of these antiviral cytidine deaminases.

Background
APOBEC proteins are members of a family of polynucle-
otide cytidine deaminases (CDA) that play important
roles in antiviral defence. Human APOBEC3G and 3F can
block the replication of a wide array of exogenous retroe-
lements, including retroviruses such as human immuno-
deficiency virus (HIV) and murine leukaemia virus (MLV)
[1,2], and hepadnaviruses such as hepatitis B virus (HBV)
[3,4]. Primate lentiviruses including HIV counter
APOBEC3G and 3F via their Vif protein, which binds to
and triggers the proteasomal degradation of these cellular
antivirals. In the absence of Vif, APOBEC3G and -F are

packaged into retroviral particles, and lethally edit nascent
viral reverse transcripts [1,2,5,6]. What tethers APOBEC
proteins to virions has so far remained incompletely char-
acterized. While some have invoked a role for the viral
genomic RNA, more undisputed is the claimed impor-
tance of the nucleocapsid region of HIV-1 Gag and of yet
unknown cellular RNAs in this process [7-14].

APOBEC family members can also act on endogenous
substrates, notably retroelements. APOBEC3A, 3G and 3F
can block the propagation of endogenous retroviruses
such as intracisternal-A particles (IAP) [15,16] or MusD,
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and APOBEC3A, 3B and, to a lesser extent, 3C and 3F can
inhibit LINE-1 (Long Interspersed Nuclear Element 1) ret-
rotransposition [15,17-20]. Furthermore, APOBEC3A,
APOBEC3B, APOBEC3C and APOBEC3G can prevent Alu
retrotransposition, a process mediated in trans by the
reverse transcriptase and integrase activities encoded by
LINE [17,18]. Interestingly, APOBEC3G overexpression
appears to recruit Alu RNAs into APOBEC3G-containing
high molecular mass ribonucleoprotein complexes [21].

The Alu family of repetitive sequences is one of the most
successful groups of mobile genetic elements, having mul-
tiplied to more than one million copies in the human
genome in some 65 million years of primate evolution
[22,23]. Interestingly, the emergence of Alu as major pri-
mate genome remodelers has coincided with the expan-
sion of the APOBEC3 gene family long before the
appearance of modern lentiviruses [24,25], and there is a
striking evolutionary coincidence between the expansion
of the APOBEC gene cluster and the abrupt drop in retro-
transposon activity that took place in primates, compared
with rodents [26]. While the functions of Alu repetitive
elements remain largely unknown, sequence analyses
indicate that they originated from the evolutionary con-
served 7SL RNA gene [27]. This gene encodes for the
approximately 300-nucleotide-long RNA moiety of the
signal recognition particle (SRP), a cytoplasmic ribonucle-
oprotein complex that associates with ribosomes to medi-
ate the translocation of nascent proteins into the
endoplasmic reticulum [28]. Interestingly, 7SL RNA was
amongst the first host RNAs detected in avian and murine
retroviral particles [29,30] and is packaged in HIV-1 viri-
ons at ten thousand and seven fold molar excess over the
actin mRNA and viral genomic RNA respectively [31]. A
recent study points to 7SL RNA as a mediator of
APOBEC3G packaging into HIV virions [32]. The results
of the present work rather support a model in which the
interaction between 7SL RNA and APOBEC3G may shed
light on APOBEC3G-mediated inhibition of Alu retro-
transposition, but does not mediate the retroviral particle
incorporation of the CDA.

Methods
Plasmids
Plasmids pCMV4-HA expressing the HA-tagged form of
APOBEC3G and APOBEC3A were a kind gift from M.
Malim (King's College, London, UK). Human APOBEC3B
and APOBEC3F cDNAs were amplified from activated
peripheral blood lymphocytes. We used primers cem196:
5'-agattagcttggctgaacatgaatccacagatcag-3' and cem197: 5'-
ttacttctagagtttccctgattctggagaatgg-3' for APOBEC3B and
primers cem157: 5'-agattaagcttccaaggatgaagcctcacttcag-3'
and cem156: 5'-ttacttctagactcgagaatctcctgcagcttgc-3' for
APOBEC3F. These cDNAs were then introduced in the
HindIII and XbaI sites of the pCMV4-HA plasmid, replac-

ing the human APOBEC3G cDNA. The resulting proteins
correspond to the NP_004891 and NP_660341 NCBI
entries, respectively. The cDNAs for APOBEC3C,
APOBEC2, APOBEC1 and AID come from B. Matija Peter-
lin and Yong-Hui Zheng (University of California, San
Francisco, USA) and were obtained through the NIH AIDS
Research and Reference Reagent Program, Division of
AIDS, NIAID, NIH. All cDNAs for APOBEC family mem-
bers were inserted into the same expression vector
pCMV4-HA. Single-aminoacid substitutions were made
on APOBEC3G coding sequence using Quickchange site-
directed mutagenesis kit (Stratagene) following the man-
ufacturer's instructions. Plasmids for GAG expression and
NC deletion construct, Zwt-p6, were kindly provided by P.
Bieniasz (Aaron Diamond AIDS Research Center and the
Rockefeller University, New York, USA). Plasmids for Alu
retrotransposition, were a kind gift from T. Heidmann
(Alu-Sb1: pAlu pA+ neoTet) and from J. Moran (L1-RP:
pJM101 L1-RP Δ neo). Plasmids for SRP19 and SRP19 Δ 6
were kindly provided by Xiao-Fang Yu (Department of
Molecular Microbiology and Immunology, Johns Hop-
kins Bloomberg School of Public Health, Baltimore USA).
For 7SL RNA-APOBEC3G binding competition experi-
ments, sequences encoding the 7SL Alu and S-stem
domains were cloned in pLVCTH (ClaI-MluI sites; [33])
downstream of the pol-III promoter. Forward and reverse
synthetic 60 nt nucleotides (Microsynth, Switzerland)
were used to construct plasmids expressing shRNA against
SRP14 and firefly luciferase in pSuper-Retro mammalian
expression vector (Oligoengine inc). The target sequence
for SRP14 is 5'-agggcatacatttcctgct-3' and as a control we
used firefly luciferase 5'-cgtacgcggaatacttcga-3'.

RNA structure analysis
Secondary structures of 7SL RNA and Alu-Sb1 were pre-
dicted using the Sfold software at the Sfold Web server
(Wadsworth Center).

Immunoprecipitations
HA-tagged APOBEC proteins and derivatives were
expressed into Hela cells. In some cases competitors were
co-transfected at the indicated ratios. 48 h later, total
homogenate was obtained from confluent 10-cm plates
using 500 μl per plate of high stringency RIPA lysis buffer
(NP40 1%, Na Deoxycholate 0,5%, SDS 0,1%) comple-
mented with 1× Protease Inhibitor Cocktail Set I (Calbio-
chem) and Prime RNase Inhibitor at 1000 units/ml
(Eppendorf). Beads-immobilized anti-HA antibody
(Roche) was used to immunoprecipitate HA-tagged pro-
teins (50 μl beads + 200 μl homogenate), before extensive
washes with low stringency lysis buffer and final elution
with 100 μl of RNase-free distilled water.
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RNA detection and quantification
Eluted immunoprecipitates were used for reverse tran-
scription using random hexanucleotide primers, and
Superscript III reverse transcriptase (Invitrogen). Two sets
of specific primers (5'-gcctgtagtcccagctactc-3', 5'-ccgaact-
tagtgcggacacc-3'; 5'atcgggtgtccgcactaag-3', 5'-gagtcctgcgtc-
gagagagc-3') were used to amplify 7SL RNA by SYBR-
Green Real-Time PCR (Applied Biosystems). As an inter-
nal standard, 106 copies of a lentiviral genomic plasmid
(pLVCTH, [34]) were included in each well, and viral
genomic cDNA was amplified using specific primers (5'-
ggagcagcaggaagcactatg-3', 5'-caggattcttgcctggagctg-3';
5'ggagctagaacgattcgcagtta3', 5'ggtgtagctgtcccagtatttgtc3').
For endogenous Alu RNA amplification the following
primers were used: 5'-cactttgggaggccgaggcg-3' and 5'-
gtagctgggactacaggcgc-3'.

ALU retrotransposition assay
pAlu pA+ neoTet (1 μg), pJM101 L1-RP Δneo (1 μg), and
cytidine deaminases-expressing plasmids (1 μg) were co-
transfected into 105 HeLa cells using JetPei (Polyplus).
The day after they were plated on 10 cm dishes, and
selected once they had reached confluence in 2 mg/ml
G418 (Invitrogen). After 60 h medium was changed and
G418 concentration was reduced to 0,5 mg/ml. After 72 h
colonies were fixed and coloured (20% methanol, 1 g/l
crystal violet).

Virological assays
Vif-defective HIV-1 particles were produced by transient
transfection of 293T cells with Fugene (Roche) in presence
or absence of antiviral cytidine deaminases with or with-
out HIV-1 Vif. In some cases (as in figure 1) shRNA-
expressing plasmids were cotransfected. 1 ml of superna-
tant was then spun in 1,5 ml eppendorf tubes at 13'000
rpm in a microfuge at 4° for 90 min. Pellets were resus-
pended in PBS 1% Triton, and particles were quantified by
a standard RT assay, measuring relative infectivity by titra-
tion on CD4+, LTR-LacZ-containing, HeLa-derived P4.2
cells. Normalized amount of virions were then loaded on
standard Laemmli protein gels to perform Western blots. 

APOBEC3G-specific immunofluorescence was performed
as previously described (25).

7SL RNA knockdown
293T cells were seeded at 60% confluency in 6 cm plates
in triplicates and transfected with pSR14 and pSR-Luc,
which produces shRNA against SRP14 subunit and Luci-
ferase respectively, using calcium phosphate mediated
transfection. Puromycin dihydrochloride (3 μg/ml,
Sigma) was used to select the transfected cells 24 hours
post-transfection. After 24 hours more, cells were washed

with TBS (Tris buffered saline) and replaced with fresh
medium containing puromycin at 0.5 μg/ml. At 120
hours after transfection the cells expressing shRNA were
further transfected with lentiviral plasmids together with
APOBEC3G and APOBEC3F. Cells and virions were col-
lected at 144 hours after transfection when the SRP14 and
7SL RNA are significantly downregulated. Cells were
grown in the presence of cycloheximide (Sigma) during
the whole procedure at 5 μg/ml concentration to improve
efficiency of targeting into ER and thereby improving the
viral titer.

7SL RNA down regulation by SRP19 over expression
7 × 106 293T cells were seeded into 15 cm plates in dupli-
cates approximately 24 h before transfection with HIV-1
ΔVif and SRP19myc or SRP19 Δ6myc plasmids at ratios of
4:1 and 2:1 (SRP19:HIV-1), in presence and absence of
A3G and A3F. Virus was collected 36 h post medium
change. Virus supernatant was cleared of cellular debris by
centrifugation at 3000 rpm for 15 min in Heraeus meg-
afuge centrifuge and filtration through a 0.2-μm pore size
membrane (Millipore). Virus particles were then concen-
trated without sucrose cushion by ultracentrifugation at
196,000 × g for 2 h at 16°C in a Beckmann Coulter
optima L-80 XP ultracentrifuge. Viral pellets were sus-
pended in lysis buffer [(PBS-containing 1% Triton X-100,
1× Protease Inhibitor Cocktail Set I (Calbiochem) and
RNase inhibitor (Promega)]. Cellular and viral RNAs were
extracted using RNeasy Micro Kit (Qiagen, 74004) and
QiAMP Viral RNA mini kit (Qiagen, 52904), respectively.

Immunoblot analyses
Normalized quantities of samples from both cells and
virus were suspended in 5× sample buffer and 20× reduc-
ing agent (Fermantas) denatured for 5' at 95°C and
resolved on a Tris-glycine SDS-Polyacrylamide gel fol-
lowed by western blot. HA-tagged proteins (A3G and
A3F) were detected using peroxydase-conjugated rat mon-
oclonal antibody (clone 3F10, Roche). Proliferating cell
nuclear antigen (PCNA) was used as a protein loading
control and was detected using a mouse monoclonal anti-
body (clone PC10, Calbiochem) followed by a secondary
sheep anti-mouse antibody conjugated to horseradish
peroxidase. Myc tagged proteins (SRP19 and SRP19Δ6)
were detected using C-myc rabbit polyclonal antibody
(SC-789) from Santacruz followed by secondary donkey
anti-rabbit antibody conjugated to horseradish peroxi-
dase. p24 (Capsid) of virus was detected using anti p24
antibody (mouse, from AIDS reagent programme) fol-
lowed by secondary sheep anti-mouse antibody conju-
gated to horseradish peroxidase.
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7SL RNA knockdown does not prevent A3G encapsidationFigure 1
7SL RNA knockdown does not prevent A3G encapsidation. A. 7SL RNA in cells lines expressing control-shRNA and 
SRP14-shRNA, was quantified by real time PCR. APOBEC3G or APOBEC3F expressing plasmids were transfected when indi-
cated. Means and standard errors from three independent experiments are shown. B. Production of Vif-defective HIV-1 parti-
cles from control-shRNA or SRP14-shRNA cell lines, in the presence of APOBEC3G or APOBEC3F when indicated. Means 
and standard errors from three independent experiments are shown. C. 7SL RNA, Y3 RNA and 5S RNA measured by real 
time PCR in Vif defective HIV-1 particles produced from control-shRNA or SRP14-shRNA cell lines, upon transfection of 
APOBEC3G or APOBEC3F when indicated. Results were normalized to viral genomic RNA. Means and standard errors from 
three independent experiments are shown. D. Western blot analysis of these viruses and of cytoplasmic extracts of the pro-
ducer cells, using indicated antibodies, ß-actin and capsid serving as loading controls. E. Infectivity of Vif-defective HIV-1 parti-
cles produced from control-shRNA or SRP14-shRNA cell lines, in the presence of APOBEC3G or APOBEC3F when indicated.
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Results
Binding of APOBEC3G to 7SL RNA
The Alu and 7SL RNAs are closely related and share a com-
mon secondary structure: the Alu domain (Fig. 2A).
Accordingly, the demonstrated interaction between
APOBEC3G and Alu RNA [21], and the specific incorpo-
ration of 7SL RNA in HIV-1 particles [31] suggested that
7SL RNA might bind APOBEC3G, and perhaps mediate
the recruitment of the cytidine deaminase into virions. To
probe this issue, we first immunoprecipitated extracts of
HeLa cells expressing HA-tagged APOBEC proteins with a
HA-specific antibody, and subjected the resulting material
to Western blotting and 7SL RNA-specific RT-PCR (Fig.
2B). 7SL RNA was detected in human APOBEC3G-specific
immunoprecipitates, but not in association with
APOBEC1, 2, 3A, 3B, 3C or 3F, nor with murine
APOBEC3. By transfecting serial dilutions of the
APOBEC3G-HA plasmid, we confirmed that 7SL RNA
recovery was proportional to the levels of immunoprecip-
itated protein, and that the failure to detect this RNA in
association with other APOBEC family members was not
due to less efficient recovery of these latter proteins. More-
over, overexpression of an Alu RNA (Alu-Sb1) inhibited
the recruitment of 7SL RNA by APOBEC3G (Fig. 2C), con-
sistent with a model in which the cytidine deaminase rec-
ognizes the Alu domain of the SRP RNA constituent. In
order to confirm this result, we overexpressed the 7SL Alu
and S-stem domains (Fig. 2A) and tested their effect in
similar competition experiments. We found that the 7SL
S-stem domain had little effect on APOBEC3G binding to
full-length 7SL RNA, whereas the 7SL Alu domain
strongly interfered with this interaction, even more effec-
tively than Alu-Sb1 (Fig. 2D). This suggests that
APOBEC3G binds to the Alu domain of 7SL RNA.

W127 of APOBEC3G is essential for Alu inhibition, 7SL and 
Alu RNAs binding and packaging into HIV virions
To investigate a hypothetical role for Alu-related RNAs in
APOBEC3G HIV-1 virion incorporation, we turned to a
library of point mutants of the cytidine deaminase. We
identified a series of single amino acid mutants with
either partial (H65R, W94L, C97S, Y124A) or complete
(Y91A, R122A, W127L) HIV packaging defect, which cor-
related with an inability to block the infectivity of Δ Vif
HIV-1 (not illustrated). Amongst the three mutants that
completely failed to be incorporated in HIV-1 virions,
W127L stood out as exhibiting the same stead-stated lev-
els of expression and cytoplasmic localization as wild
type, and moreover was fully sensitive to Vif-induced deg-
radation (Fig. 3). We thus decided to concentrate on this
mutant, which had also a markedly reduced ability to
bind 7SL RNA (Fig. 4A). In agreement with our previous
finding that 7SL RNA binding involves recognition of 7SL
Alu domain, we could PCR amplify endogenous Alu RNA
from wild-type but not W127L APOBEC3G immunopre-

cipitates (Fig. 4B). Accordingly, this mutant was not able
to block Alu retrotransposition (Fig. 4C).

A NC-deleted HIV-1 Gag mutant fails to package both 
APOBEC3G and 7SL RNA
Several studies have pointed to the role of some cellular
RNA(s) as a bridge between NC and APOBEC3G, impor-
tant for the virion packaging of the CDA [7-14,35,36].
HIV-1 viral-like particles (VLP) can be produced from a
Gag derivative in which NC is replaced by a heterologous
sequence providing the intermolecular Gag interaction
function normally fulfilled by this region. It was previ-
ously demonstrated that one such chimerical protein
termed Zwt-p6, in which NC is replaced by a leucine zip-
per from GCN4 (Fig. 5A), induces the efficient formation
of virions, but that these contain low levels of non viral
RNA and fail to incorporate APOBEC3G [14]. We indeed
found that Zwt-p6 VLPs contained about ten times less
7SL RNA than wild-type Gag VLPs, as recently reported
[32] and very low levels of not only APOBEC3G but also
APOBEC3F (Fig. 5BC).

HIV-1 virions devoid of 7SL RNA still contain and are 
normally inhibited by APOBEC3F and APOBEC3G
These results were consistent with a model in which 7SL
RNA mediates the recruitment of APOBEC3G into HIV-1
virions, although they provided only correlative evidence.
To probe the issue more directly, we examined the incor-
poration of the cytidine deaminase into virions produced
from cells in which the SRP RNA was downregulated. First
we tried to downregulate 7SL RNA by transfection of small
interfering RNAs targeted against its sequence. However,
these attempts were unsuccessful (data not shown). We
thus turned to an indirect approach. For this, we took
advantage of the fact that downregulation of SRP14 (a
protein constituent of the SRP) by RNA interference leads
to destabilization of the signal recognition particle and
degradation of 7SL RNA (Fig. 1A). It was previously dem-
onstrated that cell growth and protein translocation
defects caused by low levels of functional SRP can be pre-
vented by slowing down nascent chain elongation with
sublethal doses of the protein synthesis inhibitor
cycloheximide, which restore the secretion pathway [37].
We thus produced HIV-derived lentiviral vector particles
in the presence of either APOBEC3G or APOBEC3F from
293T cells expressing SRP14-shRNA or control-shRNA,
using this protocol. Viral production was diminished five
fold when 7SL RNA was downregulated, whether or not a
cytidine deaminase was present (Fig. 1B). Virions pro-
duced from SRP14-shRNA expressing cells contained
about 100-fold less 7SL RNA than control, as measured by
quantitative PCR, normalizing for the viral genomic RNA.
In contrast, levels of other small cellular RNA species pre-
viously shown to be incorporated in HIV virions, such as
Y3 and 5S, were either unchanged or augmented (Fig. 1C).
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APOBEC3G binds 7SL RNAFigure 2
APOBEC3G binds 7SL RNA. A. Predicted secondary structure of Alu and 7SL RNAs. The latter comprises Alu and S 
domains. Bases in red are identical between the Alu used in this study (belonging to Alu Sb1 family) and 7SL. For competition 
experiments (see 2D), the indicated Alu and S stem domains of 7SL RNA were used. B. Indicated HA-tagged cytidine deami-
nases were immunoprecipitated. The resulting material was analyzed by HA-specific western blot (top) and 7SL RNA-specific 
standard (middle) or real-time (bottom) RT-PCR. For APOBEC3G, indicated three doses of plasmid were transfected; for all 
the others, 20 μg of DNA were used. NT, non-transfected. C. Alu RNA competes with 7SL RNA for binding to APOBEC3G. 
Increasing doses of Alu-Sb1 RNA-expressing plasmid were co-transfected with a fixed amount of APOBEC3G DNA. Upper 
panel: APOBEC3G in total cellular homogenates in one representative experiment. PCNA was blotted as a loading control. 
Bottom panel: APOBEC3G was immunoprecipitated and Real Time PCR was used to quantify levels of 7SL RNA in the immu-
noprecipitates. Means and SE from three independent experiments are shown. D. The Alu domain of 7SL RNA competes with 
full-length 7SL RNA for APOBEC3G binding. Alu-Sb1 RNA or 7SL Alu and S stem domains-expressing plasmids were co-trans-
fected with APOBEC3G DNA at a 3:1 ratio. Upper panel: APOBEC3G in total cellular homogenates in one representative 
experiment, PCNA serving as a loading control. Bottom panel: 7SL RNA-specific real time PCR on APOBEC3G-specific immu-
noprecipitates. Means and SD from two independent experiments are shown.
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A packaging-defective APOBEC3G mutantFigure 3
A packaging-defective APOBEC3G mutant. A. Infectivity of Vif-defective HIV-1 particles (expressed in HeLa P4.2 trans-
ducing units normalized for RT activity) produced in the presence of wild-type (A3G) or W127L APOBEC3G by transfection 
of 293T cells. Numbers below columns represent amount of transfected DNA in μg. Representative of five independent exper-
iments. B. Western blot analysis of these particles and of cytoplasmic extracts of the transfected cells, using indicated antibod-
ies, PCNA and capsid serving as loading controls. Although well expressed, APOBEC3GW127L is not packaged into virions. C. 
APOBEC3GW127L is sensitive to HIV-1 Vif-induced degradation. HIV-1 Vif was co-expressed in 293T cells with either wild 
type or W127L HA-tagged APOBEC3G, and extracts were analyzed by HA-specific Western blotting. D. HA-specific indirect 
immunofluorescence analysis of cells expressing HA-tagged versions of wild-type or W127L APOBEC3G. Both proteins local-
ize to the cytoplasm, although the W127L mutant may exhibit a slightly more diffuse distribution.
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APOBEC3G packaging mutant is defective for 7SL and Alu RNAs binding, and it does not inhibit Alu retrotranspositionFigure 4
APOBEC3G packaging mutant is defective for 7SL and Alu RNAs binding, and it does not inhibit Alu retro-
transposition. A. 7SL RNA capture assay as described in figure 1B, transfecting 293T cells with indicated doses of wild-type 
or W127L APOBEC3G-expresssing plasmid. Top: HA-specific Western blot; middle: standard RT-PCR; bottom: real-time RT-
PCR. B. 7SL RNA and endogenous Alu RNAs capture assay as described in figure 1B, transfecting 293T cells with indicated 
doses of wild-type or W127L APOBEC3G-expresssing plasmid. Top: HA-specific Western blot; bottom: real-time RT-PCR. C. 
Alu (pAlu pA+ neoTet) and L1 (pJ M101 L1-RP Δneo) expressing plasmids were transfected in HeLa cells in the presence of the 
indicated cytidine deaminases. Western blot analysis of total cell extracts, with PCNA- and HA-specific antibodies (top). Scor-
ing of G418-resistant colonies (bottom). Means and SE from three representative experiments are shown.
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7SL RNA packaging into HIV-1 virus like particles is dependent on nucleocapsidFigure 5
7SL RNA packaging into HIV-1 virus like particles is dependent on nucleocapsid. A. Schematic representation of 
HIV-1 VLP-forming GAG construct and its derivative, Zwt-p6. B. VLPs were produced by 293T cells transfection with GAG or 
Zwt-p6 constructs in the presence of APOBEC3G, APOBEC3F or mock plasmid as indicated. Intracellular and VLP levels of 
cytidine deaminases and Gag were measured by Western blotting with HA- and capsid-specific antibodies, respectively. C. 7SL 
RNA in viral like particles was quantified by real time PCR. A representative experiment out of two is shown.
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In spite of the marked drop in 7SL RNA, intraviral concen-
trations of APOBEC3G were only very slightly dimin-
ished, and those of APOBEC3F actually increased (Fig.
1D). From these data, we conclude that the SRP scaffold
RNA is not essential for the virion incorporation of these
cytidine deaminases. Of note, virions lacking 7SL RNA
exhibited significantly reduced levels of infectivity (Fig.
1E), suggesting that the selective packaging of 7SLRNA
into HIV-1 virions could be functionally relevant. How-
ever, we cannot exclude non-specific consequences of the
manipulation of the protein production machinery inher-
ent to our approach. Importantly, however, the inhibitory
effect of A3F and A3G was still fully obtained on 7SL RNA-
less particles (Fig. 1E).

To confirm these data, we used a second approach. SRP19
is a key component in the formation of the SRP complex,
demonstrated to be the first SRP protein to bind the 7SL
RNA during assembly of the complex [38], and to induce
conformational changes in this RNA [39]. It was recently
suggested that sequesteration of 7SL RNA by over expres-
sion of SRP19 decreases APOBEC3G [32] as well as
APOBEC3F [40] packaging into HIV1 virions. Since this
result was at odd with our own data obtained by SRP14/
7SL RNA downregulation (Fig. 1), we produced ΔVif HIV1
virions in cells overexpressing SRP19 (at SRP19: HIV plas-
mid ratios of 4:1 or 2:1) in absence or presence of
APOBEC3F or APOBEC3G. Under all the conditions, viral
production was normal (Fig. 6A), contrasting with what
observed in case of SRP14 knockdown (Fig. 1B). While
without impact on cellular levels of 7SL RNA (not illus-
trated), SRP19 over expression lead to a more than 90%
decrease in the virion incorporation of this RNA species
(Fig. 6B). In spite of this effect, and contrary to the results
of recent studies [32,40], there was no corresponding
decrease in the packaging of APOBEC3G or APOBEC3F
into virus particles (Fig. 6C). Moreover, the inhibitory
effect of the cytidine deaminases on the infectivity of ΔVif
HIV1 was at least as pronounced upon SRP19 over expres-
sion (Fig 6A). Overall, these results demonstrate that 7SL
RNA is not responsible for mediating packaging of neither
APOBEC3G nor APOBEC3F.

Discussion
In this work we characterize the binding of APOBEC3G to
7SL RNA, the nucleic acid scaffold of the signal recogni-
tion particle (SRP). The SRP contains, in addition to 7SL
RNA (or SRP RNA), at least six polypeptides, named
according to their apparent molecular mass (SRP9, 14, 19,
54, 68 and 72). This multimolecular complex recognizes
the signal peptide present at the N-terminal end of
secreted and transmembrane proteins, as it emerges from
ribosomes translating the corresponding mRNAs. These
mRNAs are then targeted by the SRP to the endoplasmic
reticulum (ER) membrane, where translation of the new

ER-translocated protein continues. Assembly of the SRP
proceeds through the recognition of the 7SL RNA Alu
domain by the SRP9-SRP14 heterodimer [41], the other
SRP proteins, including the SRP68-SRP72 heterodimer,
binding the 7SL RNA S domain (reviewed in [42]. SRP9
and SRP14 also bind Alu RNAs by interacting with their
so-called Alu domain [28], the common signature of all
Alu-related RNAs. Noteworthy SRP9 and SRP14 and Alu
RNAs have been recently identified as part of an
APOBEC3G-containing high molecular weight complex
[21] Alu emerged during primate evolution by deletion of
the S domain of the 7SL RNA, yielding elements that rap-
idly spread in the primates genome via reverse transcrip-
tion and integration through the action of proteins
encoded by LINE [43]. APOBEC3A, 3B, 3C inhibit LINE-1
retrotransposition [15,17,19,20], and concomitantly
blocks LINE-mediated Alu retrotransposition [17]. Less
clear is the role of APOBEC3F, which has been shown to
inhibit LINE-1 retrotransposition in some [15,19,20], but
not all studies [17,18], and to have only a mild effect on
Alu retrotransposition [18]. Strikingly, APOBEC3G is able
to inhibit LINE-mediated Alu retrotransposition [18,21]
despite being largely inactive on LINE-1 retrotransposi-
tion [15,17-19,21]. Here, we characterize APOBEC3G spe-
cific binding to the Alu-related 7SL RNA, and demonstrate
that this interaction can be competitively inhibited by
overexpressing the Alu-Sb1 RNA or the Alu domain of 7SL
RNA. Furthermore, the study of a collection of
APOBEC3G single amino acid mutants identified a deriv-
ative, carrying a tryptophan to leucine change in the first
zinc-coordinating motif (APOBEC3GW127L), that was sta-
bly expressed, W127L properly localized, and still sensi-
tive to Vif-induced degradation, but defective for 7SL RNA
and Alu RNA binding. This mutant also failed to inhibit
Alu retrotransposition. These data support a model
whereby APOBEC3G blocks Alu retrotransposition by rec-
ognizing the Alu domain common to all Alu-related
RNAs, rather than the trans-acting LINE-encoded Orf2
protein. This is consistent with recent evidence suggesting
that APOBEC3G does not interact with any of the
polypeptides encoded by LINE-1 [18] and, when overex-
pressed, can recruit Alu to a high molecular mass nucleo-
protein complex [21]. The binding of APOBEC3G to the
7SL and Alu RNAs could be direct, or via the SRP9/14 het-
erodimer. In contrast, it is possible that APOBEC3A, 3B,
3C and 3F inhibit Alu retrotransposition via their effect on
LINE since none of these proteins was found here to bind
the Alu-related 7SL RNA.

7SL RNA is the most abundant RNA found in retroviral
particles. For each molecule of viral genomic RNA, there
are 7 molecules of 7SL RNA in an HIV-1 virion, and levels
of 7SL RNA in particles are ten-thousand fold higher than
those of actin messenger RNA, even though the latter is
much more abundant in producer cells [31]. 7SL RNA
Page 10 of 13
(page number not for citation purposes)



Retrovirology 2008, 5:54 http://www.retrovirology.com/content/5/1/54

Page 11 of 13
(page number not for citation purposes)

7SL RNA down regulation by over expression of SRP19 does not inhibit APOBEC3F and 3G encapsidation and antiviral effectFigure 6
7SL RNA down regulation by over expression of SRP19 does not inhibit APOBEC3F and 3G encapsidation and 
antiviral effect. A. Effect of SRP19 overexpression on virus production and infectivity. HIV-1 ΔVif lentiviral vector particles 
were produced by transient transfection of 293T cells, adding indicated amounts of APOBEC3G, 3F, SRP19 and SRP19 Δ6 plas-
mids. Virion production (white columns) and infectivity (gray columns) were assessed by measuring reverse transcriptase activ-
ity in the supernatant and performing a single round transduction assay, respectively. SRP19 overexpression affects neither HIV 
particle release nor the antiviral action of APOBEC3G and 3F. Results are representative of three independent experiments. B. 
SRP19 over expression inhibits 7SL RNA virion incorporation. HIV genomic (white columns) and 7SL RNA (gray columns) lev-
els in virions produced as described in (A) were quantified by real time PCR. Amounts measured in virions produced from cells 
transfected with ΔVif HIV1 alone were given the arbitrary value of 100. SRP19 overexpression drastically reduces 7SL RNA 
levels in virions, in spite of having no measurable effect on the intracellular levels of this RNA species (not illustrated). Repre-
sentative of three independent experiments. C. SRP19 overexpression does not impair APOBEC3F/3G virion incorporation. 
Western blot analysis of viral and cellular extracts after transient transfection of 293T cells as described in (A), using indicated 
antibodies. The normal virion incorporation of A3G and A3F corroborates the absence of effect of SRP19 overexpression on 
the antiviral action of the cytidine deaminases (A).
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thus appears to be actively incorporated into nascent par-
ticles during retroviral assembly. Cumulated evidence
demonstrates that the nucleocapsid (NC) region of HIV-1
Gag mediates the recruitment of cellular RNAs into viri-
ons [35,44]. Here, when we produced VLPs with NC-
deleted versions of HIV-1 Gag, virion levels of 7SL RNA
were decreased about ten fold, and APOBEC3G and
APOBEC3F also failed to be incorporated. These results
confirm previous work indicating that APOBEC3G pack-
aging into HIV virions is an RNA-dependent process
requiring the NC basic linker [8,14,32] and extend this
finding to APOBEC3F, but contradict the suggestion that
7SL RNA packaging is independent of NC [31,45]. We
cannot explain this discrepancy, although we feel that the
highly quantitative nature of our real-time RT-PCR meas-
urements may provide a more rigorous assessment than
the techniques used in these two other studies, namely an
RNase protection assay with a probe recognizing at the
same time the HIV-1 genomic and the 7SL RNA or a non-
quantitative RT-PCR assay. Moreover, although a low
level NC-independent incorporation of RNAs in VLPs can-
not be excluded, the role of NC on packaging seems to be
important for 7SL RNA and not for others Pol-III pro-
moted RNAs such as tRNAs [32].

Finally, in an effort to elucidate the importance of 7SL
RNA for APOBEC3G and 3F incorporation into HIV1 vir-
ions, we first produced virus from cells in which 7SL RNA
was downregulated by RNA interference against SRP14.
These particles lacked 7SL RNA but still incorporated
other small cellular RNA species such as 5S and Y3, and
did not exhibit significant changes in APOBEC3G and
APOBEC3F levels. As the decreased infectivity of these vir-
ions somewhat hampered the interpretation of our data,
we used a second approach by overexpressing SRP19, in
order to sequester 7SL RNA away from assembling retro-
viral particles as recently described [32,40]. The resulting
virions exhibited at least ten-fold decreased levels of 7SL
RNA, yet no change in their APOBEC3G or APOBEC3F
content was detected. Furthermore the infectivity of these
7SL RNA-depleted viruses, whilst normal in the absence of
cytidine deaminases, was inhibited at least as effectively as
that of control virions by either APOBEC3G or
APOBEC3F. We conclude from these data that 7SL RNA is
not an essential mediator of APOBEC3G or 3F recruit-
ment into HIV1 virions. Interestingly, a recent study
revealed that short (≥ 10 nucleotides) G-rich single-
stranded RNA facilitate nucleocapsid-APOBEC3G com-
plex formation in vitro [36]. While this result suggest that
a wide range of cellular and viral RNAs could mediate
packaging of antiviral cytidine deaminases into HIV1 vir-
ions, it would be surprising if a specific RNA species or a
specificity-conferring cofactor were not at play in this
process, to account for the target specificity of the various
antiviral cytidine deaminases.

Conclusion
The binding of APOBEC3G to 7SL RNA through its Alu
domain suggests a mechanism for APOBEC-mediated
inhibition of Alu retrotransposition. However, biochemi-
cal and functional analyses of ΔVif HIV1 particles devoid
of 7SL RNA indicate that this RNA species is not essential
for the virion recruitment of the antiviral cytidine deami-
nase.
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