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Abstract
Human immunodeficiency virus type 1 (HIV-1) efficiently replicates in dividing and non-dividing
cells. However, HIV-1 infection is blocked at an early post-entry step in quiescent CD4+ T cells in
vitro. The molecular basis of this restriction is still poorly understood. Here, we show that in
quiescent cells, incoming HIV-1 sub-viral complexes concentrate and stably reside at the
centrosome for several weeks. Upon cell activation, viral replication resumes leading to viral gene
expression. Thus, HIV-1 can persist in quiescent cells as a stable, centrosome-associated, pre-
integration intermediate.

Background
Lentiviruses, such as the human immunodeficiency virus
type 1 (HIV-1) productively infect non-dividing cells such
as neurons or macrophages (reviewed in [1,2]). However,
HIV-1 infection halts prematurely after viral entry into
quiescent CD4+ T cells in vitro [3,4]. Completion of the
viral replication cycle, including nuclear import, proviral
integration and viral gene expression requires cell activa-
tion and, in particular, transition into the G1b phase of
the cell cycle [5]. Despite initial reports suggesting that
HIV-1 reverse transcription was inhibited in quiescent
cells due to low dNTPs levels [3], it has been demon-
strated later that this step does occur, although at a slower
rate than in activated cells [6]. This early restriction block
results in the decay of incoming virus, mainly due to intra-
cellular degradation [3,7]. However, although the short

strong-stop reverse transcripts are degraded in resting
cells, late HIV-1 reverse transcripts stably accumulate and
persist up to 9–10 days of culture [8,9]. Defining the basis
of the persistence of incoming HIV-1 in resting cells is crit-
ically important to understand the establishment of HIV-
1 reservoirs in vivo and the design of improved viral vec-
tors for gene therapy.

To better characterize HIV-1 pre-integration latency, we
studied the fate of incoming viruses in two types of quies-
cent cells ex vivo. We found that early after entry into qui-
escent cells, HIV-1 sub-viral complexes concentrate near
the centrosome and reside at this subcellular location for
several weeks. Upon stimulation of infected resting cells,
viral infection resumes leading to viral gene expression.
These data demonstrate that incoming HIV-1 persists in
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quiescent cells as a stable, centrosome-associated, pre-
integration intermediate that can be induced to replicate
upon cell activation.

Incoming HIV-1 CA localizes at the centrosome of 
quiescent CD4+ T cells
Several studies demonstrated that HIV-1 replication cycle
is restricted at an early post-entry step in primary human
quiescent CD4+ T cells in vitro (reviewed in [1,2]). To bet-
ter understand the restriction block observed in resting G0
cells in vitro, human primary quiescent CD4+ T cells were
isolated from PBMCs by a two-step process. First,
unwanted cell populations were labeled with biotin-con-
jugated antibodies (ab) to CD8, CD16, CD19, CD36,
CD56, CD123, TCRγδ and glycophorin A, and removed
with anti-biotin magnetic beads on an AutoMacs cell sep-
arator. Next, recovered cells were stained with anti-CD8-
FITC (clone SK1, BD Bioscences), anti-CD25-PE (clone
4E3, Miltenyi Biotec), anti-CD14 (Clone TUK4, Miltenyi
Biotec) and anti-HLA-DR (L243, BD Bioscences) ab and
sorted on a FACSVantage cell sorter. Typically, 98% of the
cells expressed CD4 and 99% were negative for activation
markers (data not shown). Next, purified quiescent CD4+
T cells were infected with the NL4.3 strain of HIV-1 at a
multiplicity of infection (moi) of 1 and the subcellular
localization of incoming sub-viral complexes was studied
by immunofluorescence and confocal microscopy.
Infected and control cells were co-stained with antibodies
against HIV-1 capsid (CA) protein and against γ-tubulin,
a cellular marker for the centrosome [10]. We observed
that, at day 2 and day 9 post-infection, CA antigens co-
localized with γ-tubulin in 58 to 75% of CA-positive cells,
respectively (Fig 1A). These observations demonstrate
that, in the absence of viral replication, incoming HIV-1
sub-viral complexes concentrate at the centrosome of qui-
escent T lymphocytes in vitro. Note that the quiescent phe-
notype of target CD4+ T cells did not significantly change
upon infection, as determined by monitoring the surface
expression of T cell activation markers (CD25 and HLA-
DR) of infected and control cells by flow cytometry (Fig
1B).

To rule out the possibility that the pericentrosomal distri-
bution of incoming CA at later time points was the result
of a spreading infection which might occur in few cells,
single-round viral vectors pseudotyped with the glycopro-
tein G of vesicular stomatitis virus (VSVg) were used for
further studies. These vectors maintain the biological
properties that govern early events in the replication cycle
of their parental counterpart, but are unable to achieve
late stages of the viral replication. Additionally, although
VSVg-pseudotyped viral particles enter by fusion out of
acidified endosomes, instead of receptor-mediated fusion
at the plasma membrane, the post-fusion events are anal-
ogous to that of wild-type HIV-1. Therefore, human pri-

mary quiescent CD4+ T cells were transduced with a VSVg-
pseudotyped HIV-1-based lentivector carrying the GFP
transgene and the localization of incoming sub-viral com-
plexes was analyzed. As in the case of the wild-type virus,
incoming HIV-1 CA proteins from lentivectors were local-
ized in the pericentriolar area from day 2 to day 9 post-
transduction (Fig. 1C and data not shown) in 60 to 82%
of CA-positive cells, respectively. These results indicate
that the route of entry and the viral accessory proteins are
not implicated in early HIV-1 intracellular trafficking. As
expected, transduced quiescent cells did not support GFP
expression and their activation status was not significantly
altered when compared to that of control cells (data not
shown). Altogether, these results indicate that in quies-
cent CD4+ T cells, incoming HIV-1 sub-viral complexes
concentrate in close proximity to the centrosome.

HIV-1 CA protein and the viral DNA genome stably co-
localize at the centrosome
We then asked whether the pericentrosomal localization
of incoming HIV-1 was observed also in other resting cell
systems. To this aim, cycling or resting human primary
fibroblast MRC5 cells were transduced with a VSVg-pseu-
dotyped HIV-1-based lentivector carrying the GFP trans-
gene. Analysis of GFP expression at 48, 72 and 96 h post-
transduction by flow cytometry showed that only cycling,
but not resting, MRC5 cells supported HIV-1 viral gene
expression (Fig 2A).

We next analyzed the subcellular distribution of incoming
sub-viral complexes in resting MRC5 cells. Immunostain-
ing of transduced resting MRC5 revealed that incoming
HIV-1 CA targeted the centrosome as early as 4 hours post-
transduction and persisted at this site up to 28 days post-
transduction (Fig 2B). By staining these cells with an anti-
body against HIV-1 matrix (MA) protein, we visualized
dots or patches on the cell surface, which disappeared
within 24 hours (data not shown). Persistence of HIV-1
CA and loss of MA antigens in quiescent MRC5 cells were
confirmed by Western blotting on total cell lysates. As
shown in figure 2C, HIV-1 CA was still detectable at day
28 post-transduction, while MA was not detected in the
extracts from transduced cells as soon as 24 h following
transduction, confirming our immunofluorescence stud-
ies (Fig 2C). Indeed, upon entry, most of MA, which
directly binds to the viral envelope, remains associated
with the inner surface of the cellular membrane and is
subsequently degraded [11]. Partial disassembly and/or
degradation of incoming HIV-1 cores in quiescent cells
might account for the reduction of CA signal intensity
over time (Fig 2C). Consistently, we never visualized
structured and assembled incoming HIV-1 cores in quies-
cent cells by electron microscopy (data not shown). Once
the inside the cytoplasm, a structural reorganization and/
or partial disassembly of the capsid shell might occur,
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Sub-cellular localization of incoming HIV-1 in quiescent CD4+ T cellsFigure 1
Sub-cellular localization of incoming HIV-1 in quiescent CD4+ T cells. A. Incoming HIV-1 CA localizes at the centro-
some in infected human primary quiescent CD4+ T cells. Quiescent CD4+ T cells (0.5 × 106 cells) were spinoculated with the 
NL4.3 strain of HIV-1 (moi = 1) as described [34]. The NL4.3 viral stock was obtained from 24-h harvests of supernatant from 
293T cells transduced with a plasmid encoding the full-length viral genome and was titrated by limiting dilution MAGI assay 
[35]. At the indicated time points, infected and control cells were fixed in 4% PFA (15 min, 4°C), permeabilized with ice-cold 
methanol (5 min, 4°C) and stained with antibodies against HIV-1 CA protein (A25, Hybridolabs, Pasteur) and γ-tubulin 
(Abcam), a marker for the centrosome. Nuclei were stained with DAPI and images were acquired on a laser-scanning confocal 
microscope (LSM510 Meta; Carl Zeiss) equipped with an Axiovert 200 M inverted microscope, using a Plan Apo 63/1.4-N oil 
immersion objective. Co-localization between CA and γ-tubulin staining was observed in 58% to 75% of CA-positive cells. B) 
HIV-1 infection did not significantly alter the activation status of quiescent CD4+ T cells. Surface expression of T cell activation 
markers (CD25 and HLA-DR) was monitored by flow cytometry. C) Pericentriolar distribution of incoming HIV-1 CA in qui-
escent CD4+ T cells transduced with a VSVg-pseudotyped HIV-1 based lentivector carrying the GFP transgene. The lentivec-
tor stock was produced by co-transfected with an HIV-derived packaging construct, the VSVg-expressor vector and the 
plasmid vector (psPAX2, pMD2.G and pWPI, respectively, a gift from D. Trono), as described [35]. The titre of the lentivector 
stocks was determined by measuring the percentage of GFP positive cells 48 h following transduction of 293T cells by flow 
cytometry. Transduced and control quiescent CD4+ T cells were immunostained and visualized as described above. Co-locali-
zation between CA and γ-tubulin staining was observed in 60% to 82% of CA-positive cells.
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regardless of the activation status of the target cell
(reviewed in [12]). These observations demonstrate that
incoming HIV-1 virions undergo a certain degree of
uncoating soon after entry into quiescent cells.

Centrosomal HIV-1 sub-viral complexes are stable and 
inducible
Since HIV-1 CA has been found to be still associated with
entering virions at the onset of reverse transcription [13],
we wished to establish whether centrosomal-associated
sub-viral complexes detected at the centrosome might rep-
resent reverse transcription complexes (RTCs). For that
purpose, we investigated the localization of the reverse-
transcribed viral DNA in transduced resting cells using flu-
orescent in situ hybridization (FISH). HIV-1 reverse tran-
scription has been reported to be completed within 3 days

in quiescent cells in vitro [8,9]. Thus, resting MRC5 cells
were transduced with the VSVg-pseudotyped NL4.3 virus
and FISH was performed 4 days later, using the full-length
proviral genome as a probe. Remarkably, we found that
the reverse-transcribed viral genome localized at the cen-
trosome in resting cells (Fig. 3A) and that the frequency of
co-localization vDNA/γ-tubulin was similar to that of CA/
γ-tubulin. Since both incoming CA antigens and the viral
DNA genome reside at the MTOC of resting primary cells,
we concluded that they likely represent RTCs.

To assess whether sub-viral complexes concentrated at the
centrosome constitute stable pre-integration intermedi-
ates, which might be subsequently reactivated for produc-
tive infection, quiescent MRC5 cells were first transduced
with a VSVg-pseudotyped HIV-1 vector and later stimu-

Incoming HIV-1 persistently reside at the centrosome of resting cellsFigure 2
Incoming HIV-1 persistently reside at the centrosome of resting cells. A. Cycling but not resting MRC5 cells support 
viral gene expression. To obtain a resting cell population, MRC5 were grown to confluence, growth-arrested by serum starva-
tion and cultured in the presence of 10-6 M dexamethasone. MRC5 cells were transduced with a VSVg-pseudotyped lentiviral 
vector carrying the GFP reporter gene and GFP-expression was measured by flow cytometry at 48, 72 and 96 h post-transduc-
tion. B. Incoming HIV-1 CA localizes at the centrosome in transduced MRC5 cells. Cells were immunostained and analyzed by 
confocal microscopy as described above. C. HIV-1 CA but not MA protein can be detected in the total cell extracts of trans-
duced resting MRC5 up to 28 days post-transduction. Total cell extracts were obtained by boiling both transduced and control 
cells, pre-treated with pronase (10 min, 4°C), in SDS-PAGE sample buffer. Proteins were resolved by SDS-PAGE and detected 
by Western blotting with mouse anti-MA or mouse anti-CA ab.
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lated to divide by splitting and serum addition. At differ-
ent time points post-transduction, contaminant cycling
cells supporting direct GFP expression were eliminated by
cell sorting and the purity of the resulting cell population
was typically 98% (Fig 3B). The percentage of cells
expressing GFP was then monitored by flow cytometry 48,
72 and 96h following reactivation. As shown in figure 3B,
GFP expression could be detected following reactivation
of transduced cells up to day 21 post-transduction, dem-
onstrating that part of viral DNA present at the MTOC

reaches the nucleus to integrate into host chromosomes.
These results demonstrated that the sub-viral complexes,
which persist at the centrosome, in cells maintained qui-
escent for an extended period of time, are stable, func-
tional and inducible upon cell stimulation.

Discussion
Resting G0 cultures in vitro, such as naïve T lymphocytes
or monocytes isolated from peripheral blood, cannot be
productively infected by retroviruses including HIV-1

Centrosome-associated HIV-1 pre-integration intermediate is inducible upon cell activationFigure 3
Centrosome-associated HIV-1 pre-integration intermediate is inducible upon cell activation. A. HIV-1 reverse-
transcribed viral cDNA localizes at the centrosome of resting MRC5 cells transduced with a DNAse-treated VSVg-pseudo-
typed NL4.3 virus, which was made using the NL4.3Luc plasmid, in which the env gene was replaced by the luciferase trans-
gene, and a VSVg-expressor vector. Fluorescence in situ hybridization (FISH) was performed 4 days after transduction using the 
full-length proviral genome as a probe [32]. After FISH, immunostaining with anti-γ-tubulin ab was performed as described 
above. B. Viral gene expression resumes after reactivation of quiescent cells. Transduced resting MRC5 cells were sorted to 
recover only GFP-negative cells which were then stimulated to divide by splitting and serum addition. The percentage of GFP-
expressing cells was determined at 48, 72 and 96 h after sorting and reactivation by flow cytometry.
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[6,8,14-17]. The situation is clearly different in vivo, since
the microenvironment allows completion of HIV-1 life
cycle in quiescent cells even in the absence of cell activa-
tion [18-20]. A number of cellular proteins have been sug-
gested to inhibit HIV-1 replication in resting cells in vitro,
such as Murr1 [21] or APOBEC3G [16], the latter inhibit-
ing HIV-1 infection at the level of reverse transcription
[16]. However, since HIV-1 reverse transcription is com-
pleted in G0 cells and only exhibits a delayed kinetics
[6,8], additional blocks should occur during the early
stages of the virus life cycle. It has been hypothesized that
viral uncoating might be the main rate-limiting step for
infection of quiescent CD4+ T cells [17] and indeed cellu-
lar extracts from activated, but not resting, CD4+ T cells
promote uncoating of HIV-1 cores [17,22]. To deepen our
understanding of the molecular mechanisms underlying
this restriction, we have studied the subcellular localiza-
tion of incoming HIV-1 and its stability in quiescent pri-
mary cells. We demonstrate that the centrosome is the
cellular site where incoming HIV-1 concentrates and sta-
bly persists awaiting further cell stimulation for comple-
tion of the viral life cycle. Similarly, we recently showed
that incoming foamy viruses (FV) also concentrate at the
centrosome in resting primary cells. In that case, viral
uncoating is totally impaired and incoming FV cores
remain structured at the MTOC [23]. Although we never
visualized incoming structured HIV-1 cores in quiescent
cells by electron microscopy, we do not exclude that a
block in virus uncoating occurs in these cells in vitro.
Indeed, it is conceivable that viral uncoating proceeds
through sequential steps. A first rearrangement of the CA
shell might occur upon entry in the cytoplasm and might
be important for the initiation of the reverse transcription
[24]. Nevertheless, a certain degree of core integrity seems
to be required to concentrate and protect its internal com-
ponents. A further maturation step, represented by the
total loss of CA might be necessary for the RTC-to-PIC
transition and thus for the delivery of the viral genome
into the nucleus. This crucial step, which has been
reported to take place near the nuclear pores [25], might
be impaired in quiescent cells.

Following entry, incoming HIV-1 highjack the cytoskele-
ton and in particular the microtubule-network to reach
the centrosome [13]. Similarly, foamy viruses [26,23], as
well as many other nuclear-replicating viruses, reach this
organelle on their way to the nucleus (reviewed in
[27,28]). The centrosome is a dynamic organelle involved
in many aspects of cell function and growth [29,30]. It
represents the major microtubule-organizing centre and
provides a site for concerted regulation of cell cycle pro-
gression [31,32]. Additionally, the centrosome receives
and integrates signals from outside the cell, thus facilitat-
ing their conversion into cellular functions. Persistence of
incoming HIV-1 in the vicinity of this organelle in resting

cells could be a strategy evolved to rapidly respond to acti-
vating stimuli. Interestingly, centrosome duplication,
which is tightly linked to the cell cycle, occurs only once
during the G1 to S-phase transition [33], a stage of the cell
cycle required for completion of the early steps of HIV-1
infection [5]. Although the cellular signals triggering the
completion of HIV-1 life cycle remain to be clarified, an
intriguing hypothesis is that they might be linked to the
control of the centrosome cycle.
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