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Abstract
Background: A primary concern when targeting HIV-1 RNA by means of antisense related
technologies is the accessibility of the targets. Using a library selection approach to define the most
accessible sites for 20-mer oligonucleotides annealing within the highly structured 5'-UTR of the
HIV-1 genome we have shown that there are at least four optimal targets available.

Results: The biological effect of antisense DNA and LNA oligonucleotides, DNA- and LNAzymes
targeted to the four most accessible sites was tested for their abilities to block reverse
transcription and dimerization of the HIV-1 RNA template in vitro, and to suppress HIV-1
production in cell culture. The neutralization of HIV-1 expression declined in the following order:
antisense LNA > LNAzymes > DNAzymes and antisense DNA. The LNA modifications strongly
enhanced the in vivo inhibitory activity of all the antisense constructs and some of the DNAzymes.
Notably, two of the LNA modified antisense oligonucleotides inhibited HIV-1 production in cell
culture very efficiently at concentration as low as 4 nM.

Conclusion: LNAs targeted to experimentally selected binding sites can function as very potent
inhibitors of HIV-1 expression in cell culture and may potentially be developed as antiviral drug in
patients.

Background
Targeting specific mRNAs by annealing complementary
oligonucleotides is a basic principle of several different
gene silencing technologies. In the simplest form, anti-
sense single stranded oligonucleotides (or derivatives
hereof) are introduced into the cell to block gene expres-
sion by interfering with translation of the mRNA or by

degrading the RNA in a DNA/RNA heteroduplex via an
RNaseH dependent pathway. This antisense approach has
been used for more than two decades to study gene func-
tion in the laboratory and in attempts to treat animal and
human diseases [1-4]. However, the antisense technology
has never fulfilled the initially anticipated break-through
as a therapeutic tool. Poor intracellular delivery, in vivo
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instability of the single stranded oligonucleotide, chemi-
cal toxicity and lack of mRNA target accessibility are pos-
sibly obstacles for a lacking antisense effect. The latter
problem is mainly due to the formation of stable RNA
structures and assembly of the mRNA into nucleoprotein
complexes rendering the target site inaccessible to base
pairing [5,6]. Furthermore, it has been estimated that only
2–5% of randomly chosen antisense oligonucleotides
have any effect on gene expression [5,7] and computer
generated structure models are generally not sufficient for
rational prediction of effective targets.

In a related approach, RNA- or DNA-based endonucleases
(ribozymes and DNAzymes) are used to cleave comple-
mentary targets in mRNA. The most commonly used
ribozyme, the hammerhead, has been used extensively in
vitro and with more limited success in vivo (reviewed in
[8,9]). One of the main reasons is probably the notorious
instability of unmodified RNA in vivo. DNAzymes do not
appear to exist in nature, but have been selected in vitro
from random DNA oligo pools. One of the most active
DNAzymes, named 10–23, bears some structural resem-
blance to the hammerhead ribozyme [10-12] but, in spite
of the higher in vivo stability of single stranded DNA com-
pared to RNA, it also demonstrated only variable success
in vivo [13]. In the reported examples of targeting nucleic
acid enzymes to HIV-1 RNA, either relatively large concen-
trations and combination of catalytic molecules are
required or an in vivo expression system is used [14-17].
Common to both the antisense and the enzymatic
approach are that the knock down efficacy is restricted by
the accessibility of the targets in the mRNA in vivo.

More recently, RNA interfering (RNAi) has been devel-
oped as a highly potent approach to knock down gene
expression in mammalian cells with an unprecedented
efficiency and specificity (Reviewed in [3]). The active
molecule is a small interfering RNA (siRNA), a 20–23
nucleotides RNA duplex composed of two complemen-
tary strands, one of which is complementary to the mRNA
target. Although it was initially suggested that the siRNA
approach is less sensitive to RNA structure in the target, it
was recently demonstrated that the efficiency of RNAi-
mediated "knock down" can also be influenced by the
RNA structure in HIV-1 [18-21].

To address the general problem of accessibility of mRNA
we have previously developed a SELEX approach that
selects for the most effectively binders from a 20-mer
complete antisense library through repeated binding
cycles [22]. The selection protocol was applied specifically
to the 355-nucleotides 5'-terminal fragment of the HIV-1
RNA genome because: a) it contains several functionally
important elements including the trans-activation
response element (TAR), the 5' polyadenylation signal

(Poly(A)), the primer binding site (PBS), the dimer initia-
tion site (DIS), the major splice donor (SD) and the pack-
aging signal (PSI) that precedes the Gag open reading
frame (Fig. 1A; reviewed in [23,24]); b) most of the region
is positioned upstream of the major splice donor site and
is therefore present in all viral mRNA species; c) this
region is scanned by the ribosome prior to cap-dependent
protein synthesis; d) it is the most conserved region of the
HIV-1 genome, thus increasing the chance that all HIV-1
strains are inhibited and reducing the likelihood of escape
mutants; and e) we have previously tested several siRNA
targeted to this region and in all cases non or very low effi-
ciencies were observed (unpublished data). This study
revealed four sites that are particularly accessible to anti-
sense binding and these targets are here subjected to fur-
ther analysis.

Chemical modifications are often introduced at the ribose
and/or phosphate group of the backbone to increase the
stability of oligonucleotides for in vivo applications. In
this report the antisense effect of DNA and DNAzyme was
compared to oligos that are modified with locked nucleic
acid (LNA) residues. This modification consist of a meth-
ylene bridge that connects the 2'oxygen with the 4'carbon
of the furanose ring, This modification locks the structure
into the C3'-endo configuration, which is ideal for recog-
nition of RNA motifs, renders the nucleic acid inaccessible
the nucleases and increases the melting temperature with
the RNA target strands by 2–7°C per LNA residue [25,26].
To enable efficient RNaseH cleavage of the target mRNA
by the antisense oligo, it is important to avoid LNA resi-
dues in a stretch of at least 6 nucleotides, a design gener-
ally referred to as a gap-mer [27-29]. Moreover, in the
design of DNAzymes with LNA modifications it has been
reported that 2–3 modifications in each arm gives the
optimal binding affinity versus binding kinetic [30,31].
Here we tested DNA and LNA (gap-mer) antisense oligos,
DNA- and LNAzymes directed towards four highly acces-
sible targets in the HIV-1 leader. We found that the LNA
antisense is the most potent inhibitor, neutralizing viral
expression efficiently when applied in nanomolar concen-
trations. The LNAzymes had a moderate effect, whereas
unmodified DNA/DNAzymes have no or very little effect.

Results
Construct design and LNA modification of targeting 
oligonucleotides
Four target sites were selected in the HIV-1 5'-UTR as
potential target based on previous accessibility selection
studies [22]: 1) a region immediately downstream from
the primer binding site (PBSD, 203–222), 2) a region cov-
ering the DIS (DIS, 255–274), 3) a region encompassing
the major splice donor site (SD, 278–297) and 4) a region
covering the gag initiation site (AUG, 326–345; Fig. 1).
Four different types of oligonucleotides with potential
Page 2 of 13
(page number not for citation purposes)



Retrovirology 2007, 4:29 http://www.retrovirology.com/content/4/1/29

Page 3 of 13
(page number not for citation purposes)

Oligonucleotides and their respective targets in the 5' end of the HIV-1 RNA genomeFigure 1
Oligonucleotides and their respective targets in the 5' end of the HIV-1 RNA genome. (A) Secondary structural model of the 
HIV-1 leader RNA. The stem-loops are named according to assigned function (see text for details) and the sequence is num-
bered from the 5' end of the RNA transcript. (B) The targets for the various oligonucleotide constructs. The annealing sites for 
the oligonucleotides are indicated by a solid line and the cleavage sites of the DNA/LNAzymes are marked by arrows. (C) 
Sequences of the antisense oligonucleotides and DNAzymes containing the 10–23 catalytic motif [10] named according to their 
target sites shown in panel B. The selected target sequences for the antisense constructs include sequences downstream of the 
primer binding site (PBSD), the dimerization initiation site (DIS), the splice donor site (SD) and the Gag initiation codon 
(AUG). The nucleotides that are substituted with LNA residues in the LNA antisense gap-mers and LNAzymes constructs are 
circled. The target sequences of the "10–23" DNAzymes are indicated with grey letters.
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interfering properties were synthesized: DNA antisense,
LNA antisense, "10–23" DNAzyme and "10–23"
LNAzyme. All DNA- and LNA-antisense constructs con-
tained 20 nucleotides that were complementary to the
selected targets in the HIV-1 RNA, whereas the DNA- and
LNAzymes contained two arms of 8–9 nucleotides com-
plementary to the target (Fig. 1B and 1C). The LNA anti-
sense oligonucleotides were designed as gap-mers with 5
LNA residues flanking a 10-mer phosphorothioate modi-
fied DNA body to enable RNase H cleavage. The incorpo-
ration of the LNA monomers was calculated to raise the
Tm values by approximately 20 degrees.

Blocking reverse transcription with LNA oligonucleotides
Reverse transcription of the RNA genome into DNA is an
essential step in the viral replication cycle, and antisense
oligonucleotides may inhibit this step. We therefore tested
the ability of the four LNA antisense oligonucleotides to
inhibit reverse transcription in vitro (Fig. 2). The PBSD,
SD, and AUG specific LNAs blocked reverse transcription
from a downstream primer almost completely and pre-
cisely at the expected site (94–99%; Fig. 2, lanes 1, 2 and
4), whereas the LNADIS only showed a partial effect (Fig. 2,
lane 3). Interestingly, the latter effect is not caused by
insufficient binding of the LNA to DIS, since this LNA
inhibits RNA dimerization almost completely (Fig. 3A).
The extra band observed at a position corresponding to
the PSI hairpin when adding LNADIS can be explained by
partial sequence complementarity between the LNA and
this region (Fig. 2 lane 3, marked by asterisk). When using
the DNA versions of the same oligonucleotides only 60–
70% inhibition of reverse transcription was observed for
any of the selected sites ([22]; data not shown), clearly
demonstrating the superior stability of RNA-LNA
duplexes.

Of all the LNAs tested only LNADIS blocked HIV-1 RNA
dimerization and with an efficacy of 97% if added to the
dimerization reaction prior to incubation (Fig. 3A). Simi-
lar levels of inhibition were observed for DNA and RNA
oligos (Fig. 3B). However, if the antisense oligonucle-
otides were added after pre-dimerization of the HIV-1
RNA, the LNA modified antisense oligonucleotide was
significantly more potent then RNA and DNA in dissoci-
ating the dimer (Fig. 3C).

Enzymatic cleavage of the HIV-1 leader sequence with 
DNAzymes and modified LNAzymes optimized for binding
We wanted to investigate whether the selected regions in
the HIV-1 leader were accessible to enzymatic cleavage by
DNAzymes. Nucleotide enzymes targeting the selected
DIS and PBS sites were synthesized both as DNA (DNAzy-
meDIS and DNAzymePBSD, respectively; Fig. 1) and with
two LNA modifications in each arm (LNAzymeDIS and
LNAzymePBSD, respectively). The cleavage efficiency was

assessed by incubating 5'-end radioactively labeled HIV-1
leader RNA with the DNAzymes or LNAzymes for differ-
ent time points at 10 mM Mg2+ at an enzyme to substrate
ratio of 20:1, 1:1 to 1:20. The HIV RNA cleavage products
were separated by denaturing gel electrophoresis and
quantified (Fig. 4). The DNAzymeDIS and DNAzymePBSD
and their LNA modified counterpart oligonucleotides
cleaved the HIV-1 RNA at the expected position, produc-
ing 5'-end labelled fragments of approximately 261 and
205 nucleotides, respectively.

When incubating the HIV-1 RNA with an excess of
enzyme (20:1) both DNAzymes showed significant levels
of cleavage after 24 hours (Fig. 4A and 4C). At lower stoi-
chiometric amounts (1:1 and 1:20) only DNAzymePBSD
showed moderate cleavage in the PBS loop after 24 hours
(Fig. 4C). Introduction of LNA in the arms of DNAzyme-

DIS strongly induced the efficacy to nearly 100% cleavage
after 24 hours (20:1 excess) and to a moderate cleavage
level at lower enzyme concentration (1:1 and 1:20) (Fig.
4B). In contrast, LNA modifications did not improve the
activity of DNAzymePBSD (Fig. 4D). A small decline in its
inhibitory activity was measured, indicating that the
advantage of introducing LNA residues into a DNAzyme is
not universal but rather depends on the nature of the tar-
get.

Blocking expression of HIV-1 in vivo
To evaluate the capacity of the antisense LNA to inhibit
cellular HIV-1 expression the expression of the viral Gag
derived CA-p24 protein was measured in the presence of
20 nM of the four different antisense and two mock LNAs
(Fig. 5A). HEK 293-T cells were co-transfected with HIV-1
LAI genomic DNA plasmid, renilla luciferase plasmid and
the LNAs. The CA-p24 production was strongly affected
by all the HIV-1 specific LNAs, particularly by LNAPBSD
and LNAAUG, which reduced protein production by 22-
and 12-fold, respectively (Fig. 5A). In contrast, the inter-
nal luciferase control was only marginally affected (+/- 2-
fold) by some of the LNAs (data no shown). The effect of
the most potent LNAPBSD construct was investigated fur-
ther at lower concentrations (Fig. 5B). Notably, CA-p24
expression was severely affected at concentrations as low
as 4 nM (15-fold inhibition) and a complete block was
apparent at 20 nM LNAPBS (Fig. 5B). This block was spe-
cific for HIV protein expression since the renilla luciferase
signal was not affected at these concentrations of LNA
(data no shown).

To directly compare the inhibitory potential of the differ-
ent strategies, different concentrations of oligo constructs
(asDNA, asLNA, DNAzymes and LNAzymes) targeted to
the PBS and DIS targets were tested for their ability to
inhibit CA-p24 production in HIV-1 transfected cells (Fig.
5C). LNAPBS and LNADIS were clearly the most potent
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inhibitors, leading to almost complete knock down
(below detection) at 20–100 nM and to a 3- and 18-fold
inhibition, respectively, at 4 nM. In contrast, the DNA
antisense oligos showed little effect. Notably, both the
DNA- and LNAzymes led to a specific knock down. The
LNAzymes were more effective than DNAzymes, giving a
100-fold knockdown at 100 nM (Fig. 5C). However, the
LNAzymes also exhibited significant cell toxicity when
applied at 100 nM concentration (data no shown).

Discussion
A major concern in the design of therapeutic antisense
strategies against highly structured viral RNA genomes is
the inaccessibility of the target sequence. To overcome this
barrier we have chosen 4 targets in the HIV-1 genome that
were previously selected as optimal annealing sites in
vitro, and we tested them as targets for DNA and LNA anti-
sense oligonucleotides, and DNA- and LNA-zymes. The
antisense oligonucleotides were tested in vitro for their
ability to interfere with reverse transcription and RNA
dimerization and all inhibitors were assayed in vivo for
their capacity to inhibit HIV-1 production in a cell culture
assay.

Reverse transcription of viral RNA into double stranded
DNA is an essential step in the retroviral replication cycle.
A comparison of the antisense oligos for their ability to
block this reaction revealed that all LNAs, except for
LNADIS, caused a near complete block in reverse transcrip-
tion. In addition to a significant level of read through, two
pause sites were observed for LNADIS: one site mapped to
the expected 5'end of the LNA, the other corresponded to
the 3' nucleotide of the DIS loop (Fig. 1B). A likely inter-
pretation for this observation is that a significant part of
the LNADIS molecules anneal only to the exposed loop
region, yet is unable to unzip the DIS stem in the HIV-1
RNA. This may explain the partial effect on reverse tran-
scription. In contrast, RNA dimerization is nearly 100%
blocked by LNADIS, suggesting that annealing of the LNA
antisense to the single stranded loop of the DIS hairpin is
very effective and sufficient to block dimerization.

The inhibitory potential of the antisense oligos in vivo
was dramatically improved upon LNA incorporation.
Especially the LNAs targeted to the PBSD, DIS and AUG
regions were strong inhibitors of CA-p24 capsid protein
expression. The advantage of LNA may in part rely on
higher stability in the cells, but increased stability of the
interaction between LNA and target most likely also plays
an important role. The mechanism for the observed inhi-
bition may involve numerous steps in the viral life cycle.
All of the LNA gap-mers may degrade the mRNA via an
RNase H dependent pathway and, if not degraded, block
scanning of the ribosome during cap-dependent transla-
tion or the HIV-1 reverse transcriptase while copying the

The effect of antisense LNA on reverse transcription of HIV-1 RNAFigure 2
The effect of antisense LNA on reverse transcription of HIV-
1 RNA. An equimolar amount (1pmol) of HIV RNA and LNA 
oligo was mixed and incubated prior to primer extension 
using a primer complementary to position 384–401. Anti-
sense LNA oligonucleotides, included LNAAUG (lane 1), 
LNASD (lane 2), LNADIS (lane 3), LNAPBSD (lane 4), and the 
major sites of transcriptional termination are indicated to the 
right. Read through to the 5' end of the HIV-1 RNA is 
denoted by +1. A sequence latter obtained by dideoxyse-
quencing of the HIV-1 RNA is included in lanes 6–9. The level 
of read through reverse transcription is calculated as read-
through/(read through + paused) × 100% and indicated 
below.
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RNA template. In addition, the individual LNA may also
have more specific actions that cannot directly be assessed
in our single-round HIV-1 expression assay: the LNAPBSD
may interfere with tRNA binding to the PBS and subse-

quent initiation of reverse transcription and the LNADIS
may, in addition to dimerization, hinder effective packag-
ing of the genome into viral particles. The LNASD covers
the major splice donor site and may therefore interfere

The effect of antisense LNA versus RNA and DNA on dimerization of HIV-1 RNAFigure 3
The effect of antisense LNA versus RNA and DNA on dimerization of HIV-1 RNA. The ability of (A) antisense LNA oligonucle-
otides directed towards different targets or (B) antisense LNA, RNA or DNA oligonucleotide directed towards the DIS target, 
to inhibit the formation of the DIS dimer-complex during 30 min incubation were investigated. Monomeric and dimer bands 
are indicated to the left. (C) A similar experiment, but where the indicated antisense oligonucleotide was added after the dim-
ers were allowed to pre-form for 30 mins and subsequently incubated for the indicated time, hence evaluating the efficiency of 
breaking a stable DIS dimer-complex as a function of time time. Diamonds = LNADIS; Bullet = RNADIS; Triangle = DNADIS.

1                 2       3        4       5               

C
O

N
TR

O
L

C
O

N
TR

O
L

D

M

D

M
1                 2       3        4                   

LN
A

PB
SD

LN
A

D
IS

LN
A

SD

LN
A

AU
G

LN
A

D
IS

R
N

A
D

IS

D
N

A
D

IS

D
im

er
is

at
io

n(
in

 %
)  

20

40

60

50

10

30

Time of reaction  (in minutes)

A B

C

50 100 150 200
Page 6 of 13
(page number not for citation purposes)



Retrovirology 2007, 4:29 http://www.retrovirology.com/content/4/1/29

Page 7 of 13
(page number not for citation purposes)

In vitro cleavage of HIV-1 RNA by DNA- and LNAzymesFigure 4
In vitro cleavage of HIV-1 RNA by DNA- and LNAzymes. One hundred nmol 5' end labeled leader RNA (+1–355) was incu-
bated with 5 nmol, 100 nmol or 2 pmol DNAzymes or LNAzymes for the indicated time. The DNAzymes targeted to the 
PBSD and DIS regions cleaved primarily at the expected site, yielding a 5'-end labeled fragment of 205 and 261 nucleotides, 
respectively (product; panel A and C). The same bands were obtained using the LNAzyme (panel B and C). The experiment 
was made in duplicates yielding essentially the same result and the cleavage efficiencies indicated below each autoradiogram 
were calculated as (cleaved RNA/cleaved RNA and uncleaved RNA) × 100% averaged over both experiments.
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Inhibition of intracellular HIV-1 production in the presence of antisense LNA and LNAzymesFigure 5
Inhibition of intracellular HIV-1 production in the presence of antisense LNA and LNAzymes. One hundred nanograms of HIV-
1 genomic LAI plasmid was co-transfected with a renilla luciferase expression construct and the indicated amounts of antisense 
LNA or LNAzyme, and the HIV-1 production was measured by CA-p24 ELISA 72 hours later. (A) HIV-1 production in the 
presence 20 nM of the four different HIV-1 specific LNAs and 2 LNA controls (Mock 1 and Mock 2). (B) Measuring HIV-1 pro-
duction in the presence of low range concentration of LNAPBSD (0.16–20 nM). The inhibition is calculated as the average value 
of two independent experiments where the relative CA-p24 expression is normalized for unspecific inhibition of renilla expres-
sion. (C) Comparing the inhibitory capacity of DNA versus LNA containing antisense or 10–23 enzymes targeted to the DIS 
and PBSD regions. The identity and the concentration of the oligonucleotide are indicated below. The assay was performed in 
duplicates.
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with splice site recognition but RNA packaging may also
be disturbed based on the contribution of the region to
this process [32-35]. Finally, the LNAAUG that covers the
Gag initiation codon may interfere with the assembly of
translational initiation complexes or disturb the long dis-
tance interaction recently reported between this region
and upstream sequences [36,37]. Hence, the multi-func-
tional capacities of the LNAs applied in this study may be
beneficial for their antiviral effect.

Of the four antisense targets we tested, LNAAUG was partic-
ular interesting since it overlaps with the previously
described phosphorothioate modified 25-mer antisense
oligonucleotide, GEM91 [38-40]. In cell culture experi-
ments this oligo has been shown to inhibit HIV-1 replica-
tion for up to 20 days when applied at 1 μM [38,40] and
pharmacokinitical studies have been initiated in HIV-1
patients but abounded due to dose-limiting toxicity [41].
Considering that the general improved affect of LNAs
compared to DNA it will be interesting to further develop
the AUG directed LNA oligos as antiviral drugs for clinical
use. In another study several antisense polyamide nucle-
otide analog (PNA) oligonucleotides targeted to the TAR
stem-loop were tested, and one of the PNAs was found to
have significant inhibitory potential on HIV-1 protein
expression [42], however only at concentrations of more
than 1 mM [43]. The efficacy of these constructs were
recently improved by conjugating cell penetrating pep-
tides to them [44].

In general the TAR-tat interaction have been objective for
several antisense approaches using either LNA modified
oligos [45,46], LNA/DNA aptamers [47], mixmer of 2'-
OMe and LNA modified oligos [48,49] or PNA modified
oligos [50-53]. These results do indeed indicate that the
TAR region is a useful antisense target site and that various
antisense oligos can inhibit the replication of HIV in dif-
ferent cell systems. The absence of binding sites in the TAR
region in our screen suggest that this region is less accessi-
ble then the sites we have selected.

In another report, antisense gap-mer LNAs targeted to the
DIS region have been tested [54]. One of these oligos
resembles our LNADIS, but it is shifted a few nucleotides
upstream and is two nucleotides shorter. A relatively mod-
est 2-fold inhibitory effect was described, both in terms of
in vitro dimerization and on HIV-1 expression in vivo in
the presence of 160 nM oligonucleotide. This implies that
small changes in target selection may have a dramatic
effect, which is consistent with our in vitro binding stud-
ies [22]. However the results are not directly comparable
since Elmén et al. used a subtype A HIV-1 strain that
exhibits a different DIS loop sequence than the subtype B
used in this report. The strong dependence on target avail-
ability creates a risk that adaptive mutations in the HIV-1

genome will render the antisense oligo less effective. It
may therefore be favourable to combine the most effective
LNA in future tests.

As an alternative to the antisense technology we tested the
inhibitory capacity of one of the best-characterized
DNAzymes, "10–23". The cleavage efficiency of this
enzyme has previously been reported to be highly varia-
ble, which has limited its use [12,31,55-57]. The reason
for this is believed to be the poor annealing of the
DNAzymes to their targets. In this report, DNAzymes were
targeted to the PBSD and DIS sites. The PBSD site was
selected because it represents the most efficient target site
for antisense molecules and hence may also be a good tar-
get for a DNAzyme and the DIS target due to it is partially
inaccessible to at least one of the arms in the DNAzyme,
allowing us to test the hypothesis that incorporation of
LNA residues can enhance the cleavage efficiency ([30];
Fig. 1B). Indeed, we also observed that the activity of the
DNAzyme directed towards the DIS target was strongly
induced upon LNA incorporation, whereas the PBSD spe-
cific DNAzyme was approximately equally active in its
modified and unmodified form. The LNAzymeDIS abro-
gated CA-p24 expression compared to the unmodified
DNAzyme by at least 10-fold at 100 nM, which is consist-
ent with a previous study on a cellular mRNA target [58].
In light of our in vitro data, this induction is most likely a
result of increased cleavage of the target rather then being
a stability issue. This interpretation is consistent with the
much more modest effect observed when introducing
LNA modifications in the more active DNAzymePBSD,
both in vitro and in vivo. A potential disadvantage from
introducing LNA residues in the arms of a DNAzyme is
that the interaction between the LNAzyme and the target
becomes too strong, which may reduce the turned over.
This may explain why we never reached the point of mul-
tiple turnover using LNA modified enzymes, indicated by
nearly complete digestion of target at sub-stoichiometric
concentration of the enzyme.

As for antisense constructs, DNAzymes targeted against
randomly selected sites are generally inactive. For
instance, out of 8 DNAzymes targeting the HIV-1 TAR
region, only 2 yielded detectable cleavage products and a
relatively high concentration (1 μM) of inhibitor yielded
only a 5–10 fold reduction in CA-p24 expression [56].
Both the pre-selected target sites tested here were cleaved
by the DNAzymes reducing CA-p24 expression at a 10-
fold lower concentration. The difficulties in rationally pre-
dicting efficient targets for nucleotide enzymes is also
reflected by the observation that a DNAzyme directed
against the natural tRNA primer binding site, which is
generally assumed to be available for annealing, is unable
to cleave the HIV-1 RNA (M.R.J. and J.K., unpublished
observations).
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siRNA targeted to the four highly accessible regions in the
5'UTR had almost no effect on HIV-1 gene expression
(J.H., M.R.J. and J.K. unpublished observation). However,
a direct comparison with the antisense approach is not
meaningful since the selected target sequences are subop-
timal using state of art design rules for siRNA [59]. Effi-
cient knock down of HIV-1 expression by RNAi has been
demonstrated using other targets [21,60-62] and this
approach is generally considered to be more potent than
antisense. However, we find that the inhibitory effects
observed with selected LNA antisense constructs in the
low nanomolar range is able to match some of the best
HIV-1 specific siRNAs reported in literature [63].

Conclusion
Four sites that were pre-selected as highly accessible
regions in the HIV-1 leader were accessed as potential tar-
gets for various antisense based technologies and we con-
clude that antisense LNA targeted to specific sites in the
PBS and the DIS regions were the most effective inhibitor
of HIV-1 expression. LNA may have additional advantages
for in vivo applications, such as more efficient cell uptake
and increased stability. Moreover, the lower molecular
weight and single stranded nature of LNA makes it poten-
tially more inexpensive to synthesise in large quantities
than double stranded siRNA. LNA therefore provides a
serious alternative platform for development of therapeu-
tics for human diseases.

Methods
Constructs
The plasmids pUC18-LAI and pUC18-LAI-1–444 contain
+1–355 nucleotides and +1–444, respectively, of the HIV-
1 genome sequence of the LAI isolate behind a T7 pro-
moter and have been described earlier [64]. LNA oligonu-
cleotides (Exiqon) were all designed as gap-mers with 5
LNA residues flanking a 10-mer phosphorothioate modi-
fied DNA body, except from MOCK-2 that were an 18-mer
with only 4 LNA residues at each termini. Both MOCK-1
and MOCK-2 contain random sequences without exten-
sive match to human or HIV-1 sequences. The LNAzymes
(Exiqon) and DNAzymes (DNA Technology) were con-
structed as "10–23" enzymes [12] with an arm length of 9
nucleotides. RNA transcription was performed as
described earlier [22].

Primer extension assay
The primer extension assay was performed using 1 pmol
RNA spanning the first 444 nucleotides of the HIV-1
genome and 80 fmol 5'end-labeled RT primer (5'-CCT-
TAACCGAATTTTTTCCC-3') complementary to position
384–401. The template and the primer were annealed for
2 min at 90°C in a total volume of 6 μl annealing buffer
(100 mM Tris-HCl, pH 7.5, 400 mM KCl) followed by 5
min at room temperature. Then 1 pmol LNA oligonucle-

otides were added and incubated for 20 min at 50°C.
Reverse transcription and gel analysis was performed
according to Damgaard et al. [65,66].

Dimerization assay
One pmol [γ-P32] HIV-1 leader RNA and five pmol LNA
oligonucleotide was incubated in 20 ul of water at 85°C
for 5 min and then snap-cooled on ice for 5 minutes. The
buffer was adjusted to dimerization conditions (50 mM
Na-cacodylate; pH 7.5, 250 mM KCl, 5 mM MgCl2) and
incubated at 37°C for 30 min in The sample was analyzed
on a 6% native TBM gel (50 mM Tris-borate; pH 8.3, 5
mM MgCl2) and autoradiographed using phosphor
image screens (Biorad).

In the kinetic assay, 1 pmol HIV-1 leader RNA was
allowed to predimerize for 30 min at 37°C at dimeriza-
tion conditions and then either 5 pmol LNA, DNA or RNA
DIS oligonucleotide was added. After 0, 30, 120 and 240
minutes aliques were taken out and placed on ice before
analyzed on a 6% native TBM gel and autoradiographed
on phosphor image screens.

DNazyme and LNazyme cleavage assay
One hundred nmol 5' end labelled leader (+1–355) RNA
was incubated at 85°C in 7 μl water for 5 min and cooled
on ice for 5 min. The RNA were then mixed with 5 nmol,
100 nmol or 2 pmol DNAzymes or LNAzymes and incu-
bated at 37°C for 1, 2, 4 or 24 hours in DNazyme buffer
(10 mM MgCl2, 50 mM Tris-HCl; pH 8.0) and stopped
with 100 mM EDTA. The samples were precipitated and
analyzed on an 8% denaturing polyacrylamide gel run at
18 W and analyzed by phosphor imaging (Biorad).

HIV-1 production assay
HEK 293-T cells were seeded one day before transfection
at 150.000 cells/ml/well in a 24-well plate. Transfection
was performed at 40% confluency in duplicate using
Lipofectamine-2000 (Invitrogen) in 400 μl medium with-
out antibiotics. Per transfection, 100 ng of HIV-1 genomic
LAI plasmid was diluted in 50 μl OPTIMEM and the
respectively final concentration of the various oligonucle-
otides. Two μg Lipofectamine was added to 48 μl OPTI-
MEM and incubated for 5 min at RT. The diluted DNA and
lipofectamine were combined to a final sample volume of
100 μl. This mixture was incubated for 20 min at 20°C
before adding to cells. Six hours post-transfection 1 ml
medium containing antibiotics replaced the original
medium. Three days post-transfection 100 μl from the
culture media was collected and inactivated by adding 10
μl 0.1% Empigen (final concentration) and heating at
65°C for 30 min. Production of HIV-1 CA-p24 was meas-
ured with p24 enzyme-linked immunosorbent assay
(ELISA). As an internal control, 2.5 ng pRL was included
and the Renilla luciferase expression levels were measured
Page 10 of 13
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using the Dual-luciferase Reporter Assay System
(Promega).
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