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Abstract
Centrosomes are the major microtubule organizing structures in vertebrate cells. They localize in
close proximity to the nucleus for the duration of interphase and play major roles in numerous cell
functions. Consequently, any deficiency in centrosome function or number may lead to genetic
instability. Several viruses including retroviruses such as, Foamy Virus, HIV-1, JSRV, M-PMV and
HTLV-1 have been shown to hamper centrosome functions for their own profit, but the outcomes
are very different. Foamy viruses, HIV-1, JSRV, M-PMV and HTLV-1 use the cellular machinery to
traffic towards the centrosome during early and/or late stages of the infection. In addition HIV-1
Vpr protein alters the cell-cycle regulation by hijacking centrosome functions. Enthrallingly, HTLV-
1 Tax expression also targets the functions of the centrosome, and this event is correlated with
centrosome amplification, aneuploidy and transformation.

Background
I. Centrosome functions
Centrosome and cell organization
Centrosomes were first described at the end of the 19th
century by Theodor Boveri who had also the intuition of
their central role in cell life [1].

Centrosomes are animal-specific non-membranous
organelles that localize in close proximity to the cell
nucleus for the duration of interphase. Their structure is
highly conserved among higher eukaryotes. It usually con-
sists of a pair of centrioles joined by fibers connecting
their proximal ends which are embedded into a protein-
dense matrix called the pericentriolar material (PCM)
[2,3]. The PCM is an ordered lattice that anchors a large
number of microtubule (MT)-associated proteins, many
of which bear putative coiled-coil domains, a tertiary
structure known to facilitate protein-protein interactions

[4]. Centrioles are cylindrical corps formed by a radial
array of nine MT-triplets, which are structurally similar to
basal bodies of eukaryotic cilia and flagella [5,6]. Centri-
oles play a role in the organization of the microtubular
cytoskeleton, but they do not make direct contact with the
MTs which nucleate from the γ-tubulin ring complexes (γ-
TuRC) located within the PCM.

In animal cells, centrosomes represent the major microtu-
bule-organizing structures (MTOC). The MTOC is respon-
sible to direct the assembly and the orientation of MTs
and to control MT-dependent processes such as trafficking
of cytoplasmic vesicles and orientation of cellular
organelles. At the onset of mitosis, centrosomes become
the core structures of spindle poles and direct the forma-
tion of mitotic spindles. Upon cytokinesis, each daughter
cell receives only one centriole, which duplicates once per
cell cycle.
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Centrosome duplication and mitotic progression
The number of centrosomes within a cell is strictly con-
trolled [5] (Figure 1). In G1 phase, cells have a single cen-
trosome consisting of two centrioles joined by cohesion
fibers. At the G1/S transition, new centrioles grow orthog-
onally from each of the two pre-existing ones. They will
elongate until G2, maintaining the strictly perpendicular
configuration [5-7]. In early mitosis, the cohesion
between the two pairs of centrioles is broken and each of
them participates in the formation of the mitotic spindle
pole.

Centrosome duplication is tightly regulated and limited at
once per cell cycle through a mechanism that prevents re-
duplication. The complexes between Cyclin-dependent
kinase 2 (Cdk2) and either Cyclin E or Cyclin A (Cdk2/
CycE/CycA) and their substrate, nucleophosmin, have
been proposed to act as licensing factors for centrosome
duplication [8,9]. However, this hypothesis has been
recently challenged by Tsou and Stearns [5] who proposed
that re-duplication is inhibited by a centrosome-intrinsic
block [10]. They suggested that the engaged/orthogonal
conformation of the centrioles functions as a block for re-
duplication. The cellular factor which promotes centriole-
disengagement at the end of mitosis would therefore con-
stitute the licensing factor [5].

Additionally several mitotic kinases of the Aurora, Polo
and Nek families, which localize at least temporally to
mitotic structures, have been shown to participate in the
control of the centrosome cycle and mitotic spindle for-
mation [11].

The tight control of centrosome number and duplication
is essential for the stability of the genome. Consequently,
any impairment in the regulation of centrosome number
might lead to the assembly of multipolar spindles [12],
which in turn might increase the frequency of aberrant
mitosis and chromosome-segregation errors [3].

Recent studies demonstrated that MTOCs play a key role
in cellular processes other than nucleation and organiza-
tion of the MT network. Indeed, the centrosome provides
a subcellular site where high local concentration of regu-
latory molecules in the proximity of their substrates is
likely to increase the probability of specific interactions.
Many regulatory molecules localize, at least temporally, at
the centrosome. Thus, it has been suggested that the cen-
trosome might act as a scaffold platform where integra-
tion of numerous cellular signaling pathways occurs,
including control of cell cycle progression and comple-
tion of cytokenesis [13,14].

As an example, following their injection into G2-arrested
oocytes, centrosomes induce cell progression into mitosis

[15]. Likewise, in a Xenopus egg model, centrosomes can
induce the activation of the mitosis promoting factor
(MPF or Cyclin dependent kinase 1 (Cdk1) and Cyclin B
complex), which is a major event in the initiation of mito-
sis [16]. In mammalian cells, activation of MPF takes
place at the centrosome during prophase and before any
MPF-dependent H3-phosphorylation is detected in the
nucleus [17]. MPF activity is controlled by cyclin phos-
phorylation through the antagonistic actions of Cdc25
and Wee1, which are also regulated by phosphorylation
[18,19]. Finally, several positive and negative mitotic reg-
ulators which have distinct localization along the cell
cycle, are also found at the centrosome during early mito-
sis (reviewed in [14]).

Centrosome amplification
Centrosome amplification (more than three centrioles in
a cell during the G1 phase) can result from different mech-
anisms: (a) duplication of centrosome more than once
during a cell cycle, (b) failure of cell cytokenesis, (c)
uncontrolled splitting of a centriole pair and (d) forma-
tion of acentriolar MTOCs [3]. Centrosome amplification
is often associated with genomic instability and therefore
aneuploidy. Aneuploidy (i.e. the acquisition or loss of one
or more chromosome from a diploid genome) is a very
common feature of tumor cells [20-23]. After Boveri's
hypothesis (the "aneuploidy hypothesis"), it has been
admitted that cancer cells become aneuploid as a conse-
quence of anomalous mitotic divisions. These defects
were thought to result from centrosome amplification and
transformation, and aneuploidy appeared likely to pro-
mote tumorigenesis, at least at low frequency. However,
after the discovery of tumor suppressors and oncogenes,
this assumption became debated [24-26].

A number of facts still support this hypothesis: first, aneu-
ploidy frequently occurs before transformation. This is the
case in a number of pre-cancerous lesions (cervix, colon,
oesophagus etc.) [27-29]. Next, aneuploidy results in the
de-regulation (up- or -down) of the expression of a
number of genes. Third, transformation linked to aneu-
ploidy requires several generations, which is coherent
with the known incidence of cancers with age (for a review
see [30]). Finally in silico modeling confirmed that the
"aneuploidy theory" could explain how lymphocytes
become transformed [31].

In the end, it was still technically challenging to test
whether aneuploidy causes cancer or not until recently,
since causing aneuploidy usually results in other cellular
defects. Interestingly, in a very elegant study aimed at
understanding whether aneuploidy drives tumorigenesis,
contributes to tumor progression or is benign, Weaver and
coll. demonstrated that aneuploidy acts both oncogeni-
cally and as a tumor suppressor [32]: Low levels of chro-
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mosomal instability promote tumor initiation while
higher levels are protective [32].

II. Retroviruses infection and centrosomal functions 
alteration
Hijacking centrosomal functions during entry and assembly: the FV, 
HIV-1 HTLV, M-MPV cases
The movement of viruses through the cytoplasm – a
highly viscous milieu that consistently limits directional
movement by free diffusion – relies on the cellular active
transport system [33]. Viruses cross twice the cytoplasm
during the course of the infection, after entry to get to the

site of replication and to reach the sub-cellular location
where assembly of new progeny virions and budding
occurs (reviewed in [34-36]) (Figure 2). Since MTs origi-
nate as radial array from the MTOC in most cells, with
their minus ends anchored to the PCM and the plus ends
extending towards the cell periphery, it is not surprising
that several viruses, among which retroviruses, have been
found to concentrate near the centrosome in a MT-
dependent manner on their way to and/or from the
nucleus. To date, several potential direct interactions
between viral components and MT-motors have been
reported and it has been established that, to traffic into

The centrosome duplication cycleFigure 1
The centrosome duplication cycle. Adapted from [3, 14, 107]. Centrosome duplication starts at the G1/S transition with 
the separation of the paired centrioles. Procentrioles form near the proximal ends of each pre-existing centriole. Procentriole 
formation is completed during S phase. During mitosis the two centrosomes are present and form the mitotic spindle poles. 
Each cell inherits one centrosome after the completion of cytokinesis.
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the cytoplasm, viruses have evolved two alternative strate-
gies, either by hijacking cytoplasmic vesicles or by directly
interacting with MT-associated molecular motors.

Entry
Foamy Virus (FV) and Human Immunodeficiency Virus
type 1 (HIV-1) were reported to target the centrosome at
an early phase of the viral life-cycle. Soon after entry in the

host cell, both FV [37,38] and HIV-1 [39-41] incoming
virions en route to the nucleus accumulate in the peri-cen-
trosomal area, in a MT and dynein-dynactin dependent
manner (Figure 2).

An N-terminal coiled-coil motif within FV Gag (aa 150–
180), is responsible for the centrosomal localization of
the viral particles at this stage [37]. In G0-arrested cells

Retroviruses target the MTOC during the early and/or the late phase of the viral replication cycleFigure 2
Retroviruses target the MTOC during the early and/or the late phase of the viral replication cycle. Retroviruses 
enter into the host cell mainly by receptor-mediated fusion of the viral envelope with the plasma membrane (1). After crossing 
the actin cortex, the viral core is released into the cytoplasm where it undergoes a process of uncoating during which the viral 
genomic RNA (black) is reverse transcribed into a double-strand linear DNA copy (red) (2). Incoming viral cores en route to 
the nucleus reach the MTOC by using the molecular motor complexes to traffic along the MTs (3). In the nucleus the viral 
DNA genome is stably integrated into the host cell chromosome (4). The integrated viral DNA or provirus is the template for 
the synthesis of the viral mRNAs (5) which are transported in the cytoplasm and translated to produce the viral Gag polypro-
teins and the viral envelope glycoproteins(6). Newly synthesized Gag proteins and the viral genomic RNA converge to the 
MTOC where encapsidation and assembly initiate (7a). At this late stage, FVs are characterized by a second reverse transcrip-
tion event (7b). By trafficking along the MT network assembling viral particles reach the plasma or endosomal membranes 
where budding occurs (8a and b). Finally, for most retroviruses, a process known as maturation is necessary for the generation 
of infectious viruses able to begin a new round of infection (9).
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both FV Gag and the viral genome persist at this location
for several weeks. Remarkably, FV life cycle resumes as
soon as infected quiescent cells are stimulated to divide:
integration and gene expression occur leading to the for-
mation and the release of new progeny virions (Lehmann-
Che submitted). Maintenance of viral capsids at the cen-
trosome in quiescent cells could be a strategy that FVs
have evolved to rapidly respond to stimuli received by the
infected cell.

HTLV-1 requires cell-to-cell contact to spread efficiently.
Interestingly, it has been observed that the MTOC of an
HTLV-1-infected cell, which is involved in the formation
of a two-cell conjugate, relocates in proximity of the adhe-
sion site. In addition HTLV-1 genome and the viral pro-
teins Gag and Env concentrate in the same area. Therefore,
it has been suggested that polarization of the MTOC
results in the orientation of many MT-plus ends towards
the cell-cell junction, thus allowing the recruitment of
viral Gag-containing complexes in proximity of the viro-
logical synapse where viral transmission ultimately takes
place [42].

Assembly
FV capsids form in the cytoplasm in the vicinity of the
MTOC (Figure 2). Assembly depends on the integrity of
the cytoplasmic targeting-retention signal (CTRS)
sequence within Gag, which is responsible for the peri-
centrosomal targeting of the polyprotein [43]. The CTRS is
an 18-amino acid long motif found within the MA
domain of Gag, which functions as a dominant signal that
directs intracytoplasmic capsid assembly of B/D-type ret-
roviruses (such as FV and Mason-Pfizer Monkey Virus (M-
PMV)) despite the presence of the bipartite membrane-
targeting signal at the N-terminus of Gag [44].

Early work by Hunter and coll. showed that M-PMV, the
prototypic D-type retrovirus, assembles at a perinuclear
location [45], which has recently been identified as the
MTOC [46]. Specific targeting of M-PMV Gag polypro-
teins to the pericentriolar region is mediated by the CTRS,
which interacts in a co-translational manner with the
dynein-dynactin motor complexes [46]. Nascent Gag
polyproteins still associate to the polysomes, accumulate
near the centrosome where both partially and fully assem-
bled spherical capsids are visualized by electron micros-
copy. Gag was suggested to interact with endocytosed M-
PMV Env glycoproteins trafficking into pericentriolar recy-
cling endosomes at this subcellular location, thus allow-
ing efficient migration of the immature capsids towards
the budding sites at the plasma membrane [47]. Of note,
centrosomal targeting does not appear to be absolutely
required for M-PMV assembly: Indeed, a point mutation
(R55W) within the CTRS abolishes centrosomal accumu-
lation of M-PMV Gag. Yet, Gag mutant still assembles at

the plasma membrane following a type C morphogenesis
pattern [48].

Similarly, the Gag polyprotein of Jaagsiekte Sheep Retro-
virus (JSRV), another β-retrovirus localizes near the
MTOC of infected cells and its centrosomal targeting is a
prerequisite for the subsequent transport of JSRV virions
to the plasma membrane but not for assembly [49].
Indeed co-expression of Gag from JRSV and enJS56A1, a
sheep endogenous retrovirus closely related to JSRV,
results in the delocalization of JSRV Gag from the MTOC.
Chimeric viral particles composed of both JSRV and
enJS56A1 Gag polyproteins still assemble in the cyto-
plasm but they cannot reach the plasma membrane [49].

The centrosome has been proposed to be the subcellular
site where HIV-1 Gag polyproteins are synthesized and
bind to the viral genomic RNA, thus initiating encapsida-
tion and viral particle assembly. Indeed siRNA-mediated
depletion of heterogeneous nuclear ribonucleoprotein A2
(hnRNP A2), a cellular protein which expression levels
regulate the nucleocytoplasmic trafficking of HIV-1
genomic RNA, almost results in the complete pericentri-
olar accumulation of the viral genomic RNA without
affecting Gag-expression levels [50]. HIV-1 genomic RNA
and newly synthesized Gag molecules colocalize near the
centrosome in a manner that depends on the presence of
the packaging signal region (ψ), a high-affinity binding
site for Gag within the viral RNA genome. These observa-
tions suggest that ψ acts as a targeting signal which specif-
ically directs initiation of HIV-1 encapsidation to this
subcellular domain [51].

The centrosome has also been suggested to represent an
advantageous site for virus assembly because of the high
local concentration of chaperons [52,53] which have been
shown to participate in M-PMV Gag folding and thus in
viral capsid formation [54].

In addition, because of its role as a cellular MT-organizing
center and its perinuclear localization, the centrosome
represents an optimal site (1) through which incoming
viruses can easily gain access to the nucleus and (2)
through which newly synthesized viral components traffic
to reach the viral assembly and budding sites (Figure 2).
The precise mechanisms that viruses and viral compo-
nents use to transit from the MTOC to the nucleus and
then back are still under investigation, but it has been sug-
gested that importins or the dynein-mediated trafficking
might be involved in this process [14].

Cell cycle arrest, centrosome dysfunctionand apoptosis: the Vpr case
Early studies reported that HIV-1 14kDa Viral protein R
(Vpr) was an oncogenic protein and suggested that it
could be responsible for some AIDS-associated cancers
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[55]. At that time, several groups reported the presence of
multiple centrosomes, and consequently aneuploidy as
well as micronuclei in Vpr-expressing cells [56]. Even if it
has now been clearly demonstrated that Vpr is not onco-
genic per se, it still would be interesting to understand the
molecular bases of such centrosomal dysfunctions.

Centrosomal amplification and subsequent aneuploidy
might result from a direct alteration of centrosomal integ-
rity by Vpr. It has been shown that Vpr induces the delo-
calization of the polo kinase Plk1/Plo1, a component of
the centrosome, which is usually located on the spindle
pole body (Figure 3). Depending on the cell line used for
the experiment, Plk1/Plo1 localizes either in the cyto-
plasm forming dots or in the nucleus in Vpr-expressing
cells [57]. Delocalization of Plo1 has been demonstrated
to be independent of the G2 arrest. However, it is conceiv-
able that Plo1 mislocalization, at least in yeast cells, might
be a consequence of its direct interaction with Vpr, which
localizes in the nucleus. Because Plo1 is a regulator of sev-
eral aspects of cell division, including mitotic entry,
mitotic spindle assembly, centrosome maturation,
mitotic exit, and cytokinesis [58,59], its dissociation from
the centrosome is likely to alter centrosomal functions
(Figure 3). Nevertheless, it cannot be formally excluded
that Vpr-associated polyploidy is due to the viral-induced
alteration of the cell cycle, resulting in the uncoupling of
the nuclear and the centrosomal cycles.

Indeed, HIV-1 infection impairs cell-cycle progression
and infected cells accumulate in G2 in vitro [60]. Although
it has been shown that several HIV-1 proteins independ-
ently block the cell cycle [61], Vpr is considered the major
viral determinant responsible for such arrest. The G2
arrest might then allow the survival of abnormal cells,
such as polyploid ones [60,61]. Noteworthy, the amount
of Vpr present in a viral particle is sufficient to induce cell
cycle arrest [62]. By mutational analysis, it has been dem-
onstrated that the C-terminal domain of Vpr is responsi-
ble for the cell cycle arrest [63,64]. Moreover it has been
established that Vpr phosphorylation is needed for this
function [65]. Following Vpr-expression, the accumula-
tion of G2-arrested cells correlates with the inactivation of
the MPF, which normally occurs at the centrosome
[57,66,67]. Vpr-mediated cell cycle arrest is accompanied
by an hyperphosphorylation of Cdk1 [60,66,67]. The
published results do not show any linear correlation
between the amount of Vpr and the inhibition of MPF,
which is consistent with the fact that Vpr does not bind
directly to MPF components [68].

Rather, the viral-induced cell cycle dysfunctions seem to
correlate mostly with an alteration of the functions of
MPF regulators, such as Wee1 and Cdc25. This is sup-
ported by the finding that Vpr interacts with these pro-

teins, at least in a yeast two-hybrid assay [68]. Cdc25 is a
component of a family of phosphatases that activate MPF
by antagonizing the effects of Wee1. It has been reported
that Vpr alters Cdc25 activity either directly [69] or
through the interaction with Cdc25-inhibitors such as 14-
3-3σ and PPA2 [70,71] (Figure 3). 14-3-3 localizes at the
centrosome during mitosis and inhibits the activity of
Cdc25 by binding to the phosphorylated form of the pro-
tein [72]. Vpr-binding allows 14-3-3 to interact with the
unphosphorylated form of Cdc25C. This trimeric com-
plex delays the entry into mitosis [73,74] (Figure 3).

The prolonged cell cycle arrest induces apoptosis, which
could be eventually responsible for the CD4+ depletion
that is observed in vivo during AIDS progression [75].

HTLV-1: uncontrolled cell proliferation, transformation.... and 
aneuploidy
In contrast to HIV-1, which is responsible for the deple-
tion of the CD4+ cell population, HTLV-1, the etiological
agent of Adult T cell leukemia/lymphoma (ATLL), causes
lymphocyte transformation. Generally, lymphoma occur-
rence is linked to cell-cycle alterations. During the course
of HTLV-1 infection, the alteration of the cell-cycle regula-
tion is tightly linked to the expression of the viral protein
Tax, which largely carries out the transforming capacity of
HTLV-1. Tax can activate the NF-κB, the CREB/ATF and
the SRF pathways. Both CREB/ATF and NF-κB pathways
have been involved in the Tax-mediated immortalization/
transformation (for a review see [76]).

The G1/S checkpoint regulation is tightly associated with
the activation of the transcription factor E2F. In resting
cells, E2F is inactive due to the formation of a complex
with the Retinoblastoma protein (Rb). Once Rb is phos-
phorylated, either by the cyclinD-cdk4 complex at early
G1, or by the cyclinD-cdk6 complex at late G1, it is
degraded and E2F turns active. In Tax expressing cells, the
G1/S transition is altered. A decade ago, Schmitt et al.
demonstrated that the increased proliferation of Tax-
expressing cells was correlated with an increased activity
of both cdk4 and cdk6 [77]. Such activation has been
since demonstrated to be a consequence of direct interac-
tion of cdk4 and cdk6 with the amino-terminal domain of
Tax [78,79]. Tax can also act directly on Rb. It binds
directly to hypophosphorylated Rb and sends it to the
proteasome where it is degraded [80].

Because it alters the MPF regulation, Tax can also disrupt
the G2/M checkpoint. MPF regulation is dependent on
Cdc25. The function of Cdc25 is modulated by Chk-pro-
teins and the activity of both Chk1 and Chk2 is impaired
in presence of Tax, in vitro and in vivo [81,82]. The action
of Tax is a consequence of its ability to bind directly to
these latter proteins. Consequently, in HTLV-1 infected
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cells, Cdc25 activity is not repressed and the progression
into mitosis occurs earlier than scheduled [83].

Altogether, these cell-cycle alterations may facilitate the
accumulation of errors during mitosis therefore inducing
centrosomal alterations and aneuploidy.

This hypothesis is consistent with the reports of HTLV-1-
leukemic cells carrying multi-lobulated nuclei (also
known as "flower cells"). These cells possess an abnormal
number of centrosomes and chromosomes [84-88]. The
frequency of aneuploid cells is significantly increased in
acute or classical ATLL patients, even if compared to
chronic ATLL [86,89]. This is also accompanied by struc-
tural chomosomes abnormalities such as translocations
and deletions. The cytogenetic abnormalities that are

found in ATLL cells are not specific of these disease. They
are however more frequent in the acute and lymphoma
types than in chronic or smoldering types. They include
various karyotypic abnormalities including translocations
on chromosome 14 (14q32, 14q11), deletions of 6q but
also numerical abnormalities such as trisomies 3,7 and 21
as well as monosomy of the × chromosome or loss of an
Y chromosome [90].

As Tax is the HTLV-1 protein that alters the cell-cycle, its
expression was suspected to be necessary and sufficient to
induce aneuploidy and centrosome multiplication. Nitta
et al. using JPX-9 cells that expresses Tax upon stimulation
with cadmium [91] showed that Tax expression indeed
allowed the accumulation of cells with an abnormal
number of centrosomes [86]: 10% of Tax-expressing cells,

Vpr induces a G2 cell cycle arrest and eventually apoptosisFigure 3
Vpr induces a G2 cell cycle arrest and eventually apoptosis. (A) In uninfected cells Polo like kinase-1 (Plk1) activates 
the Mitosis Promoting Factor (MPF) both directly and indirectly by inhibiting the Wee1 and the Mut1 kinases. Cdc25 proteins 
are also involved in MPF activation via a positive retroactive loop. In normal cells, MPF activation leads to mitosis; in non-viable 
cells, mitosis acts as a checkpoint and cells die by apoptosis. (B) In HIV-1 infected cells, Vpr expression induces the relocaliza-
tion of Plk1 and form a ternary complex with 14-3-3 and Cdc25. MPF cannot be activated, and consequently cells arrest in G2 
phase. Non-viable (polyploid) cells transiently accumulate. If the cell-cycle arrest is prolonged, cells die by necrosis.
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displayed an abnormal number of centrosome, whereas
only 5% of JPX-9 untreated cells showed centrosome
amplification. Interestingly the authors also showed that
the micronuclei formation was consecutive to the centro-
some amplification and that up to 2% of Tax-expressing
JPX9 cells exhibited micronuclei at 72 h of treatment.

Several studies suggested that, besides an indirect role of
Tax via cell-cycle regulation alterations, the viral protein
could also be directly implicated in aneuploidy and cen-
trosome amplification. If this was the case, then a fraction
of Tax should be located close the centrosome in order to
induce centrosome multiplication (Figure 4). In fact, in
transfected mouse embryonic fibroblasts, Tax localizes at
the centrosomes during the M phase [87]. Using a series
of GFP-tagged Tax constructs, Peloponese and coll. also
suggested that the Tax-dependent NF-kB activation is nec-
essary to induce the presence of supernumerary centro-
somes. However, it was not determined whether fusing
GFP on the N-terminus of Tax altered or not its transcrip-
tional activity. Indeed, a previous work demonstrated that
GFP-Tax proteins are severely impaired for CREB/ATF
pathway activation [92]. More recently, a study presented
conflicting results, suggesting that CREB rather than NF-
κB activation is required for Tax-induced aneuploidy [93].
Which, (if any), of Tax-dependent transcriptional signal-
ing pathway is needed for inducing aneuploidy is there-
fore still a matter of debate.

Along with the results described above, Peloponese and
coll. also proposed that the ability of Tax to bind RanBP1
(one of the major cytoplasmic effector of Ran) is a critical
event for targeting the viral protein to the centrosome
(Figure 5). However, this interaction is necessary but not
sufficient for inducing aneuploidy [87]. Because it was
previously shown that (i) RanBP1 is overexpressed in a
number of transformed cell lines [94], and that (ii)
ectopic expression of RanBP1 yields abnormal mitoses
[95], it would be of interest to determine the level of
expression of this protein in HTLV-1 transformed/immor-
talized cells vs. normal lymphocytes, but also whether Tax
could transactivate the RanBP1 promoter. If this was the
case, would NF-κB, as suggested by Peloponese, or CREB,
as suggested by de la Fuente, be evoked?

The altered functions of several centrosomal proteins
seems also to be involved in the Tax-driven aneuploidy.
As an example, HsMAD1 (also known as TXBP181) func-
tions are impaired in Tax expressing cells [85] (Figure 5).
HsMAD1 acts at the G2-M-checkpoint. Since HsMAD1
localizes to the centrosome during metaphase, it is tempt-
ing to speculate that the loss of HsMAD1 functions could
be linked to the loss or to the modification of the centro-
somal activity.

Lately, another partner of Tax, the centrosomal TAX1BP2
protein (also known as TXBP121) [96], was also impli-
cated in the Tax-dependent initiation of aneuploidy [84]
(Figure 5). Remarkably, the authors observed first at least
a 5-fold difference in the number of Tax expressing JPX-9
cells that display centrosome-amplification vs. untreated
JPX-9. This is significantly higher than the 2 fold increase
observed by Nitta et al in the same experimental settings.
Then, they demonstrated that Tax binds to and colocalizes
with endogenous TAX1BP2, forming perinuclear dots. In
the absence of Tax, the overexpression of TAX1BP2 leads
to a reduction in the number of cells that contain super-
numerary centrosomes. On the contrary, depletion of
endogenous TAX1BP2 induces centrosome amplification.
Therefore, Tax and TAX1BP2 have opposite effects.
Besides, a Tax mutant that does not interact with TAX1BP2
can no longer induce centrosome duplication. The
authors concluded that Tax targets TAX1BP2 to cause ane-
uploidy.

In the end, a series of questions remain to be solved: Do
Tax, RanBP1 and TAX1BP2 form a complex? Alternatively,
do Tax and TAX1BP2 compete for RanBP1-binding? How
does Tax target TAX1BP2? What is the level of TAX1BP2 in
HTLV-1 infected cells?

One important fact does not fit perfectly well with all
these experimental results: ATLL development is not a
rapid process but takes decades [97,98]. We therefore
believe there is an alternative and more provocative inter-
pretation for these results. It is possible that aneuploidy
occurs normally in a stochastic manner in cells which will
then die. When Tax is expressed, and because of its pleio-
tropic effects, these aneuploid cells would then undergo a
series of processes, such as p53 transcriptional inhibition
for example, that would circumvent apoptosis induction.
In other words, Tax would not induce aneuploidy but
rather would allow aneuploid cells to survive.

III. Conclusion
Viruses have evolved different strategies to traffic within
an infected cell. Active transport along the cytoskeleton
networks, in particular the MTs, has been demonstrated
for a series of nuclear replicating viruses such as retrovi-
ruses. For these latter, the centrosome seems to play a cen-
tral role both during early and late stages of the replication
cycle. It will be important to understand the functional
meaning of the centrosomal localization of incoming FV
and HIV-1 following infection. Is it just a mandatory/
compulsory route to reach the nucleus following traffick-
ing along the MT network, or is it (also) a transforming
platform which selectively modifies the incoming viral
material thus allowing a successful integration into the
host genome ?
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In addition, the centrosome is not a mere spectator of the
cell cycle but exerts a significant control over it. By provid-
ing a scaffold for many cell cycle regulators and their activ-
ity, it influences cell-cycle progression, especially during
the G1 to S-phase transition [99,100]. To this end, this
organelle receives and integrates signals from outside the
cell and facilitates their conversion into cellular functions.

By targeting the centrosome, some viruses hijack its func-
tions, leading eventually either to cell death or to cell
transformation [101-106].

The role of this central organelle in retrovirus replication
and pathogenicity is still mysterious and will certainly
require more consideration.
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In naturally infected T cells a substantial fraction of Tax co-localizes with the MTOCFigure 4
In naturally infected T cells a substantial fraction of Tax co-localizes with the MTOC. Images of CD4+ T cells nat-
urally infected with HTLV-1 obtained from a TSP/HAM patient. Cells were stained with anti-Tax mAb Lt-4 (green) and mono-
clonal anti-β Tubulin-Cy3 antibody (red). The view represents a projection (XY axis) of adjacent confocal sections. Scale bar = 
10 μM.
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Pleiotropic actions of Tax-1Figure 5
Pleiotropic actions of Tax-1. Tax-1 interacts and impairs the function of at least with 3 different centrosomal proteins 
(Mad1, TAX1BP2 and RanBP1) which participate in the control of mitosis.
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