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Abstract
Background: The ability of Human Immunodeficiency Virus (HIV) to persist in the body has
proven to be a long-standing challenge to virus eradication. Current antiretroviral therapy cannot
selectively destroy infected cells; it only halts active viral replication. With therapeutic cessation or
interruption, viral rebound occurs, and invariably, viral loads return to pre-treatment levels. The
natural reservoirs harboring replication-competent HIV-1 include CD4 T cells and macrophages.
In particular, cells from the macrophage lineage resist HIV-1-mediated killing and support sustained
viral production. To develop a complementary strategy to target persistently infected cells, this
proof-of-concept study explores an HIV-1 Rev-dependent lentiviral vector carrying a bacterial
hemolysin, anthrolysin O (anlO) from Bacillus anthracis, to achieve selective killing of HIV-1- infected
cells.

Results: We demonstrate that in the Rev-dependent lentiviral vector, anlO expression is
exclusively dependent on Rev, a unique HIV-1 protein present only in infected cells. Intracellular
expression and oligomerization of AnlO result in membrane pore formation and cytolysis. We have
further overcome a technical hurdle in producing a Revdependent AnlO lentivirus, through the use
of β-cyclodextrin derivatives to inhibit direct killing of producer cells by AnlO. Using HIV-1-
infected macrophages and T cells as a model, we demonstrate that this Rev-dependent AnlO
lentivirus diminishes HIV-1- positive cells.

Conclusion: The Rev-dependent lentiviral vector has demonstrated its specificity in targeting
persistently infected cells. The choice of anlO as the first suicidal gene tested in this vector is based
on its cytolytic activity in macrophages and T cells. We conclude that Rev-regulated expression of
suicidal genes in HIV-1-positive cells is possible, although future in vivo delivery of this system needs
to address numerous safety issues.
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Background
The success of highly active antiretroviral therapy
(HAART), marked by the drastic reduction of plasma
viremia and restoration of certain immune functions [1-
3], led initially to speculation of disease eradication in 2
to 3 years [4,5]. This original optimism was soon damp-
ened by the realization that persistence of viral reservoirs
would make it extremely difficult, if not impossible, to
eradicate HIV-1 [6-11]. Further identification and charac-
terization of these reservoirs have highlighted the limita-
tions of HAART. It has become evident that with drug
cessation, viral loads return to pre-HAART levels [12,13].
With no alternative approaches in use to specifically target
cells harboring the virus, it would take an estimated 60
years for some of these reservoirs to naturally decay [14].

The primary reservoirs of HIV-1 include resting CD4 T
cells and cells of the macrophage lineage. Both are the nat-
ural targets of HIV-1. It has been shown that in vitro stim-
ulation of resting CD4 T cells from patients receiving
HAART can recover replication-competent virus [6-8]. In
these cells, HIV-1 exists primarily as a postintegrated
latent form with no detectable viral gene expression in the
absence of stimulation. Nevertheless, low-level ongoing
viral replication may occur in the body even with concur-
rent HAART [15-17]. In particular, with the cessation of
therapy, rebounding plasma viruses do not entirely reflect
the genetic pool of the viruses from resting CD4 T cells
[18,19], suggesting the existence of other reservoirs such
as cells from the macrophage lineage [15-17]. In contrast
to the latent reservoir of resting T cells, macrophages are
metabolically active and support sustained, ongoing viral
replication [20]. Macrophages have minimal cytopathol-
ogy in response to HIV infection and can remain viable for
viral production for extended periods of time [21,22]. In
addition, antiretroviral drugs are poorly efficacious
against chronically infected macrophages [22-24]. These
features suggest that macrophages are a major viral reser-
voir in the body [10,11,17,22,25] and an attractive target
for testing alternative therapies aimed at eradicating HIV
reservoirs.

Clinical and experimental attempts to diminish HIV reser-
voirs have taken many forms. For example, infected
patients have been treated with HAART plus cytokines
such as IL-2 and INF-γ [26-29], or the chemical com-
pound valproic acid [30,31], in hopes of purging the
latent T cell reservoir via activation-driven killing, either
by the virus itself or by immune effector mechanisms.
Others have opted for more aggressive approaches to
counter the HIV-infected cells, such as targeting the cells
with hybrid CD4-toxins that can bind to the viral enve-
lope [32]. More recently, an HIV LTR-based lentiviral vec-
tor expressing herpes simplex virus thymidine kinase (TK)
has been used to inhibit HIV replication in a latently

infected T cell line [33]. Nevertheless, a major limitation
in many of these approaches is the lack of high specificity
required to target only HIV-infected cells.

In the pursuit of eliminating viral reservoirs, as a proof of
concept, this study offers a solution utilizing an engi-
neered Rev-dependent lentivirus to achieve high specifi-
city [34]. This lentiviral vector utilizes the Rev responsive
element (RRE), which renders gene expression dependent
on Rev, a viral early protein interacting specifically with
RRE to mediate mRNA nuclear export and translation
[35]. Using the green fluorescent protein (GFP) as a
reporter gene, we have demonstrated that this Rev-
dependent vector, when assembled into a viral particle
and delivered into target cells, is fully dependent on HIV
with no detectable background expression in uninfected
cells [34,36]. However, this attractive lentivirus was una-
ble to deliver highly effective cytotoxic or cytolytic genes
into HIV-1-infected cells since these genes can directly kill
the producer cells, thereby preventing lentiviral particle
production in vitro. In this study, we have used β-cyclodex-
trin derivatives to overcome this technical hurdle and suc-
cessfully generated a Rev-dependent lentivirus carrying a
bacterial cytolytic gene, Anthrolysin O (anlO), and used it
to target HIV-1-infected macrophages.

AnlO is a thiol-activated hemolysin from the bacterium
Bacillus anthracis. The thiol-activated hemolysins are a
family of cytolysins expressed by 15 diverse bacterial spe-
cies. Features common to these hemolysins include inhi-
bition by free cholesterol and the presence of a unique
cysteine residue that renders the hemolysins susceptible
to reverse inactivation by oxidation. The mechanism of
hemolysin action is thought to involve an oligomeriza-
tion of 20 to 80 monomers into ring and arch-like struc-
tures that aggregate within the cell membrane and form
large pores [37,38]. The most compelling evidence for a
direct role of thiol-activated lysins in cell killing came
from studies on Listeriolysin O (LLO) in Listeria monocy-
togenes infection. It has been shown that a PEST-like motif
at the N-terminus of LLO is responsible for its unique abil-
ity to lyse phagosomal but not cytoplasmic membrane
[39]. Upon their release from the phagosome, PEST-con-
taining lysins are rapidly degraded by the cellular protein
degradation pathway, preventing the lysins from attacking
the host cell membrane and allowing the microbe to
establish a productive intracellular infection. In contrast,
mutants that lack the PEST-like sequence enter the host
cytosol but subsequently permeabilize and kill the host
cell [39]. The LLO analog, AnlO, expressed by B. anthracis
is highly homologous to LLO (37% identity). The ability
to escape the phagosome of macrophages is also a charac-
teristic feature of B. anthracis. However, in contrast to the
non-cytolytic nature of L. monocytogenes infection, B.
anthracis infection results in the death of infected macro-
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phages. Consistently, the AnlO sequence contains no
PEST homology, and AnlO kills macrophages likely by
direct lysis of the cell membrane.

The unique features of LLO have been used for the deliv-
ery of gelonin toxin into tumor cells for therapeutic pur-
poses [40]. In in vitro experiments, co-encapsulated LLO
enabled the release of liposomal gelonin into cell cyto-
plasm, resulting in rapid cell killing by gelonin. Conceiv-
ably, in this Rev-dependent lentiviral system, AnlO would
be superior to LLO, because cytosolic AnlO can cause cell
death even in the absence of gelonin. This study is the first
to test the feasibility of using AnlO as a therapeutic tool to
target HIV-1-infected macrophages and T cells.

Results
Construction of the Rev-dependent lentiviral vector 
carrying anthrolysin O from Bacillus anthracis
The Rev-dependent lentiviral vector is structurally based
upon the HIV-1 genome and has been described previ-
ously [34,36] (Fig. 1A). As shown in Fig. 1A, we placed the
GFP or the anlO gene under the control of Rev by intro-
ducing multiple splicing sites and an RRE. This arrange-
ment would regulate these genes as late genes and render
their expression highly specific to Rev. The lentiviral vec-
tor also contains an internal ribosome entry site (IRES)
that allows the expression of two genes simultaneously.
To demonstrate the operation of the IRES, we inserted
both the E. coli lacZ and the GFP gene into a single vector.
This construct, pNL-LacZ-GFP-RRE-SA (Fig. 1A), was then
cotransfected with an HIV-1 helper plasmid, pCMVΔ8.2
(Fig. 1B) [41], which provides both Tat and Rev to medi-
ate the expression of LacZ and GFP in the same cell.
Indeed, in the cotransfected HEK293T cells, co-expression
of LacZ and GFP was detected with the help of pCMVΔ8.2
(Fig. 1C and 1D). The IRES feature was also implemented
in this study to clone anlO in front of GFP (pNL-AnlO-
GFP-RRE-SA). This would permit us to monitor AnlO-
mediated lysis of HIV-positive cells by directly measuring
the reduction of GFP expression; because only 30 mole-
cules of AnlO are required to trigger cytolysis [42], GFP
would not be able to accumulate in cells that also express
AnlO.

Previously, using GFP as a reporter, we demonstrated that
the Rev-dependent lentivirus can mark 80–90% of HIV-1-
infected cells [34]. To further test the specificity of the Rev-
dependent vector to express genes both in primary human
macrophages and in T cells, we produced and tested a Rev-
dependent GFP lentivirus, vNL-GFP-RRE-SA. Viral parti-
cles were generated by cotransfection of HEK293T cells
with pNL-GFP-RRE-SA [34], pCMVΔ8.2, and a construct
expressing the VSV-G envelope (Fig. 2A). Concentrated
particles were then used to infect a human T cell line,
CEM-SS, or human monocyte-derived macrophages,

either directly or following infection with HIV-1. For HIV-
1 infection, CEM-SS were infected with NL4-3.HSA.R+E-
(Vpr+, Env-), a VSV-G pseudotyped HIV strain with the
murine heat stable antigen CD24 (HSA) gene inserted
into the nef region to facilitate surface HSA staining of
HIV-1-positive cells [43]. Macrophages were similarly
infected with an M-tropic virus, HIV-1(AD8) [44]. As
shown in Fig. 2B to 2D, while vNL-GFP-RRE-SA effectively
targeted HIV-1-infected cells, this lentiviral vector did not
generate any GFP-positive cell without HIV-1 coinfection
even with a vector multiplicity of infection as high as 10.

Extracellular and intracellular cytolytic activity of AnlO
To demonstrate that AnlO is capable of killing HIV-1 tar-
get cells such as macrophages, we used a monocyte-like
cell line, THP-1, as well as primary human monocyte-
derived macrophages. Cells were treated with increasing
concentrations of purified AnlO for one hour and cytoly-
sis was measured by lactate dehydrogenase (LDH) release
into the cell culture. As shown in Fig. 3A, we found that in
both cell types the extent of cytolysis correlates with the
toxin concentration. Others have also demonstrated that
highly purified AnlO is extremely cytolytic against human
erythrocytes, with only 30 molecules required for cell lysis
[42]. This highly cytolytic activity of AnlO would be
advantageous in targeting HIV-1-positive cells, since min-
imal gene expression is required. Another benefit of using
AnlO is that it is not an enzyme. Upon its oligomeriza-
tion, AnlO inserts itself into the cell membrane and
remains membrane-bound. Following cell lysis, the AnlO
oligomer is not expected to re-activate, minimizing possi-
ble lysing of healthy bystander cells. Nevertheless, despite
the high specificity provided by the Rev-dependent lenti-
virus, possible residual AnlO present in cell lysates might
expose healthy cells to the toxin. To test whether the AnlO
released from cells could induce damage to healthy
bystanders, we incubated the cell lysates (lysed with 1 μg/
ml AnlO) with healthy macrophages. We did not observe
further cell lysis, thereby indicating minimal cytolytic
effects on uninfected cells (data not shown). It has also
been shown that AnlO is highly sensitive to inhibition by
cholesterol [42] which is abundantly present in human
blood plasma. We then examined whether human plasma
is sufficient to neutralize AnlO. Incremental concentra-
tions of AnlO were pre-incubated with human plasma for
20 minutes on ice before being added to THP-1 cells. We
observed complete inhibition of AnlO cytolytic activity at
all AnlO concentrations tested (Fig. 3B), demonstrating
the ability of blood plasma to neutralize AnlO. The sus-
ceptibility of AnlO to human plasma would add a second
layer of protection from possible unforeseeable bystander
killing.

To further test cytolysis by intracellular delivery of AnlO,
via the Rev-dependent lentiviral vector, cells were cotrans-
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Construction of the Rev-dependent lentiviral vectorsFigure 1
Construction of the Rev-dependent lentiviral vectors. (A) Schematic representation of the Rev-dependent lentiviral constructs. Shown are pNL-GFP-RRE-SA and its 
derivatives. The HIV-1 5' LTR, packaging signal (ψ), splice donors (D1, D4) and acceptors (A5, A7), IRES, RRE, and 3' LTR are indicated. The Rev-dependent constructs would 
transcribe both spliced and unspliced transcripts as HIV-1 does. Only the unspliced or partially spliced transcripts that contain reporters or toxins are Rev-dependent for 
expression. α-HL is the α-hemolysin of Staphylococcus aureus. (B) Schematic representation of the HIV-1 helper construct, pCMVΔR8.2, in which both the viral package signal 
(Δψ)and the envelope gene (Env) were deleted. (C) Simultaneous expression of two genes via IRES in the Rev-dependent construct. Both the E. coli lacZ and the GFP genes were 
cloned into the vector, pNL-lacZ-GFP-RRE-SA, which was cotransfected with pCMVΔ8.2 into HEK293T cells. For comparison, pNL-GFP-RRE-SA was similarly cotransfected. 
Shown is GFP expression measured by flow cytometry at 48 hours post cotransfection with either pNL-GFP-RRE-SA (middle panel, GFP) or pNL-lacZ-GFP-RRE-SA (right panel, 
LacZ-GFP). (D) Cells from pNL-LacZ-GFP-RRE-SA cotransfection were also stained for LacZ and visualized under the microscope for LacZ and GFP. One hundred cells were 
counted, and among them, 20 expressed both LacZ and GFP; 4 expressed only LacZ; and 76 expressed neither LacZ nor GFP.
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Specificity of the Rev-dependent lentiviral vector in HIV-1- positive T cells and macrophagesFigure 2
Specificity of the Rev-dependent lentiviral vector in HIV-1- positive T cells and macrophages. (A) Schematic representation of the three constructs used to gener-
ate the Rev-dependent GFP lentivirus. HEK293T cells were cotransfected with pNL-GFP-RRE-SA, pCMVΔ8.2, and the VSV-G construct. Viruses were harvested, concentrated, 
and used to infect a human T cell line, CEM-SS, as well as primary human macrophages. (B) Specificity of the Rev-dependent lentiviral vector in HIV-1-positive T cells. CEM-SS 
cells were not infected (a) or infected with NL4-3.HSA.R+E-(VSV-G) (d, 500 ng p24 per million cells), a VSV-G pseudotyped HIV-1 strain with the murine heat-stable antigen 
CD24 (HSA) gene inserted into the nef region that allows HIV-1-positive cells to be monitored by surface staining of HSA. At 24 hours, cells were superinfected with lentivirus 
vNL-GFP-RRE-SA (d, m.o.i. 10). For comparison, cells were also singly infected with either vNL-GFP- RRE-SA (b) or NL4-3.HSA.R+E-(VSV-G) (c). At 72 hours, cells were har-
vested, stained with a PE-labeled rat monoclonal antibody against mouse CD24 (HSA), and then analyzed on a flow cytometer for both HSA and GFP expression. Isotype staining 
was not shown. (C) Specificity of the Rev-dependent lentiviral vector in HIV-1-positive macrophages. Human macrophages were derived from peripheral monocytes by culturing 
in 10 ng/ml M-CSF for two weeks. Cells were not infected (e) or infected with HIV- 1(AD8) (h, 380 ng p24 per million). At 24 hours, cells were superinfected with lentivirus 
vNL-GFP-RRE-SA (h, m.o.i. 10). For comparison, cells were also singly infected with either vNL-GFP-RRE-SA (f) or HIV-1(AD8) (g). At 72 hours, cells were harvested and ana-
lyzed on a flow cytometer for GFP expression. (D) Fluorescent microscopy of GFP expression in macrophages infected with HIV-1 and the Rev-dependent GFP lentiviral vector. 
Cells in (C, h) were also examined with fluorescent microscope. The left and right panels show the bright and green fluorescent fields of the same cells. Red arrows indicate an 
HIV-1-infected cell expressing the GFP protein.
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fected with the HIV-1 helper construct, pCMVΔR8.2, and
either pNL-AnlO-GFP-RRE-SA or a control plasmid, pNL-
GFP-RRESA (Fig. 3C). The degree of cell lysis from anlO
expression was measured by comparing GFP expression in
the two parallel cotransfection procedures. As we men-
tioned above, the reduction in GFP positive population

was used as an indicator for AnlO-mediated cytolysis. As
shown in Fig. 3C, at day 2, cells cotransfected with pNL-
AnlO-GFP-RRE-SA generated a much lower percentage
(AnlO-GFP, 2.8%) of GFP positive cells than the control
cells that were cotransfected with pNL-GFP-RRE-SA (GFP,
24.7%). Additionally, the GFP intensity in cells cotrans-
fected with AnlO-GFP was also lower (mean GFP inten-
sity: 352.99 versus 1397.02). At days 3 and 4, we observed
little increase in the number of GFP-positive cells cotrans-
fected with AnlO-GFP (from 2.8% to 3.8%). In contrast,
we detected a significant increase of GFP positive cells in
the control cotransfection (from 24.7% to 38.9%) (Fig.
3C). Similar results were obtained from three independ-
ent co-transfection experiments (data not shown). The
diminished GFP expression in pNL-AnlO-GRP-RRE-SA
cotransfection did not result from differences in cotrans-
fection efficiency or from reduced gene expression medi-
ated by IRES, as demonstrated in three ways. Firstly,
measurements of the amount of plasmid DNA extracted
from cells immediately following cotransfection revealed
no significant difference from that of the control cotrans-
fection (data not shown). Secondly, the addition of β-
cyclodextrin derivatives, which block cell membrane
pores and inhibit AnlO mediated cytolysis [45,46], led to
a significant increase in the GFP positive cells in pNL-
AnlO-GFP-RRE-SA cotransfection (see text below),
whereas the same compound had little effect on cells
cotransfected with the control plasmid (pNL-GFP-RRE-
SA) (data not shown). Thirdly, with the cloning of multi-
ple genes and toxins into the Rev-dependent vector, we
consistently observed that diminished expression of GFP
from IRES always closely correlated with the cytotoxicity
of co-expressed genes. For example, when lacZ was co-
expressed with GFP via IRES, we observed an approxi-
mately equal number of GFP-positive cells regardless of
the presence of the lacZ gene. In contrast, when a highly
cytotoxic gene, diphtheria toxin (DT) (one molecule
would kill a cell) [47], was placed in front of GFP, not a
single GFP-positive cell was detected (data not shown).
Additionally, when the same DT constructs were cotrans-
fected into a diphtheria toxin-resistant cell line, an equal
number of GPF positive cells were observed regardless of
the presence of the DT gene (data not shown). Based on
these observations, we conclude that similar to the DT
cotransfection, the diminished expression of GFP in pNL-
AnlO-GFP-RRE-SA cotransfection correlates with AnlO-
mediated cytolysis.

Production of lentiviral particles carrying the anlO gene
The demonstration of the intracellular cytolytic activity of
AnlO suggested a possible application of AnlO in killing
HIV-1-positive cells. However, its cytolytic activity also
presented an immediate problem in lentiviral production.
Cotransfection with pCMVΔR8.2 is required to produce
lentiviral particles, but the expression of Rev in turn

Extracellular and intracellular cytolytic activity of AnlOFigure 3
Extracellular and intracellular cytolytic activity of AnlO. (A) Extracellular 
cytolytic activity of AnlO. THP-1 cells or primary human macrophages were treated 
with different concentrations of purified AnlO in serum-free medium for one hour at 
37°C. Cytolytic activity of AnlO was assayed by measuring the relative activity of lac-
tate dehydrogenase (LDH) released into the culture following cell lysis. (B) Inhibition 
of AnlO activity by human plasma. AnlO was serially diluted and incubated with 
human plasma (heat inactivated) for 20 minutes on ice and then added to THP-1 cells 
in serumfree medium for one hour at 37°C. Cytolytic activity of AnlO was assayed by 
measuring the relative activity of lactate dehydrogenase (LDH) released into the cul-
ture. In the controls, AnlO was directly added into THP-1 cells without being neu-
tralized by plasma. (C) Intracellular cytolytic activity of AnlO. pNL-GFP-RRE-SA 
(middle panels, GFP) or pNL-AnlO-GFP-RRE-SA (right panels, AnlO-GFP) was co-
transfected with pCMVΔ8.2 into HEK293T cells. At day 2 to 4 after cotransfection, 
cells were analyzed by flow cytometry for GFP expression. PI is propidium iodide. 
Mock transfected cells (left panels, Cell) were used as controls for the GFP and PI 
positive population.
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allows the expression of anlO from the lentiviral con-
struct. This would result in the lysis of HEK293T producer
cells, diminishing viral production. To solve this problem,
we took advantage of a recent report that β-cyclodextrin
derivatives can partially block ion conductance through
pores formed by hemolysins [45,46]. Thus, β-cyclodextrin
derivatives were tested for their ability to block the plasma
membrane pores induced by AnlO. We tested three β-
cyclodextrin derivatives: 6-thioethylamino-β-cyclodextrin
hydrochloride, 6-thiohexylamino-β-cyclodextrin hydro-
chloride, and 6-boc orthinine amide-β-cyclodextrin (6-
BOCD) (Fig. 4A). Cells were cotransfected with
pCMVΔR8.2 and pNL-AnlO-GFP-RRE-SA in the presence
of various concentrations of β-cyclodextrin derivatives
(data not shown). We found that 6-BOCD had the best
effects on inhibition of cytolysis by AnlO, resulting in a
doubling of the GFP-positive cell population (Fig. 4B).

We also tested another hemolysin, the α-hemolysin (α-
HL) of Staphylococcus aureus, in the Rev-dependent lentivi-
ral vector (Fig. 1A). Interestingly, although both AnlO and
α-HL can form transmembrane pores, α-HL was less effec-
tive in mediating intracellular killing in comparison with
AnlO (Fig. 4C). The reason is not clear, but could result
from the lack an intracellular receptor for the oligomeriza-
tion of α-HL which is normally delivered extracellularly
[48,49]. Consistent with a lack of cell lysis by intracellular
α-hemolysin, similar 6-BOCD treatment of cells cotrans-
fected with the α-hemolysin construct (pNL-α-HL-GRP-
RRE-SA) did not increase the number of GFP positive cells
(Fig. 4C).

The impact of 6-BOCD on the infectivity of the resulting
lentivirus was also tested (Fig. 4D). Infectious vNL-GFP-
RRE-SA was generated by cotransfection of pNL-GFP-RRE-
SA, pCMVΔR8.2, and a construct expressing the VSV-G
envelope protein in the presence or absence of different
concentrations of 6-BOCD. The resulting lentiviruses were
used to infect the HIV-1-positive J1.1 cell line [50], using
an equal level of p24. GFP expression in J1.1 cells was
used to measure viral infectivity. The vNL-GFP-RRE-SA
virus produced in the absence of 6-BOCD generated
9.69% GFP-positive cells, whereas the same virus gener-
ated in the presence of 6-BOCD at various doses (from 10
to 100 nM) showed no difference in infectivity (Fig. 4D).
Therefore, a combined method of treating the producer
cells with 6-BOCD and concentrating the virus through
anion exchange columns and size-exclusion columns was
used to produce high titer virus despite the cytotoxicity of
AnlO. We were able to produce liters of the AnlO lentivi-
rus (vNL-AnlO-RRE-SA, VSV-G pseudotyped) and concen-
trate them to several milliliters for the infection of HIV-1-
positive cells.

To further confirm that vNL-AnlO-RRE-SA was indeed a
suicidal vector in HIV-1-positive cells, we used this lenti-
virus to infect the HIV-1-positive J1.1 cells, and then fol-
lowed the persistence of this vector in J1.1 cells. As a
control, we also used vNL-AnlO-RRE-SA to infect the HIV-
1-negative parental Jurkat cells. Following infection, cells
were harvested at different times, and then total cellular
DNA was extracted, and PCR-amplified for the detection
of the AnlO lentiviral vector in these cells. As shown in
Fig. 4E, while vNL-AnlO-RRE-SA persisted for as long as
two weeks in the HIV-1-negative Jurkat cells, it dimin-
ished within 6 days in the infection of the HIV-1-positive
J1.1 cells. These data suggest that cytolysis mediated by
AnlO in HIV-1-positive cells likely led to the self-destruc-
tion of the AnlO vector. Additionally, the results that vNL-
AnlO-RRE-SA was maintained in HIV-1-negative cells for
weeks (Fig. 4E) or even months (data not shown) further
demonstrated that possible HIV-1-independent expres-
sion of AnlO was minimal in uninfected cells.

Specific killing of HIV-1-infected macrophages by the Rev-
dependent lentiviral vector carrying anlO
To determine whether the Rev-dependent lentivirus carry-
ing anlO is effective in targeting HIV-1-infected primary
human macrophages, concentrated vNL-AnlO-RRE-SA
was produced in the presence of 10 nM 6-BOCD by
cotransfection of pNL-AnlO-RRE-SA, pCMVΔR8.2, and an
M-tropic HIV envelope construct, pCAGGSSF162gp160
[51] (Fig. 5A). To demonstrate specific killing, macro-
phages were first infected with NL4-3.HSA.R+E- (Vpr+,
Env-) [43], a strain with the murine heat-stable antigen
CD24 (HSA) gene inserted into the nef region to facilitate
the identification of HIV-1-positive cells by surface CD24
staining. NL4-3.HSA.R+E- was also pseudotyped with the
VSV-G envelope to limit viral replication to a single round
so that analysis could be performed by limiting cytolysis.
The HIV-1-infected cells were further superinfected at 24
hours with the lentivirus vNL-AnlO-RRE-SA. As shown in
Fig. 5B, HIV-1-infected macrophages without vNL-AnlO-
RRE-SA superinfection generated 12.2% HIV-1-positive
cells, while cells superinfected with vNL-AnlO-RRE-SA
showed a reduction in HIV-1-positive cells to 3.8%. Addi-
tionally, HIV-1-infected macrophages treated with a con-
centrated dose of vNL-AnlO-RRE-SA generated only
0.27% of HIV-1-positive cells, demonstrating that the
AnlO lentivirus has the capacity to diminish the HIV-1-
positive cell population. The direct killing of HIV-1-posi-
tive macrophages was also consistent with a decrease in
the p24 level in the culture supernatant (data not shown).

The selective reduction of HIV-1-positive macrophages
did not result from possible non-specific killing of macro-
phages by the AnlO lentiviral vector. When healthy mac-
rophages were identically treated with the concentrated
vNL-AnlO-RRE-SA, or with a control empty vector virus,
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Inhibition of AnlO-mediated cytolysis of producer cells by β-cyclodextrin derivativesFigure 4
Inhibition of AnlO-mediated cytolysis of producer cells by β-cyclodextrin derivatives. (A) Structure of the mem-
brane pore blocker 6-boc orthinine amide-β-cyclodextrin (6-BOCD). (B) Inhibition of AnlO-mediated cytolysis by 6-BOCD. 
HEK293T cells were cotransfected with pCMVΔR8.2 and either pNL-GFP-RRE-SA (labeled as GFP) or pNL-AnlO-GFP-RRE-
SA (labeled as AnlO-GFP) in the absence or presence of various doses of 6-BOCD. Increases in viable GFP cells were meas-
ured by flow cytometry. (C) Lack of effect of 6-BOCD on α-hemolysin. Cells were similarly cotransfected with pCMVΔR8.2 
and pNL-α-HL-GFP-RRE-SA (labeled as α-HL-GFP) in the absence or presence of various doses of 6-BOCD. (D) No inhibition 
of 6-BOCD on viral infectivity. Lentiviral particles, vNL-GFP-RRE-SA, were generated by cotransfection of HEK293T cells with 
pNL-GFP-RRE-SA, pCMVΔR8.2, and pCMV-VSV-G in the absence or presence of different concentrations of 6-BOCD. The 
resulting viral particles were used to infect an HIV-1-positive cell, J1.1 (using an equal p24 level of viruses, 150 ng p24 per mil-
lion cells). The percentage of GFP positive J1.1 cells was used as an indicator for viral infectivity. (E) The Rev-dependent AnlO 
lentiviral vector is suicidal in HIV-1-positive cells. The HIV-1-positive cell, J1.1, was infected with vNL-AnlO-RRE-SA (300 ng 
p24 per million cells). As a control, HIV-1-negative Jurkat cells were identically infected. Following infection, cells were har-
vested at different times and total cellular DNA was extracted and PCR amplified with primers for the anlO gene (AnlO). As a 
control, the DNA was also amplified with primers for the cellular β-actin pseudogene (β-actin) to ensure that the same 
number of cells was used.
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vNL-RRE-SA, we did not observe differences in cytolysis
during a window of two weeks, based on propidium
iodide (PI) staining and flow cytometry analysis (Fig. 5C).
In contrast, in a control, when puromycin (500 ng/ml)

was added into the cell culture to induce non-specific kill-
ing, cytolysis was quickly detected within 2 days, and it
reached 25% of the cells at day 6 (Fig. 5C).

Specific targeting of HIV-1-infected macrophages by the lentiviral vector carrying anlOFigure 5
Specific targeting of HIV-1-infected macrophages by the lentiviral vector carrying anlO. (A) Schematic representa-
tion of the three constructs used to generate the Rev-dependent AnlO lentivirus. HEK293T cells were cotransfected with 
pNL-AnlO-GFP-RRE-SA, pCMVΔ8.2, and the M-tropic envelope construct, pCAGGSSF162gp160, in the presence of 6-BOCD. 
Viruses were harvested, concentrated, and used to infect human macrophages. (B) Specific killing of HIV-1-positive macro-
phages by the Rev-dependent AnlO lentiviral vector. Human macrophages were derived from peripheral monocytes. Cells 
were not infected (Cell) or infected with NL4-3.HSA.R+E-(VSV-G) (m.o.i. 0.1). Following HIV infection, at 24 hours, HIV-1-
infected cells were super-infected with the lentivirus vNL-AnlO-RRE-SA (approximate m.o.i. 0.5 – 1) or with the same lentivi-
rus using a 10-fold higher dosage (*). HIV-1-infected cells were stained with a PE-labeled rat monoclonal antibody against 
mouse CD24 (HSA) and analyzed by flow cytometry at 10 days post infection with HIV-1. (C) Undetectable cytolytic activity of 
the Rev-dependent AnlO lentiviral vector in un-infected macrophages. To determine whether vNL-AnlO-RRE-SA can non-spe-
cifically kill un-infected macrophages, cells were similarly infected with highly concentrated virus (m.o.i. 5 – 10). Following infec-
tion for two weeks, cells were harvested at different times and analyzed by propidium iodide (PI) staining and flow cytometry 
for cytolysis. As controls, cells were also mock infected with medium, or the same dose of an empty vector virus, vNL-RRE-
SA. Cells were also treated with puromycin (500 ng/ml) to induce non-specific cytolysis for the validation of PI staining and flow 
cytometry analysis.
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We further extended our study to test whether the Rev-
dependent AnlO lentivirus is capable of killing infected T
cells and inhibiting viral spreading. A human CD4 T cell
line, CEM-SS, was first infected with a replication-compe-
tent virus, NL4-3.HSA.R+ (Vpr+, Env+) [43]. Following
infection for 24 hours, cells were superinfected with two
different doses of the Rev-dependent AnlO lentivirus,
vNL-AnlO-RRE-SA(VSV-G). Cells were continuously cul-
tured for more than a week, and HIV-1 spread was moni-
tored by surface staining of mouse CD24 expression. As
shown in Fig. 6, HIV-1 replication resulted in an infection
spreading to 90% of T cells within one week. Superinfec-
tion with the low dose of vNL-AnlO-RRE-SA(VSV-G) was
not capable of competing with the virus and inhibiting its
replication. However, at the high dosage (100-fold), vNL-
AnlO-RRE-SA(VSV-G) effectively limited the HIV spread
to below 10% of T cells (Fig. 6). These results demonstrate
that the Rev-dependent AnlO lentivirus is capable of
inhibiting HIV-1 spread by killing of infected cells. Our
data also demonstrate that AnlO is an effective toxin both
in macrophages and in T cells.

Discussion
Despite the success of HAART in inhibiting viral replica-
tion, the maintenance of HIV-1 in both T cells and macro-
phages permits viral persistence. In particular, cells from
the macrophage lineage, with their ability to resist HIV-1-
mediated killing while sustaining a life-long competence
for viral production, remain a significant impediment to
HIV eradication. Simply waiting for these cells to naturally
decay is not an option, given that drug resistance will
likely evolve. Novel complementary approaches to specif-
ically target persistently infected cells are urgently needed.

In this report, as a proof of concept, we established a sys-
tem to specifically target HIV-1-infected macrophages and
T cells by utilizing a Rev-dependent lentiviral vector carry-
ing anlO. Lentiviruses are unique in their capacity to infect
terminally differentiated cells such as macrophages. The
Rev-dependency of this vector further limits anlO expres-
sion to HIV-1-positive cells. The choice of anlO as the pri-
mary therapeutic gene is based on our demonstration that
AnlO exhibits cytolytic activity in macrophages, and that
this cytolytic activity can be inhibited by the presence of
small quantities of cholesterol such as those present in
human plasma. These properties make AnlO an attractive
candidate for the safe use of suicidal viral vectors with
minimal secondary effects on nontarget cells. We demon-
strate that selective killing of HIV-1-infected cells can be
achieved with this lentiviral vector while retaining the
healthy cell population.

Future application of any therapeutic strategy likely
involves simultaneous targeting of multiple viral reser-
voirs, since macrophages are not the only cells harboring

HIV. CD4 T cells are the other major targets of HIV-1.
Although productive HIV-1 replication directly kills CD4
T cells, it has been well-documented that some infected T
cells can survive virus-mediated killing and revert to a rest-
ing memory T cell phenotype [52]. These cells constitute
another major reservoir of HIV-1. Many of the previous
experimental and clinical attempts have focused on purg-
ing this reservoir. A major hurdle to targeting T cells is the
lack of viral activity in the absence of cellular stimulation.
Chemokines such as IL-2 and IFN-γ have been used in
conjunction with HAART to stimulate resting T cells in
hopes of "flushing out" this latent virus [26-29]. Decay of
the viral reservoir following these treatments would
depend on infected cells being killed either by the virus
itself or by some immune effector mechanisms. Neverthe-
less, results from clinical studies so far have not demon-
strated significant success in reducing the pool of infected
T cells [26,28,29]. The Rev-dependent lentivirus also has
its limitations in targeting HIV-1-infected resting T cells,
since it is unlikely that a functional amount of Rev exists
in resting T cells. Nevertheless, there is a possibility that
the Rev-dependent lentivirus could be used in conjunc-
tion with chemokine stimulation to target infected T cells.

Although the Rev-dependent AnlO lentiviral vector has
demonstrated high specificity in cell culture conditions,
future studies in animal models need to address several
critical issues, particularly possible bystander effects and
non-specific expression of anlO in vivo. In cell culture con-
ditions, we have not observed non-specific or bystander
killing by the lentiviral vector. In the absence of HIV-1, the
Rev-dependent anlO vector can be stably maintained in
the healthy cell population for extended periods of time
(Fig. 4E), an indication of lack of anlO gene expression
and cytotoxicity in the absence of Rev. However, since
there are multiple cell types present in the body, the gen-
eral effects of anlO expression are not known. Addition-
ally, possible mobilization of the AnlO vector in the
presence of HIV-1 must also be determined. Although
limited mobilization of some lentiviral vectors to non-tar-
get cells in the body has been viewed as beneficial [53],
mobilization of a vector carrying a toxin would be differ-
ent.

There is also a possibility that the AnlO lentiviral vector
may combine with HIV-1 to generate a replication compe-
tent virus, although the rate could be very low [54,55]. In
retroviruses, recombination is mediated through template
switch during reverse transcription, a process requiring
template fidelity [56]. Because of the template variations,
non-homologous recombination usually generates large
deletions in the viral genome. This is particularly true for
the replication-defective oncogenic retroviruses, which
acquire cellular oncogenes through non-homologous
recombination. However, there are some strains of onco-
Page 10 of 15
(page number not for citation purposes)



Retrovirology 2008, 5:36 http://www.retrovirology.com/content/5/1/36
genic retroviruses, such as those of Rous sarcoma virus,
that are replication-competent [57]. Therefore, non-
homologous recombination could lead to the generation
of a replication-competent HIV-1 with the insertion of
anlO. Nevertheless, even if this occurred, the anlO recom-
binant virus would not be expected to have a replication
advantage over the parental wild-type virus. The cytolytic
activity of AnlO would limit the spread of the recom-
binant virus. This is also consistent with the fact that while
retroviruses can acquire many cellular genes, it is rare for
them to maintain a cellular pro-apoptotic gene. On the
contrary, it is common for the virus to preserve an onco-

gene that can promote cell survival and provide the virus
a replication advantage.

Viral integration-mediated mutagenesis is another issue
that requires future attention, should large quantities of
viral particles be injected. Currently, we are also examin-
ing an unintegrating Rev-dependent lentiviral vector for
targeting HIV-1-infected cells. We previously demon-
strated that the unintegrated HIV-1 DNA can mediate
transient gene expression in T cells [58] and persistent
transcription in human macrophages [59]. Unintegrating
lentiviral vectors have been recently used to transduce

Selective reduction of HIV-1-infected T cells by the lentiviral vector carrying anlOFigure 6
Selective reduction of HIV-1-infected T cells by the lentiviral vector carrying anlO. One million CEM-SS cells were 
first infected with the replication-competent virus NL4-3.HSA.R+ (250 ng p24 per million). Aliquots of the infected cells were 
then superinfected 24 hours later with two different doses of vNL-AnlO-RRE-SA (for the 1 × dosage, m.o.i. 0.5 – 1). The 
extent of spreading HIV infection was measured by mouse CD24 (HSA) staining using a PE-labeled rat monoclonal antibody 
against HSA. Flow cytometry analyses were performed at day 5, 7, and 9 post HIV infection. Shown are the mouse CD24 stain-
ing (HSA) (y-axis) and the Forward Scatter (FSC) (x-axis) of the cells. The second dose of vNL-AnlO-RRE-SA was 100 fold 
(100 ×) higher than the first one (1 ×). Uninfected cells (Cell) were similarly stained and used as a control.
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non-dividing cells, such as ocular or neuronal cells, for
gene therapy [60-62]. These vectors have demonstrated a
surprising efficiency in mediating gene expression from
internally promoted transgenes. Such vectors would be
advantageous for minimizing integrationmediated muta-
genesis. Future practical application of the AnlO lentiviral
vector likely involves multiple injections in combination
with anti-retroviral drugs to halt HIV spread. A more effec-
tive approach to specifically target tissues harboring large
quantities of infected cells may be achieved with localized
injection. Yet another method to enhance target specifi-
city would be to engineer the envelope of the vector to
carry gp120 binding domains so that it can only bind and
enter HIV-1-positive cells. Such a possibility has been
demonstrated previously in the laboratory [63].

Even with many of the limitations described above, a len-
tiviral vector has recently been tested for ex vivo delivery of
an antisense gene against the HIV envelope into CD4 T
cells [64]. While a phase I clinical trial has provided
encouraging data for its safe and feasible application in
the treatment of HIV-1-infected patients [64], a drawback
of the infusion of gene-modified CD4 T cells is the lack of
access to the macrophage reservoir. Persistence of viral
replication in the body is expected even with the adoptive
transfer of HIV-1-resistant T cells. Injection of lentiviral
particles may have the benefit of targeting multiple viral
reservoirs. Furthermore, in vivo delivery of conditionally
replicating lentiviral vector may have additional immuno-
logical benefits as an attenuated vaccine. Our data clearly
demonstrate that Rev-regulated gene expression can be
utilized as a vehicle for the selective delivery of novel ther-
apeutic genes.

Methods
Cloning of the anlO gene from B. anthracis
pNL-GFP-RRE-SA has been previously described [34,36].
pNL-AnlO-GFP-RRE-SA was constructed by inserting the
BamHI-XhoI fragment of pAnlO, a plasmid containing the
anlO gene of the 34F2 (Sterne) strain of B. anthracis
(kindly provided by Dr. Serguei Popov), into the BamHI-
SalI sites of pNL-GFP-RRE-SA. pNL-AnlO-RRE-SA was
constructed by further deletion of the GFP ORF with
restriction digestion. Successful cloning of the anlO gene
was further confirmed by DNA sequence analysis. The
packaging construct, pCMVΔ8.2, was kindly provided by
Dr. Dider Trono. pCAGGSSF162gp160 [51] was obtained
from the NIH AIDS Research & Reference Reagent Pro-
gram, NIAID, NIH.

Virus production
The HIV-1 strains, NL4-3.HSA.R+E-(VSV-G) and the repli-
cation-competent NL4- 3.HSA.R+E+ [43] ("R" represents
the Vpr gene and "E" represents the viral envelope gene)
were provided by the NIH AIDS Research & Reference Rea-

gent Program, NIAID, NIH. In both viruses, the murine
heat-stable antigen CD24 (HSA) gene was inserted into
the nef region that allows HIV-1-positive cells to be mon-
itored by surface staining of HSA. Viruses were produced
by transfection of HEK293T cells (provided by the NIH
AIDS Research & Reference Reagent Program, NIAID,
NIH), using Lipofectamine™ 2000 (Invitrogen, Carlsbad,
CA) as recommended by the manufacturer. HIV-1 titer
was determined using an indicator cell line, Rev-CEM, as
previously described [36]. The Rev-dependent GFP and
AnlO lentiviruses, vNL-GFP-RRE-SA and vNL-AnlO-RRE-
SA, were produced by cotransfection of HEK293T cells
with calcium phosphate (Promega, Madison, WI). Briefly,
two million cells were cultured in a petri dish and cotrans-
fected with 10 μg of either pNL-GFP-RRE-SA or pNL-
AnlO-RRE-SA, 7.5 μg of pCMVΔ8.2, and 2.5 μg of the
envelope constructs. Transfected cells were cultured over-
night, and then the supernatant was removed and
replaced with 10 ml fresh DMEM plus 10% heat-inacti-
vated fetal bovine serum (FBS). For the production of
vNL-AnlO-GFP-RRE-SA, 10 nM 6-boc orthinine amide-β-
cyclodextrin (kindly provided by Dr. Vladimir Karginov)
was also added into the medium to prevent cell lysis by
anlO expression. Viruses were harvested at 48 hours and
then concentrated by multiple rounds of concentration
through anion exchange columns and size-exclusion col-
umns. Concentrated virus was divided into 50 μl aliquots
and stored at -80°C. Viral p24 level was determined using
p24 ELISA assay (Beckman Coulter, Miami, FL). The p24
levels of concentrated viruses were between 2 and 10 μg/
ml. The titer of vNL-GFP-RRE-SA was measured directly
on an HIV-1-positive cell line, J1.1 [50] (provided by the
NIH AIDS Research & Reference Reagent Program, NIAID,
NIH), which was cultured in 50 ng/ml PMA (phorbol
myristate acetate) to stimulate HIV-1 activity. GFP-posi-
tive J1.1 cells were enumerated on FACSCalibur (BD Bio-
sciences, San Jose, CA). The titer of vNL-AnlO-GFP-RRE-
SA cannot be measured directly due to its cytolytic activity,
and thus was estimated based on p24 levels, using the titer
of vNL-GFP-RRE-SA as a reference.

Cells and viral infection
CEM-SS was acquired from the NIH AIDS Research & Ref-
erence Reagent Program, NIAID, NIH. Macrophages were
differentiated from human monocytes from the periph-
eral blood of HIV-1 negative donors. All protocols involv-
ing human subjects were reviewed and approved by the
George Mason University IRB. Briefly, two million periph-
eral blood mononuclear cells were plated into each well
of six plates in serum-free RPMI medium for one hour.
Adherent cells were cultured in RPMI plus 10% FBS and
10 ng/ml macrophage colony-stimulating factor (M-CSF)
(R&D System, Minneapolis, MN) for two weeks with
medium change every two days. Differentiated macro-
phages were infected with NL4-3.HSA.R+E-(VSV-G) at a
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multiplicity of infection of 0.1. Viral replication was mon-
itored by cell surface staining of mouse CD24 antigen and
p24 ELISA (Beckman Coulter, Miami, FL). CEM-SS T cells
were infected with replication competent HIV-1 NL4-
3.HSA.R+E+. Aliquots of infected cells were superinfected
at 24 hours with vNL-AnlO-RRE-SA using different doses
of concentrated virus. HIV-1-positive cell were monitored
by immunostaining and flow cytometry on a FACSCali-
bur (BD Biosciences, San Jose, CA).

Immunofluorescent staining
One half to one million infected cells were removed from
the culture dish and washed once with cold PBS, centri-
fuged for 5 minutes at 400 × g and resuspended in 400 μl
cold staining buffer (PBS plus 1% BSA). Nonspecific bind-
ing was blocked by adding 5 μl Rat IgG (10 mg/ml) (Jack-
son Laboratories Inc., Westgrove, PA). HIV-1-positive cells
were stained with 2 μl of PE-labeled Rat Anti-Mouse
CD24 (Southern Biotech, San Diego, CA). For isotype
control staining, PE-labeled Rat IgG2a (BD Biosciences,
San Jose, CA) was used. Stained cells were incubated on
ice for 30 minutes and then washed with cold PBS plus
1% BSA and resuspended in 500 μl of 1% paraformalde-
hyde for flow cytometry analysis on a FACSCalibur (BD
Biosciences, San Jose, CA).

PCR amplification
Total cellular DNA was purified using a Wizard Genomic
DNA purification kit as recommended by the manufac-
turer (Promega, Madison, WI). For the detection of the
AnlO lentiviral vector in infected cells by PCR, the forward
primer 5'GGTTAGACCAGATCTGAGCCTG 3' and the
reverse primer 5'GTGTTTCTGCCATGGTAAGG 3' were
used. PCR was carried out in 1 × Ambion PCR buffer, 125
μM dNTP, 50 pmol each primer, 1 U SuperTaq Plus
(Ambion Inc. Austin, TX) with 35 cycles at 94°C for 10
seconds, 68°C for 50 seconds. For relative quantification
of the PCR reaction, the cellular β-actin pseudogene was
also amplified with primers from the QuantumRNA β-
actin Internal Standards, using conditions as suggested by
the manufacturer (Ambion Inc. Austin, TX). Briefly, the
PCR was carried out in 1 × Ambion PCR buffer, 125 μM
dNTP, 1 U SuperTaq Plus (Ambion Inc. Austin, TX) with
25 cycles at 94°C for 20 seconds, 68°C for 60 seconds.
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