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Background

Human immunodeficiency virus type 1 (HIV-1) encodes
a 116 amino acid regulator of viral protein expression
termed Rev. This protein is found in the nucleolus, the
perinuclear zone and the cytoplasm of infected cells [1,2].

Abstract

Background: The HIV-1 Rev protein mediates nuclear export of unspliced and partially spliced
viral RNA through interaction with the Rev response element (RRE) by means of an arginine rich
motif that is similar to the one found in Tat. Since Tat is known to be asymmetrically arginine
dimethylated by protein arginine methyltransferase 6 (PRMT6) in its arginine rich motif, we
investigated whether the Rev protein could act as a substrate for this enzyme.

Results: Here, we report the methylation of Rev due to a single arginine dimethylation in the N-
terminal portion of its arginine rich motif and the association of Rev with PRMT®6 in vivo. Further
analysis demonstrated that the presence of increasing amounts of wild-type PRMT6, as well as a
methylation-inactive mutant PRMT6, dramatically down-regulated Rev protein levels in
concentration-dependent fashion, which was not dependent on the methyltransferase activity of
PRMTé6. Quantification of Rev mRNA revealed that attenuation of Rev protein levels was due to a
posttranslational event, carried out by a not yet defined activity of PRMT6. However, no relevant
protein attenuation was observed in subsequent chloramphenicol acetyltransferase (CAT)
expression experiments that screened for RNA export and interaction with the RRE. Binding of
the Rev arginine rich motif to the RRE was reduced in the presence of wild-type PRMT6, whereas
mutant PRMT6 did not exert this negative effect. In addition, diminished interactions between viral
RNA and mutant Rev proteins were observed, due to the introduction of single arginine to lysine
substitutions in the Rev arginine rich motif. More importantly, wild-type PRMT6, but not mutant
methyltransferase, significantly decreased Rev-mediated viral RNA export from the nucleus to the
cytoplasm in a dose-dependent manner.

Conclusion: These findings indicate that PRMT6 severely impairs the function of HIV-1 Rev.

A two-exon version of Rev is translated from fully spliced
viral RNA during early stages of viral replication and
mediates nuclear export of unspliced and partially spliced
HIV-1 RNA [2]. Rev interacts with the cis-acting Rev
response element (RRE) located in the env gene [3]. Shut-
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tling of Rev between nucleus and cytoplasm is dependent
on several cellular proteins, e.g. elF-5A, nucleoporins
(Rip/Rab), CRM1, Ran-GTP, importin-f} and Sam68 [1,4-
11]. Different sequence motifs of Rev are important for its
activity: the leucine rich motif (LRM) located in the C-ter-
minal domain contains a nuclear export signal (NES),
whereas the arginine rich motif (ARM) within the N-ter-
minal portion of Rev harbors a nuclear localization signal
(NLS) and is responsible for binding to the RRE as well as
for Rev nucleolar localization [1,4]. Phosphorylations
(positions S5, S8, S54/S56, S92, S99, S106) are the only
type of posttranslational modifications that have been
reported for Rev and are not required for its biological
activity; however, these events might play a regulatory role
in helping to govern viral replication [3,12-14].

There is strong evidence that Rev contains a helix-loop-
helix secondary structure and that the ARM is part of the
second helix [15]. The ARM contains four major amino
acids (R35, R39, N40 and R44) that participate in base-
specific contacts with the high affinity binding site of the
RRE [1,16]. In addition, the ARM is flanked by multimer-
ization sites at which interaction between multiple Rev
proteins is thought to take place during the binding of a
single molecule of viral RNA [1]. Multimers of Rev have
been described in the nucleolus as well as the cytoplasm
[17] and there are reports about structural transitions of
Rev that appear to exist in monomeric form as a molten
globule versus a more compact structure when Rev is mul-
timerized [18]. One group has demonstrated that Rev
multimerization can be dispensed with if Rev contains
additional basic residues [19]. It has also been reported
that Rev function is non-linear with respect to the intrac-
ellular concentration of Rev needed for multimerization
[1] and that the sensitivity of HIV-1 infected primary T
cells to killing by cytotoxic T lymphocytes (CTL) is deter-
mined by Rev activity [20]. As a consequence, it has been
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proposed that low levels of Rev can lead to a state of pro-
viral latency in CD4+ memory T cells [21,22].

Arginine methylation is a posttranslational modification
that involves the addition of one or two methyl groups to
the nitrogen atoms of the guanidino group of arginine
[23]. These S-adenosyl-L-methionine-dependent
(AdoMet) methylations are carried out by protein
arginine methyltransferases (PRMT), a series of enzymes
found only in eukaryotes [24]. Arginine methylation has
been implicated in RNA processing, transcriptional regu-
lation, signal transduction, and DNA repair, and contrib-
utes to the "histone code" [23,25-31]. Two major types of
arginine methylation have been described: type I methyl-
transferases catalyze the formation of ®»-NG-monomethy-
larginine and ®-NG,NG-dimethylarginine (asymmetric);
type Il enzymes produce ®-N¢-monomethylarginine and
®-NG N'G-dimethylarginine (symmetric) [9,23,25,32]. In
humans, nine different PRMTs have been described [23]:
PRMTI1 [33,34], PRMT3 [35,36], PRMT4 [37], PRMTG
[27] and PRMTS8 [38] are all type I enzymes (Fig. 1A),
whereas PRMTS5 [39,40], PRMT7 [32,41] and PRMT9 [42]
are type Il enzymes. The classification and activity of
PRMT2 [34,43] has not yet been established.

The 41.9 kDa PRMT®6 is located in the nucleus and is the
only methyltransferase shown to possess automethylation
activity [27]. The non-histone chromatin protein
HMGA1a is the only host substrate, i.e. not a viral protein,
that has been proposed to be methylated by PRMT6 to
date [44]. Glycine and arginine rich (GAR) motifs are
located in many targets of PRMTs [23,27]; however, all in
vivo PRMT6 substrates described to date do not seem to be
modified at such sites. In regard to the reversibility of
arginine methylations, a peptidyl arginine deiminase
(PAD4) was shown to have limited arginine demethylat-
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Asymmetric arginine methylation and structure of AMII. A, Reaction catalyzed by PRMTé. L-arginine is converted to

(asymmetric) o-

NG,NG-dimethyl-L-arginine by substitution of two hydrogen atoms with two methyl groups in a two step reac-

tion. ®-NG-monomethyl-L-arginine is the intermediate. B, Structure of AMII. Standard name: disodium 7,7'-(carbonyldiimino)-

bis(4-hydroxy-2-naphthalenesulfonate), M,,: 548.45.
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ing activity, i.e. it is restricted to acting on monomethyl-
arginine [23,45-47].

Some AdoMet analogs were shown to directly inhibit
methyltransferases [23]. More recently, a series of small
molecules termed arginine methyltransferase inhibitors
(AMIs) were shown to act specifically against PRMTs and
not to act as competitors of AdoMet. The compound
known as AMI1 (Fig. 1B) is cell permeable and inhibits all
PRMTs that are active as recombinant proteins [48].

Viral pathogenesis has been related to arginine methyla-
tion [23]. For instance, methylation of hepatitis delta
virus antigen (S-HDAg) by PRMT1 is essential for RNA
replication [49], and methylation of the EBNA1 protein of
the Epstein-Barr virus by PRMT1 and PRMTS5 is needed for
its proper localization to the nucleolus [50]. In addition,
hepatitis C virus down-regulates PRMT1 methylation of
the helicase of nonstructural protein 3 by increasing
expression levels of protein phosphatase 2Ac [51]. Our
group demonstrated that HIV-1 Tat is methylated in its
ARM by PRMT6 and that this negatively regulates transac-
tivation activity [52]. These findings are also consistent
with data on HIV-1 regulation by the transcription elon-
gation factor originally named suppressor of Ty (SPT5),
which is methylated by both PRMT1 and PRMT5, show-
ing that an increase in methylation can have a negative
impact on viral replication [53]. More recently, it was
shown that methylation of viral proteins contributes to
maximal levels of viral infectiousness [54].

Yet, it is unknown whether Rev or other viral proteins may
also be substrates for PRMT6. Rev harbors an ARM that is
very similar to the one found in Tat. However, the ARM of
Rev adopts an a-helical structure whereas that of Tat folds
as a B-hairpin [16].

Here, we report the arginine methylation of the N-termi-
nal portion of the ARM of Rev by PRMTG6. This methyl-
transferase reduced RRE binding and diminished export
of viral RNA to the cytoplasm in cell-based assays. Co-
immunoprecipitation experiments confirmed the associa-
tion of PRMT6 with Rev, which was shown to undergo
arginine methylation in vivo. Moreover, PRMT6 seemed to
attenuate Rev levels, albeit in a manner independent of its
methyltransferase activity. These findings demonstrate
that PRMT6 impairs HIV-1 Rev protein functions and
shed further light on previous observations that PRMT6
can negatively regulate HIV-1 replication.

Results and discussion

HIV-1 Rev is specifically methylated by PRMTé

The HIV-1 Tat protein contains an ARM that was shown to
be a substrate of PRMT6 [52]. Our Rev is chimeric and
contains parts of the BH10 (first 15 amino acids) and
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HXB2 (last 101 amino acids) strains of HIV-1 (Fig. 2A).
Sequence comparison between Rev and Tat reveal that the
N-terminal portions of their individual ARMs have identi-
cal RXXRR motifs. Therefore, it seems logical that the Rev
protein may also be a substrate of PRMT6.

To test this possibility, purified histidine-tagged recom-
binant Rev was incubated together in vitro with PRMT6 in
the presence of radioactively labeled [methyl-3H]-S-adeno-
syl-L-methionine as a methyl donor. As a positive control,
we used recombinant histidine-tagged Tat86, and BSA
served as a negative control. The proteins were separated
by SDS-PAGE, stained with Coomassie blue (Fig. 2B,
upper panel), and the labeled proteins were visualized by
fluorography (Fig. 2B, lower panel). Rev was shown to be
methylated in the presence of PRMT6, whereas no signals
were detected in reactions containing only PRMT6 or Rev
(Fig. 2B, left). Tat86 gave a positive signal only when
PRMT6 was present (Fig. 2B, right). In addition to the
intense band of Tat86, there was a weak band visible at the
level of PRMT6 due to the previously reported autometh-
ylation activity of this methyltransferase [27]. In the case
of BSA, no signals were detected (Fig. 2B, center). These
findings identify Rev as a substrate of PRMT6, which rec-
ognizes sequences different from the GAR motif.

Next, we attempted to map the site of methylation in Rev
by mass spectrometry (MS). Measurements by LC/MS
resulted in two assigned masses that were 27.8 Da apart in
the case of recombinant Rev protein that had been sub-
jected to methylation by PRMT6; this compared well to an
expected difference of 28.1 Da in the case of one arginine
dimethylation. In contrast, untreated Rev that was not
methylated possessed only one mass (Table 1). To map
the site, we carried out protease digestions of methylated
and untreated Rev to achieve fragmentation. Unfortu-
nately, both glutamyl endopeptidase (Glu-C) and pepti-
dyl-Asp metalloendopeptidase (Asp-N) had limited
specificity and many non-specific fragments were gener-
ated, yielding inconclusive results when running the LC/
MS peptide data through the Mascot (Matrix Science) ana-
lyzing software. Furthermore, trypsin could not be used
for this analysis, because of justified concerns that it
would digest the ARM completely, making mapping
impossible. Nevertheless, these data suggest that only one
asymmetric arginine dimethylation occurs in Rev.

Therefore, we chose another strategy to map the methyla-
tion site. Namely, we mutated all of the arginine residues
of Rev within the N-terminal portion of the ARM. Eight
mutants were cloned, each of which contained a single
amino acid substitution from R to A or R to K. The eight
mutants as well as wild-type Rev were then subjected to
PRMT6 methylation, separated by SDS-PAGE, stained
with Coomassie blue (Fig. 2C, center panel), and exposed
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A Sequence of Tat86 (93 AA, 10660.2 Da)

=7 2 10 20 30 40
MAHHHHH HEPVDPRLEP WKHPGSQPKT ACTNCYCKKC CFHCQVCFIT

41 50 60 70 72 80 86
KALGISYGIEK KlﬁQRRRPPQ GSQTHQASLS KQPTSQPRGD PTGPKE

Sequence of Rev (123 AA, 13896.6 Da)

-7 2 10 20 30 40 50
MAHHHHH HAGRSGDSDE DLLKAVRLIK LLYQSNPPPN PEGTROAREIN RRRRWRERQR QIHSI

56 60 70 80 90 100 110 116
SERIL GTYLGRSAEP VPLQLPPLER LTLDCNEDCG TSGTQGVGSP QILVESPTVL ESGTKE

B Coomassie stained SDS-PAGE C Exposed Hyperfilm MP
1 2 3 4 5 6 7 8 910

BS AP = :ﬁ%
s -47.5
’ e — - 32.5
325 —
Rcv»‘- L16.5
Rev ;
Tat86 i 0.5
A i kDa
Protein Rev -  BSA BSA Tat86 Tat86 Protein
PRMT6 _ + = +: 4 i + G Rev —— = ]
el Zni e ——
BSAM| Z B 17273 4 56 7 89
L 47.5 Coomassie stained SDS-PAGE
1325 100
55 90 A
Rev)| eumpe i 04
Tat86»] . ' -16.5 70 {
. 60 |
1 2 3 4 5 6 1 2 501
Exposed Hyperfilm MP 20 |
30 4
20 {
1 2 3 4 10
Rev 0 _— — -
AMIT  +  +  + - [Cso ~45 uM wt  R35A R38A R39A R41A R42A R35K R38K R3%K

[uM] 300 30 3 0

Figure 2

Specific arginine methylation of Rev by PRMT6 in vitro. A, Sequences of recombinant histidine-tagged Tat86 and Rev.
Both sequences are chimeric and consist of BH |0 (amino acids 2—-66 and 2—15, respectively) and HXB2 (amino acids 67-86 and
16116, respectively). Underscored are the cysteine rich motif and the ARM of Tat86, as well as the two a-helices of the helix-
loop-helix motif of Rev. Arginine residues located in the N-terminal portion of the ARMs are shaded in black. B, Arginine meth-
ylation of Rev by PRMT6. Recombinant histidine-tagged Rev was incubated with [methyl-3H]-S-adenosyl-L-methionine in the
presence (lane |) or absence (lane 2) of PRMT6. As a positive control, recombinant histidine-tagged Tat86 was incubated with
(lane 6) or without (lane 7) PRMT6. As negative controls, BSA was incubated in the presence (lane 5) or absence (lane 4) of
PRMT6, or PRMT6 alone was used (lane 3). Proteins were separated by SDS-PAGE, stained with Coomassie blue (upper
panel), and tritium incorporation was screened by fluorography (lower panel). The migratory positions are indicated by arrows
on the left. C, Specific arginine methylation of the N-terminal portion of the ARM of Rev by PRMT6. Recombinant histidine-
tagged wild-type (lane I) and mutant Rev proteins (lanes 2-9), as well as BSA (lane 10) as a negative control, were treated as
described in B. The Coomassie blue stained gel (center panel) and the developed film (upper panel) were used to calculate the
percentages of methylation of the individual mutants (lower panel). The migratory positions are indicated by arrows on the left.
Similar results were observed in three experiments. D, AMII inhibits arginine methylation of Rev by PRMT6. Recombinant his-
tidine-tagged Rev was incubated with PRMT6, as described in B, in the presence of increasing amounts of AMI|. Band intensi-
ties were quantified to calculate the 1Cg,
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Table I: Mass of Rev determined by LC/MS

http://www.retrovirology.com/content/3/1/93

Mass [Da] Expected Measured (untreated) Measured (methylated)
unmodified 13765.4 13763.8 13766.0
Ix dimethylation 13793.5 - 13793.8

Left column gives expected values for Rev containing no or one arginine dimethylation. Center column gives measured values for untreated Rev and

right column gives measured values for Rev subjected to PRMT6.

for fluorography as described (Fig. 2C, upper panel). We
quantified the bands, taking into account the amount of
Rev that had been loaded, with wild-type Rev set at 100%
(Fig. 2C, lower panel). The mutant proteins R41A and
R42A still produced bands with intensities of 90% and
68% of wild-type Rev, respectively, showing that these res-
idues are not primary substrates of PRMTG6. In contrast,
the mutant R35A was reduced to a mere 6% of control and
R35K was not detectable. The R39A and R39K substitu-
tions resulted in band intensities that were either undetec-
table or 3% of wild-type, respectively. Methylation of the
R38A and R38K mutants was less than 1% in each case.

These findings together with the MS data suggest that one
of the three arginine residues at positions 35, 38, and 39
is the methyl acceptor. A possible explanation for the
ambiguous result of having more than one target, based
on the mutational studies, might be that the two other res-
idues play important roles as part of the recognition motif
for PRMT6. Such mutated residues would prevent PRMT6
from binding to Rev and, hence, make arginine methyla-
tion of the actual methyl-accepting residue impossible.

Finally, we tested an inhibitor of PRMT6 called AMI1 [48]
to see its effects on methylation of Rev (Fig. 2D). Addition
of AMI1 abrogated methylation of Rev with an IC, of ~v45
uM, showing that AMI1 can inhibit PRMT6 to block
arginine methylation of Rev. All these results demonstrate
that PRMT6 recognizes Rev as a substrate for specific
arginine methylation in the N-terminal portion of the
ARM.

PRMTé6 methylates Rev in vivo and attenuates Rev protein
levels

PRMTs are known to interact with their substrates [52].
Therefore, to determine the relevance of our biochemical
studies, we wished to assess interaction between PRMT6
and Rev by co-immunoprecipitation (co-IP). T-REx™-293
cells were transfected with plasmids encoding for histi-
dine-tagged Rev and myc epitope-tagged PRMT6. Rev is
only expressed upon induction by tetracycline, whereas
PRMT6 is under no such control and is continuously
expressed. Rev expression was induced at 24 hours after
transfection and cells were harvested at 24 hours post-
induction. For co-IP we coupled anti-histidine-tag anti-
body to an activated agarose gel. Cell lysates were co-

immunoprecipitated with antibody-coupled gel or a con-
trol gel, separated by SDS-PAGE, and immunoblotted
with anti-myc-epitope or anti-histidine-tag antibodies
(Fig. 3A). The anti-myc-epitope antibody strongly
detected PRMT6 in the case of Rev co-transfection (lane
2). Control reactions containing PRMT6, that were puri-
fied with a control gel (lane 1) or did not include Rev
(lane 4), gave rise to very faint bands, which may repre-
sent background of non-specific binding of PRMT6 to the
matrix of the gel. No PRMTG6 was detected in control reac-
tions in which either PRMTG6 (lane 3) or both PRMT6 and
Rev (lane 5) were absent. As additional controls, purified
cell lysates were visualized with anti-histidine-tag anti-
body. We detected histidine-tagged Rev with antibody
coupled gel (lane 7), but not with a control (lane 6). These
findings confirm that Rev and PRMT6 interact and suggest
that Rev is a target for PRMT6 in vivo.

To prove this, we wished to visualize the extent of Rev
methylation by PRMT6 in vivo. Hela cells that had been
transfected with Rev and/or PRMT6 (wild-type or a meth-
ylation-inactive mutant) were pulse labeled with L-
[methyl-3H]|-methionine. The lysates were separated by
SDS-PAGE for subsequent Coomassie staining and fluor-
ography. Lysates were loaded in equal amounts and the
Coomassie stain revealed very similar host protein levels
when comparisons of the different lanes were enacted.
However, there was a very significant difference in Rev
protein amounts detected by Coomassie stain (Fig. 3B, left
panel). In the case of Rev co-transfected with wild-type
PRMT6 (lane 6), the yield of isolated Rev was reduced by
7.5-fold compared to Rev isolated from cells transfected
with Rev alone (lane 4). However, Rev co-transfection
with mutant PRMT6 (lane 5) also diminished Rev recov-
ery by 5-fold. Hence, comparison of mutant (lane 5) and
wild-type PRMT6 (lane 6) revealed a 1.5-fold down-regu-
lation of Rev. Taken together, this suggests the possibility
of either decreased expression levels or accelerated degra-
dation of Rev, when co-transfected with PRMT6. How-
ever, this Rev attenuation seems mainly due to a still non-
defined activity of PRMT6 (5-fold), whereas the methyl-
transferase activity plays a negligible role (1.5-fold).

In contrast, levels of Rev methylation detected by fluorog-
raphy were magnitudes higher (Fig. 3B, center panel), i.e.
increased by 8-fold, for Rev co-transfected with wild-type
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Figure 3

PRMT6 methylates Rev and attenuates Rev protein levels in vivo. A, Interaction of Rev and PRMT6. T-REx™-293 cells
were transfected with histidine-tagged Rev (lanes 1,2,3,6,7) and myc epitope-tagged PRMT6 (lanes 1,2,4,6,7). Co-IP was carried
out with an anti-histidine-tag antibody coupled gel (lanes 2-5,7) and a control gel (lanes |,6). Eluates were separated by SDS-
PAGE, immunoblotted with anti-myc-epitope (lanes 1-5) or anti-histidine-tag antibodies (lanes 6,7) and signals detected with a
secondary antibody coupled to HRP. The migratory positions are indicated by arrows on the left. Bottom line: +: antibody cou-
pled gel; -: control gel. B, PRMT6 methylates and attenuates Rev in vivo. Hela cells were transfected with histidine-tagged Rev
(lanes 4-6) and/or wild-type (lanes 3,6) or mutant (lanes 2,5) myc epitope-tagged PRMT6, or no plasmids (lane I). After 3
hours pulse labeling, cell lysates were separated by SDS-PAGE, Coomassie stained (left panel) and fluorographed (center
panel). Cell lysates were also immunoblotted with anti-Rev antibody and detected as described in A (right panel). Loaded
amounts of cell lysates are given in Ll and the migratory positions are indicated by arrows. C, Rev protein levels are not
affected by PRMT6 pre-translationally. Hela cells were transfected as described in B. Additionally, Hela cells expressing siRNA
against PRMT6 were used. RNA was isolated for reverse transcription and mean Rev amounts determined by rt-RT-PCR were
normalized to GAPDH (left panel) or total RNA (right panel). Rev levels were calculated per amount of Rev in Rev only trans-
fected cells and expressed as percentages. The bars represent standard deviations of the mean of three independent experi-
ments, each of which was carried out in duplicates.
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PRMTG6 (lane 6) compared with Rev transfected alone
(lane 4). Taking the attenuation of Rev into account,
methyltransferase activity was increased even 60-fold with
wild-type PRMT6. As expected, co-transfection with
mutant PRMT6 (lane 5) led to 5-fold reduced methylation
signals, i.e. no increased methyltransferase activity was
detected.

These findings also suggest that the cells used may have
low levels of intrinsic PRMTS6, since only a fraction of Rev
proteins seem to have been arginine methylated under
standard conditions. However, in the co-transfection
experiment, with increased levels of wild-type PRMTG6, vir-
tually all Rev proteins must have been methylated in order
to yield such an intense band. The additional bands could
not be due to incorporation of labeled methionine during
protein synthesis, since relevant amino acids had been
omitted from the medium and the drugs cycloheximide
and chloramphenicol were employed. Rather, these addi-
tional signals originated from methylated proteins modi-
fied by the different PRMTs as well as other enzymes that
may methylate unrelated proteins. Furthermore, lanes 3
and 6 representing wild-type PRMT6 transfections reveal
higher overall signal intensity than the other lanes,
although the amounts of protein loaded and visualized by
Coomassie staining were the same. Hence, in cells trans-
fected only with wild-type PRMT6 (lane 3), this may
explain the weak and sharp band detected at a slightly
higher migratory position than the broad band produced
by Rev methylation.

Finally, to confirm that the signals indeed originated from
Rev, we carried out western blots of the lysates with anti-
Rev antibody (Fig. 3B, right panel). The presence of Rev in
the lysates from Rev transfected cells (lanes 4-6) was read-
ily visualized, whereas no such signal could be detected in
the other lanes. Consistent with the findings of the
Coomassie stained gel, the signal produced by Rev-only
transfected cells (lane 4) was much more intense than that
from co-transfected cells (lanes 5 and 6), when the
amounts of protein loaded were compared. Together,
these results show that Rev is an in vivo target for PRMT6
arginine methylation.

Based on highly different Rev levels in the presence or
absence of co-transfected PRMTG6, as described above, we
designed a real-time reverse transcription polymerase
chain reaction (rt-RT-PCR) experiment to assess mRNA
levels of Rev under these different transfection conditions
(Fig. 3C). This assay clearly distinguishes between pre- or
posttranslational regulation of Rev levels by PRMTG6 at the
level of mRNA or protein. Hela cells expressing siRNA
directed against PRMT6 or mock siRNA were transfected
with Rev and/or PRMT6 (wild-type or mutant) as
described above and isolated RNA was reverse transcribed.

http://www.retrovirology.com/content/3/1/93

The resulting cDNAs were used to assess mRNA levels of
Rev.

Since there is no generally accepted method for normali-
zation of such levels [55-57], we chose two different
methods. First, normalization with total RNA amounts
obtained from cells was determined by spectrophotome-
try at 260 nm. Second, normalization was performed
using mRNA levels of the house-keeping gene glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) by real-time
RT-PCR. HelLa cells containing mock siRNA and trans-
fected only with Rev were set at 100% after normalization.
The three other samples containing Rev all showed
slightly lower mRNA levels independent of the method of
normalization employed. In the case of total RNA nor-
malization, the values ranged between 77 and 86%, com-
pared to transfection with Rev alone. Normalization with
GAPDH showed slightly lower values in the range of 72 to
79%. As expected, all negative controls did not show any
amplification of Rev mRNA.

These results show clearly that the above mentioned 7.5-
fold decrease in Rev protein levels is not caused by down-
regulation of Rev mRNA by PRMT6. Rather, the decrease
in Rev protein is due to the posttranslational interaction
of PRMT6 with the Rev protein. However, attenuation is
not dependent on methyltransferase activity, but seems to
be caused by a yet undefined activity of PRMT6, which
may be linked to the proteasome pathway, as previously
suggested [58].

PRMTé reduces binding of Rev to RRE

Next, we wished to assess whether PRMT6 has any conse-
quences on the interaction of Rev with the RRE in vivo. To
this end, we used the pHIV-LTR-RREIIB-CAT reporter plas-
mid, which is derived from the pHIV-LTR-TAR-CAT [59].
RNA transcribed from the latter plasmid is recognized by
Tat, which binds to the trans-activation responsive ele-
ment (TAR) and ultimately leads to expression of chlo-
ramphenicol acetyltransferase (CAT). In the pHIV-LTR-
RREIIB-CAT plasmid, a part of TAR has been replaced by
the RREIIB of the Rev response element (Fig. 4A). To
obtain optimal binding that leads to high expression of
CAT, a Tat-Rev fusion protein is required (Fig. 4A), in
which the N-terminal portion of Tat is fused to the ARM
of Rev. This ensures maximum binding to the stem-RNA
and activates CAT expression.

First, we confirmed knock-down of PRMT6 in Hela cells
that expressed siRNA against PRMT6 (Fig. 4B). Then, lev-
els of expressed CAT were assayed with radioactively
labeled ['4C]-chloramphenicol that becomes mono- or
di-acylated in the presence of acetyl-CoA, the linear range
showing mono-acylated but no di-acylated species. Reac-
tions separated by TLC were exposed on film and quanti-

Page 7 of 15

(page number not for citation purposes)



Retrovirology 2006, 3:93 http://www.retrovirology.com/content/3/1/93

2 3 4 5 6 7 8 9101112 1314 15 16

C

mono-acylated|

Op
>
oc

@
(2]

o<
>0

non-acylated

>

origin

c
—— RREIIB stem-loop ——

[2]"]

POC COCOCOHNCCIH OOPOCH QOOPOOOC
> e

wt Rev [ng] - \QQ -

WtPRMT6[ng] - - - - - - SSLPL LSS - -

mut PRMT6 [ng] - - \QQ\QQ@QHQQw G o e e S s 1
&

OOC COCOCOOCCPO OOPOP OPOO
OO 2000 COQPCOOOCOC OCOG

— TAR bulge —
(2]
cCc

HeLacells & @ ¢

OO PROOPCOOPCO OOCOPO OOOCONOD

b
>

fold activation

O
O

TatRev TatRev+ TatRev + TatRev + TatRev + TatRev + TatRev + TatRev +
P6mut  PBmut Pewt PBwt PBsi PBsi+ P8si+

B (100) (500) (100) (500) Péwt PEwt
TAR TAR-RREIIB (100) (500)

+
-
i
i
+
2
'
"

Sequence of Tat-Rev D
(72 AA, Tat 49, Rev 14)

1 10 20
MEPVDFRLEP WKHPGSQPKT

21 30 40
ACTNCYCKKC CFHCQVCFIT origin
0 5 Tat-Rev - & &
41 5
A oS
KALGISYGRA AAATZOAZEN PRMTG [ng] O
34 40

e g g gt -

&~

& g gk aF o
BRI

K
S
SRS O P NS

61 70 72
RRRRRRRAAA AR
41 47

B HeLa cells
2

1 2 3

fold activation

-PRMTON | S s

i ——
=)
pSUPER  + x - 0 100 500  R38K @
PRMT6-siRNA - + - PRMTS [ng]

Figure 4

PRMT6 reduces the interaction between a Tat-Rev fusion protein and a TAR-RREIIB hybrid. A, Sequences of
TAR, TAR-RREIIB hybrid and Tat-Rev fusion protein. In TAR-RREIIB, the TAR bulge was replaced by the RREIIB stem-loop
(bold). The Tat-Rev fusion protein contains the first 49 amino acids of Tat and is linked to residues 34—47 of Rev (bold) by
means of four alanine residues (underscored). Arginine residues changed by mutagenesis are shaded in black. B, Knock-down of
PRMT6 by pSUPER .retro vector expressing PRMT6-siRNA. Hela cells expressing PRMT6-siRNA were established using the
pSUPER .retro-PRMT6 retroviral vector. Cell lysates were separated by SDS-PAGE and immunoblots were performed. The
bands corresponding to PRMT6 protein and the control B-actin are indicated by arrows. C, PRMTé reduces CAT expression
due to diminished Rev-RRE interaction. Hela cells stably transfected with mock siRNA (m, lanes 1-10) or PRMT6-siRNA (Pési,
lanes | 1-16) were co-transfected with plasmids expressing Tat-Rev (lanes 2,4,6,8,10,11,13,15), pHIV-LTR-RREIIB-CAT (lanes
I-16) and various amounts of myc-tagged PRMT6 (wild-type lanes 7—14, mutant lanes 3—6). At 48 hours post-transfection,
CAT assays were performed, separated by TLC and exposed (upper panel). Fold activations, i.e. results of samples (mono-
acylated species per total amount of chloramphenicol) divided by those of negative controls without Rev, were calculated from
quantified bands (lower panel). The migratory positions are indicated by arrows. Similar results were observed in each of three
separate assays. D, Mutant R38K is less susceptible to PRMT6 methyltransferase activity. Wild-type (lanes 2—4) and mutated
Tat-Rev fusion proteins (R35K lanes 8-10, R38K lanes 5-7 and R39K lanes | I-13) were co-transfected with variable amounts
of wild-type PRMT6 into Hela cells as described in C (upper panel). The migratory positions are indicated by arrows. Fold acti-
vations were calculated as described in C (lower panel). Similar results were obtained in each of three experiments.
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fied for levels of CAT shown as fold-activation (Fig. 4C).
Results with the Tat-Rev fusion protein alone or with Tat-
Rev co-transfected with various amounts of mutant
PRMT6 all showed activation levels around 14-fold. Fur-
thermore, no apparent effects of siRNA directed against
PRMT6 were detected, in part because intrinsic levels of
PRMT6 in the Hela cells used are low. In contrast, co-
transfection of Tat-Rev with various amounts of wild-type
PRMT6 revealed a PRMT6 dose-dependent reduction of
CAT levels by 1.8-fold. As expected, a similar trend was
observed in cells expressing siRNA against PRMT6 when
co-transfected with wild-type PRMT6, although CAT levels
decreased by only 1.3-fold in this circumstance.

Thus, PRMT6 reduces interaction between the ARM of Rev
and the RREIIB of the Rev response element, which is
most likely due to the methyltransferase activity of
PRMTG.

In a second assay, we wished to assess the role of the
arginine residues at positions 35, 38, and 39 of the ARM
of Rev, one of them being the target for arginine methyla-
tion by PRMT6. Therefore, single point mutations were
introduced substituting R to K in each case. The results
clearly show that all three mutations led to markedly
decreased expression of CAT in the absence of PRMT6,
indicating that the binding of Tat-Rev to the RRE was con-
siderably reduced (Fig. 4D). Interestingly, the mutant
R38K (28%) had the lowest amount of expressed CAT
compared to R35K (57%) and R39K (32%), although
R38K is not thought to be a main actor in binding to the
RRE [16]. This clearly shows that small changes can be
very detrimental to good Rev-RRE interaction.

Ideally, the fold-activation of one of these mutants with a
substituted lysine instead of the methyl-accepting
arginine should be PRMT6-independent; i.e. the absence
of a substrate should preclude alterations in RRE binding.
When co-expressing different amounts of PRMT6, CAT
expression was clearly reduced in a PRMT6-dependent
fashion for the wild-type Tat-Rev by 3-fold (Fig. 4D). A
similar drop of 3-fold was observed for the R35K mutant,
whereas the R39K mutant showed a 5-fold decrease. In the
case of R38K, levels of CAT remained at higher levels, cor-
responding to a 2-fold decrease, meaning that PRMTG6 can
still reduce RRE binding efficacy, albeit to a lesser extent
than for wild-type and the two other mutants.

These results are similar to those of the in vitro mutational
analysis; i.e. there is no definitive answer as to which of
the three residues is the target for arginine methylation by
PRMT6. However, the in vivo experiments show that inter-
action between the RRE and the Rev mutant R38K seems
to be less dependent on PRMT6 compared to wild-type or
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other mutant Rev proteins. Therefore, residue R38 is the
most likely target of arginine methylation by PRMT6.

PRMTé diminishes viral RNA export mediated by Rev

An obvious question is the possible impact of PRMT6 on
the export of unspliced or partially spliced viral RNA from
the nucleus to the cytoplasm, which is mediated by Rev.
To study this, we chose the plasmid pDM128 that con-
tains a portion of HIV-1 proviral DNA in which any HIV-
1 genes that are present have been inactivated by muta-
tions [60]. Therefore, the CAT gene, which has been intro-
duced into an intron, is the only gene that is translated
into a protein upon Rev-mediated export of the unspliced
viral RNA from the nucleus to the cytoplasm.

Levels of expressed CAT in transfected HeLa cells were vis-
ualized by TLC separation and fold-activations calculated
as described above (Fig. 5). Results for Rev alone or Rev
co-transfected with various amounts of mutant PRMT6
were all in the same range of 9- to 10-fold activation.
siRNA directed against PRMT6 only marginally increased
activation upon Rev transfection, which was still around
10-fold, showing that the HeLa cells used apparently
express low levels of intrinsic PRMTG6, consistent with the
results of the experiment described above on Rev-RRE
interactions. In contrast, over-expression of wild-type
PRMT6 decreased CAT levels by 5-fold in a PRMT6 dose-
dependent manner. In the case of wild-type PRMTG6, in the
presence of siRNA, activation levels were less reduced, i.e.
down by 3-fold, compared with results using mock siRNA;
the decline was also PRMT6 dose-dependent.

These results demonstrate that diminished RNA export is
likely a consequence of the methyltransferase activity of
PRMTG.

Conclusion

We have shown that the HIV-1 Rev protein is a substrate
of PRMT6. Mutational and mass spectrometric
approaches revealed that a single arginine residue located
in the N-terminal portion of the ARM of Rev is the target
for PRMT6, with R38 being the most likely methyl-accept-
ing residue. In vivo experiments revealed specific associa-
tion of Rev with the methyltransferase. Furthermore, Rev
protein levels were attenuated by both wild-type and a
methylase-inactive mutant PRMT6. However, real-time
PCR studies did not reveal any specific effects of PRMT6
on mRNA levels of Rev. Thus, Rev protein levels are atten-
uated posttranslationally by a still non-defined property
of PRMT6, independent of its methyltransferase activity.
We also demonstrated that only wild-type PRMT6
reduced interaction between Rev and the RRE and, even
more important, resulted in diminished Rev-mediated
viral RNA export from the nucleus to the cytoplasm. These
diminished functions are a direct consequence of the
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PRMT6é diminishes Rev mediated viral RNA export. Hela cells stably transfected with mock siRNA (m, lanes 1-10) or
siRNA against PRMT6 (Pé6si, lanes | 1-16) were co-transfected with pT-REx-DEST30-HRev (lanes 2,4,6,8,10,11,13,15), pDMI28
(CAT located in intron, lanes 1-16) and various amounts of myc-tagged PRMT6 (wild-type lanes 7—14, mutant lanes 3-6). At 48
hours post-transfection, CAT assays were exposed (upper panel) and fold activations calculated (lower panel) as described in
4C. The migratory positions are indicated by arrows. Similar results were observed in each of three separate assays.
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methyltransferase activity of PRMT6. Hence, PRMT6 has a
negative impact on HIV-1 Rev function.

Does this mean that arginine methylation of HIV-1 Rev by
PRMT6 represents a type of host defense mechanism that
can limit rates of viral replication? Reduced binding of Rev
to RRE and diminished export rates of unspliced and par-
tially spliced viral RNA are likely detrimental for the virus.
However, levels of PRMTG6 protein in the cells we have
studied are low. Conceivably, methyltransferase activity
may be required by the virus to fine-tune different stages
of its life cycle. Slightly reduced Rev activity may actually
provide benefit to HIV-1 in the context of non-linear Rev
function [1] and latency within cells [21,22]. Low levels of
Rev protein or low Rev activity, both modulated by
PRMT6 methyltransferase activity, led to abrogation of
nuclear export of unspliced RNA and may promote provi-
ral latency. This, in turn, could contribute to establish-
ment of latent proviral infection in CD4+ memory T cells.
Furthermore, Tat, which was also shown to be a target for
PRMT6, has reduced transactivation ability upon PRMT6
methyltransferase activity [52], slowing down transcrip-
tion of viral RNA, consistent with the latency hypothesis.

A recent report shows that methylation of viral proteins is
essential toward attaining optimal levels of HIV-1 infec-
tiousness [54], a conclusion that seems to contradict that
revealed in our work. However, the former study
employed an inhibitor that blocks all cellular methyl-
transferase activity, rather than one which specifically
interferes only with PRMT6, as we have done. Our find-
ings are more specific than those of Willemsen et al. [54],
who correctly point out that overall levels of protein
methylation are important in viral infectiousness. Thus,
these findings, which relate to methylation of both cellu-
lar and viral proteins, do not contradict our own in regard
to the specific methylation of Rev and other viral proteins
by PRMTG.

Inhibitors that target PRMT6 might provide a means of
forcing cells to exit latency, similar to inhibition of his-
tone deacetylase (HDAC) by means of valproic acid (VPA)
[61]. In this context, AMI1 may be an interesting drug,
since it might drive the virus from an early to a late phase
of infection, and provide a means of forcing latent provi-
ruses to switch to active replication.

Methods

Reagents

Glutathione-S-transferase  (GST)-tagged PRMT6 was
recloned from pGEX-6P1 [27] into pGEX-4T1 with restric-
tion enzymes EcoRI and BamHI. Histidine-tagged Tat86
and myc-epitope-tagged PRMT6 were prepared as previ-
ously described [52,62]. Histidine-tagged Rev was cloned
from a chimeric HIV-1 cDNA by polymerase chain reac-
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tion (PCR) in two stages. In a first step, both exons were
amplified separately, whereas the two products were
mixed together and amplified with the outer primers in a
second reaction. The following primers (Invitrogen) were
used: Exon 1 upper primer: 5'-C ACC ATG GCG CAT CAC
CAT CAC CAT CAC GCA GGA AGA AGC GGA GAC A-3/,
Exon 1 lower primer: 5'-T GGG AGG TGG GTT GCT TTG
ATA GAG AAG CIT GAT GA-3', Exon 2 upper primer: 5'-
CTC TAT CAA AGC AAC CCA CCT CCC AA-3', and Exon
2 lower primer: 5'-TTA CTA TTC TTT AGT TCC TGA CTC
CAA TACTGT AGG A-3' (start and stop in bold). The PCR
products were transferred into the vector pENTR/SD/D-
TOPO of the Gateway”® System (Invitrogen, Carlsbad, CA,
USA) by topoisomerase. These entry vectors were used to
transfer the genes into the expression vectors pDEST14
(bacterial expression) and pT-REx-DEST30 (mammalian
expression) by LR clonase.

Histidine-tagged mutant Rev proteins were generated with
the QuikChange® Site-Directed Mutagenesis Kit (Strata-
gene, La Jolla, CA, USA) with the following primers (Inv-
itrogen): R35A: 5'-CT CCC AAC CCC GAG GGG ACC
GCA CAG GCC CGA AGG AAT AG-3' and 5'-CT ATT CCT
TCG GGC CTG TGC GGT CCC CTC GGG GIT GGG AG-
3', R38A: 5'-GAG GGG ACC CGA CAG GCC GCA AGG
AAT AGA AGA AGA AG-3' and 5'-CT TCT TCT TCT ATT
CCT TGC GGC CTG TCG GGT CCC CTC-3', R39A: 5'-
GGG ACC CGA CAG GCC CGA GCG AAT AGA AGA AGA
AGG-3' and 5'-CCT TCT TCT TCT ATT CGC TCG GGC
CTG TCG GGT CCC-3', R41A: 5'-GA CAG GCC CGA AGG
AAT GCA AGA AGA AGG TGG AGA G-3' and 5'-C TCT
CCA CCT TCT TCT TGC ATT CCT TCG GGC CTG TC-3',
R42A: 5'-GA CAG GCC CGA AGG AAT AGA GCA AGA
AGG TGG AGA GAG-3' and 5'-CTC TCT CCA CCT TCT
TGC TCT ATT CCT TCG GGC CTG TC-3', R35K: 5'-C GAG
GGG ACC AAA CAG GCC CGA AGG AAT AG-3'and 5'-CT
ATT CCT TCG GGC CTG TIT GGT CCC CTC G-3', R38K:
5'-GGG ACC CGA CAG GCC AAA AGG AAT AGA AG-3'
and 5'-CT TCT ATT CCT TIT GGC CTG TCG GGT CCC-3',
and R39K: 5'-GA CAG GCC CGA AAG AAT AGA AGA AGA
AG-3' and 5'-CT TCT TCT TCT ATT CIT TCG GGC CTG
TC-3' (introduced mutations underlined).

The Tat-Rev fusion protein was described earlier [59].
Mutant Tat-Rev fusion proteins were also generated with
the QuikChange® II XL Site-Directed Mutagenesis Kit with
the following primers (Invitrogen): R35K: 5'-GT GCC
GCT GCA GCC ACC AAA CAG GCC AGG CGA AAC AG-
3'and 5'-CT GTT TCG CCT GGC CTG TIT GGT GGC TGC
AGC GGC AC-3', R38K: 5'-C GCT GCA GCC ACC AGA
CAG GCC AAG CGA AAC AGG AGA C-3' and 5'-G TCT
CCT GTIT TCG CIT GGC CTG TCT GGT GGC TGC AGC
G-3', and R39K: 5'-C ACC AGA CAG GCC AGG AAA AAC
AGG AGA CGG CGA CGT C-3' and 5'-G ACG TCG CCG
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TCT CCT GIT TIT CCT GGC CTG TCT GGT G-3' (intro-
duced mutations underlined).

The pHIV-LTR-RREIIB-CAT reporter plasmid is derived
from the pHIV-LTR-TAR-CAT [59]. Briefly, a portion of
TAR has been replaced by the RREIIB, which binds
strongly to Tat-Rev fusion proteins and ultimately leads to
expression of CAT. The pDM128 reporter plasmid, a kind
gift from the laboratory of Dr. Alan Frankel, UCSF, San
Francisco, CA, USA, was described earlier [60]. Briefly, the
CAT gene is located in an intron and is only expressed
upon export of the unspliced RNA by Rev, which binds to
RRE.

Anti-histidine-tag (Rb), anti-Rb 1gG (Gt, HRP coupled),
anti-myc-epitope (Mo) and anti-Mo IgG (Sh, HRP cou-
pled) antibodies were purchased from United States Bio-
logical (Swampscott, MA, USA). Anti-Rev (Rb) antibody
was a kind gift from the laboratory of Dr. Alan Cochrane,
University of Toronto, Toronto, Canada.

AMI1, a kind gift from the laboratory of Dr. Mark T. Bed-
ford, University of Texas, Smithville, TX, USA, was solubi-
lized in milliQ H,O at a concentration of 10 mM.

Methylation assays

1-2 pug of recombinant histidine-tagged Rev (wild-type or
mutated), Tat86, or bovine serum albumin (BSA) (New
England Biolabs, Pickering, ON, Canada) were incubated
with 3-4 pg GST-tagged PRMT6 in the presence or
absence of AMI1 together with 0.55 uCi of [methyl-3H]-S-
adenosyl-L-methionine (Perkin Elmer life sciences, Bos-
ton, MA, USA) and TE buffer (1.67 mM Tris, 0.33 mM
EDTA, pH 7.4) for 3 hours at 37°C in a final volume of 10
ul. Reactions were stopped by adding 10 pl of 2 x Limmli
buffer (Bio-Rad Laboratories, Hercules, CA, USA), fol-
lowed by boiling for 5 minutes and centrifugation at
16,000 g for 2 minutes. Samples were loaded on 15%
polyacrylamide gels containing sodium dodecyl sulfate
(SDS) and a high level of N,N,N',N'-tetramethylethylene-
diamine (TEMED). Gels were stained with Coomassie
brilliant blue R-250 solution (Bio-Rad Laboratories) and,
after destaining, soaked in Amplify (Amersham Bio-
sciences, Little Chalfont, Buckinghamshire, UK) for 30
minutes. Gels were dried and exposed for fluorography on
Hyperfilm MP (Amersham Biosciences) for 1 to 3 days.
Gels and films were quantified with GeneTools (Syn-
Gene) and the IC;, for AMI1 were calculated with Prism 4
(GraphPad Software Inc.).

Mass spectrometry

Methylated or untreated recombinant histidine-tagged
Rev was analyzed by liquid chromatography/mass spec-
trometry (LC/MS). Intact protein reaction mixtures were
first separated by LC on a C18 reversed phase biobasic
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picofrit column (New Objective) and then injected into a
Q-Trap 4000 (Sciex-Applied Biosystems, Concord, ON,
Canada). Molecular weight determinations were carried
out with BioAnalyst software that is part of Analyst 1.4.

Co-immunoprecipitation

Experiments were carried out with the ProFound™ Mam-
malian Co-Immunoprecipitation Kit (Pierce, Rockford,
IL, USA) in accordance with manufacturer's instructions.
Briefly, anti-histidine-tag antibody was coupled to an
amine reactive agarose gel, whereas a control gel was gen-
erated by using buffer instead of antibody. 60 pl Lipo-
fectamine 2000 per 1.5 ml of Dulbecco's modified Eagle
medium (DMEM) were mixed with 1.5 ml DMEM con-
taining 0 or 12 ug pT-REx-DEST30-HRev, and 0 or 12 pg
pVAX-mycPRMT6  (wild-type or methylase-inactive
mutant), and variable amounts (adjust total DNA to 24
ug) of pGEM for transfection into T-REx™-293 cells (Invit-
rogen). At 24 hours post-transfection, Rev expression was
induced by adding tetracycline to a final concentration of
1 pg/ml. After 24 hours, cells were harvested and lysed.
Cell lysates were bound to coupled or control gels,
washed, and bound proteins were eluted. Eluates were
separated on 15% polyacrylamide gels containing SDS
and high TEMED. Gels were immunoblotted with anti-
myc-epitope or anti-histidine-tag antibodies and detected
with secondary antibodies coupled to HRP using the
ECL™ Plus western blotting detection system on Hyper-
film ECL™ (Amersham Biosciences).

In vivo methylation

Similar experiments were described earlier [52]. Briefly,
HelLa cells were transfected with pT-REx-DEST30-HRev
and/or pVAX-mycPRMT6 (wild-type or mutant). At 24
hours post-transfection, the cells were pulse labeled with
L- [methyl-3H|-methionine (Amersham Biosciences) for 3
hours in the presence of cycloheximide (100 pg/ml) and
chloramphenicol (40 pg/ml) (both Sigma) in DMEM
lacking the amino acids methionine, cysteine and
glutamine to prevent protein synthesis. The cells were
lysed in RIPA buffer (150 mM NaCl, 50 mM Tris, 1%
NP40, 0.5% deoxycholic acid, 0.1% SDS, pH 8) contain-
ing complete mini EDTA-free protease inhibitor (Roche)
and processed as described for the methylation assays. Rev
was confirmed by western blot with anti-Rev antibody
detected with an anti-Rb antibody conjugated to HRP as
described above.

Real-time RT-PCR

10° HeLa cells stably transfected with siRNA against
PRMT6 [52] or empty pSUPER vector (Oligoengine, Seat-
tle, WA, USA) were seeded in 6 cm plates and incubated
for 24 hours. 20 ul Lipofectamine 2000 per 0.5 ml DMEM
were mixed with 0.5 ml DMEM containing 0 or 3 ug pT-
REx-DEST30-HRev, 0 or 3 ug pVAX-mycPRMT6 (wild-
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type or mutant), and variable amounts (adjust total DNA
to 9 ug) of pGEM for transfection. At 24 hours post-trans-
fection, cells were harvested and RNA isolated with the
RNeasy” Protect Mini Kit (Qiagen) according to manufac-
turers instructions, including on-column DNase I diges-
tion. 500 ng isolated RNA were used to synthesize cDNA
with the QuantiTect® Reverse Transcription Kit (Qiagen)
according to the manual.

Real-time PCR was carried out on a Rotor-Gene RG 6000
(Corbett Research, Sydney, Australia) using the RealMas-
terMix (2.5x) Kit (Eppendorf). In three independent
experiments, samples were measured in duplicates and
standards in triplicates. Briefly, cDNAs (25 ng of initial
RNA in RT reactions) were added to the master mix con-
taining 0.5 UM of each Rev primer (5'-GAC CTC CTC AAG
GCA GTC AGA-3' and 5'-CGC AGA TCG TCC CAG ATA
AGT-3', purchased from IDT, Coralville, 1A, USA) in a
final volume of 20 pl. As standard, 2 x 102to 2 x 107 cop-
ies/reaction of linearized pT-REx-DEST30-HRev were
used. After an initial denaturing step of 95°C for 2 min,
40 cycles of 95°C for 5 s, 48°C for 15 s, and 68°C for 15
s were performed, followed by a melting curve. To nor-
malize Rev levels we chose two different approaches: 1)
isolated total RNA amounts were determined on a Bio-
Photometer 6131 (Eppendorf) at 260 nm, or 2) GAPDH
levels were determined with the Hs_GAPDH_+_SG
QuantiTect® Primer Assay (Qiagen) and the qPCR Plasmid
Standard (High Abundance) (Invitrogen) with 2 x 102 to
2 x 107 copies/reaction. After an initial denaturing step of
95°C for 3 min, 40 cycles of 95°C for 10 s, 55°C for 15 s,
and 68°C for 15 s were performed, followed by a melting
curve. Mean Rev levels were normalized according to
mean GAPDH levels or total RNA amounts and quantities
were expressed in relation to the mean value measured in
mock siRNA HelLa cells transfected only with Rev.

Generation of HeLa cells stably expressing siRNA against
PRMTé

Oligonucleotides encoding siRNAs directed against
PRMT6 mRNA have been described previously [52] and
were purchased from Invitrogen (CA, USA). These oligo-
nucleotides were annealed and ligated into pSUPER.retro
(Oligoengine) downstream of the H1 promoter, giving
rise to the pSUPER.retro-PRMTG6 retroviral vector. The lat-
ter was used to transfect Phoenix packaging cells with
Lipofectamine 2000 (Invitrogen) to produce ecotropic
retroviral supernatants, which, at 48 hours post-transfec-
tion, were filtered through a 0.45 um filter. This filtrate
was then used to infect HeLa cells, and infected cells were
selected with puromycin (2 ug/ml) for two weeks. Stable
knock-down of the PRMT6 gene was determined by west-
ern blot analysis to ensure that knock-down, mediated by
PSUPER.retro, was maintained over long periods.
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CAT assay for Rev-RRE interaction

5 x 105 HelLa cells (PRMT6- or mock siRNA) were seeded
in 12-well plates and incubated for 24 hours. 4 ul Lipo-
fectamine 2000 (Invitrogen) per 0.1 ml DMEM were
mixed with 0.1 ml DMEM containing 100 ng pHIV-LTR-
RREIIB-CAT, 100 ng pSV2/TatRev (wild-type or mutated),
variable amounts (100/500 ng) of pVAX-mycPRMT6
(wild-type or mutant), and variable amounts (adjusted to
2 ug total DNA) of pGEM for transfection. At 48 hours
post-transfection, cells were harvested in 800 ul TEN
buffer (40 mM Tris, 1 mM EDTA, 150 mM NacCl, pH 7.5),
centrifuged, and cell pellets were resuspended in 80 pl Tris
(250 mM, pH 7.5) to carry out 3 freeze-thaw cycles. 50 pl
of cell lysate were mixed with 2 pul [14C]-chloramphenicol
(100 uCi/ml, Amersham), 20 pl acetyl-CoA (10 mg/ml,
Sigma) all in Tris (250 mM, pH 7.5) in a final volume of
150 pl and incubated for 1 hour at 37°C. 450 pl ethyl ace-
tate were added, mixed, centrifuged and 400 pl of the
upper ethyl acetate phase were dried for 15 minutes in a
Speed-vac centrifuge. Pellets were solubilized in 18 ul
ethyl acetate, separated by thin layer chromatography
(TLC) (20 x 20 cm, Merck) and exposed to Hyperfilm MP.

CAT assay for Rev-mediated RNA export

5 x 10> HeLa cells (PRMT6- or mock siRNA) were seeded
and transfected as described above, replacing pHIV-LTR-
RREIIB-CAT and pSV2/TatRev by pDM128 and pT-REx-
DEST30-HRev, respectively. CAT isolation, reaction and
separation was carried out as described above.

Authors' contributions

CFI carried out all work presented in the figures with one
exception noted below. CFI also drafted the manuscript.
BX cloned and isolated Tat86, PRMT6, and wild-type Tat-
Rev fusion protein, and stably transfected HeLa cells with
siRNA directed against PRMT6 or mock siRNA, and car-
ried out the experiments for figure 4B. SR provided the ini-
tial clones of PRMTG6, helped in concepts and design of in
vitro assays, and was involved in revising the manuscript.
MAW participated in the concept and design of the exper-
iments, and critically revised the manuscript. All authors
have read and approved the final manuscript.

Acknowledgements

We thank Dr. Mark T. Bedford for providing AMII, Dr. Alan Cochrane for
the anti-Rev antibody, Dr. Alan Frankel for the pDM128 plasmid, Daniela
Moisi and Michel Ntemgwa for DNA sequencing, and Dr. Marcos R. Di
Falco for mass spectrometry at McGill University and the Genome Québec
Innovation Centre.

This work was supported by a grant to M.A.W. from the Canadian Insti-
tutes of Health Research (CIHR). C.F.l. was partially supported by a Swiss
National Science Foundation (SNF) fellowship award.

References

I. Pollard VW, Malim MH: The HIV-I Rev protein. Annu Rev Micro-
biol 1998, 52:491-532.

Page 13 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9891806

Retrovirology 2006, 3:93

20.

21.

22.

Kalland KH, Szilvay AM, Langhoff E, Haukenes G: Subcellular distri-
bution of human immunodeficiency virus type | Rev and
colocalization of Rev with RNA splicing factors in a speckled
pattern in the nucleoplasm. | Virol 1994, 68:1475-1485.

Meggio F, D'Agostino DM, Ciminale V, Chieco-Bianchi L, Pinna LA:
Phosphorylation of HIV-1 Rev protein: implication of protein
kinase CK2 and pro-directed kinases. Biochem Biophys Res Com-
mun 1996, 226:547-554.

Fineberg K, Fineberg T, Graessmann A, Luedtke NW, Tor Y, Lixin R,
Jans DA, Loyter A: Inhibition of nuclear import mediated by
the Rev-arginine rich motif by RNA molecules. Biochemistry
2003, 42:2625-2633.

Sanchez-Velar N, Udofia EB, Yu Z, Zapp ML: hRIP, a cellular cofac-
tor for Rev function, promotes release of HIV RNAs from
the perinuclear region. Genes Dev 2004, 18:23-34.

Yi R, Bogerd HP, Cullen BR: Recruitment of the Crm| nuclear
export factor is sufficient to induce cytoplasmic expression
of incompletely spliced human immunodeficiency virus
mRNAs. | Virol 2002, 76:2036-2042.

Bogerd HP, Echarri A, Ross TM, Cullen BR: Inhibition of human
immunodeficiency virus Rev and human T-cell leukemia
virus Rex function, but not Mason-Pfizer monkey virus con-
stitutive transport element activity, by a mutant human
nucleoporin targeted to Crml. | Virol 1998, 72:8627-8635.

Yu Z, Sanchez-Velar N, Catrina IE, Kittler EL, Udofia EB, Zapp ML:
The cellular HIV-1 Rev cofactor hRIP is required for viral
replication. Proc Natl Acad Sci U S A 2005, 102:4027-4032.

Cote J, Boisvert FM, Boulanger MC, Bedford MT, Richard S: Samé8
RNA binding protein is an in vivo substrate for protein
arginine N-methyltransferase |. Mol Biol Cell 2003, 14:274-287.
Modem S, Badri KR, Holland TC, Reddy TR: Samé68 is absolutely
required for Rev function and HIV-1 production. Nucleic Acids
Res 2005, 33:873-879.

Dayton Al: Within you, without you: HIV-1 Rev and RNA
export. Retrovirology 2004, 1:35.

Malim MH, Bohnlein S, Hauber ], Cullen BR: Functional dissection
of the HIV-1 Rev trans-activator--derivation of a trans-dom-
inant repressor of Rev function. Cell 1989, 58:205-214.

Marin O, Sarno S, Boschetti M, Pagano MA, Meggio F, Ciminale V,
D'Agostino DM, Pinna LA: Unique features of HIV-1 Rev protein
phosphorylation by protein kinase CK2 (‘casein kinase-2').
FEBS Lett 2000, 481:63-67.

Fouts DE, True HL, Cengel KA, Celander DW: Site-specific phos-
phorylation of the human immunodeficiency virus type-I
Rev protein accelerates formation of an efficient RNA-bind-
ing conformation. Biochemistry 1997, 36:13256-13262.

Jensen TH, Jensen A, Szilvay AM, Kjems J: Probing the structure of
HIV-1 Rev by protein footprinting of multiple monoclonal
antibody-binding sites. FEBS Lett 1997, 414:50-54.

Battiste JL, Mao H, Rao NS, Tan R, Muhandiram DR, Kay LE, Frankel
AD, Williamson JR: Alpha helix-RNA major groove recognition
in an HIV-I rev peptide-RRE RNA complex. Science 1996,
273:1547-1551.

Daelemans D, Costes SV, Cho EH, Erwin-Cohen RA, Lockett S, Pav-
lakis GN: In Vivo HIV-1 Rev Multimerization in the Nucleolus
and Cytoplasm Identified by Fluorescence Resonance
Energy Transfer. | Biol Chem 2004, 279:50167-50175.

Surendran R, Herman P, Cheng Z, Daly TJ, Ching LJ: HIV Rev self-
assembly is linked to a molten-globule to compact structural
transition. Biophys Chem 2004, 108:101-119.

Furnes C, Arnesen T, Askjaer P, Kjems J, Szilvay AM: HIV-1 Rev oli-
gomerization is not obligatory in the presence of an extra
basic domain. Retrovirology 2005, 2:39.

Bobbitt KR, Addo MM, Altfeld M, Filzen T, Onafuwa AA, Walker BD,
Collins KL: Rev activity determines sensitivity of HIV-I-
infected primary T cells to CTL killing. Immunity 2003,
18:289-299.

Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE,
Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J,
Markowitz M, Ho DD, Richman DD, Siliciano RF: Identification of
a reservoir for HIV-1 in patients on highly active antiretrovi-
ral therapy. Science 1997, 278:1295-1300.

Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA,
Richman DD: Recovery of replication-competent HIV despite
prolonged suppression of plasma viremia. Science 1997,
278:1291-1295.

23.
24.

25.
26.

27.

28.
29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

http://www.retrovirology.com/content/3/1/93

Bedford MT, Richard S: Arginine methylation an emerging reg-
ulator of protein function. Mol Cell 2005, 18:263-272.

Gary D, Clarke S: RNA and protein interactions modulated by
protein arginine methylation. Prog Nucleic Acid Res Mol Biol 1998,
61:65-131.

McBride AE, Silver PA: State of the arg: protein methylation at
arginine comes of age. Cell 2001, 106:5-8.

Boisvert FM, Cote ], Boulanger MC, Richard S: A Proteomic Anal-
ysis of Arginine-methylated Protein Complexes. Mol Cell Pro-
teomics 2003, 2:1319-1330.

Frankel A, Yadav N, Lee ], Branscombe TL, Clarke S, Bedford MT:
The novel human protein arginine N-methyltransferase
PRMT6 is a nuclear enzyme displaying unique substrate spe-
cificity. | Biol Chem 2002, 277:3537-3543.

Strahl BD, Allis CD: The language of covalent histone modifica-
tions. Nature 2000, 403:41-45.

Zhang Y, Reinberg D: Transcription regulation by histone
methylation: interplay between different covalent modifica-
tions of the core histone tails. Genes Dev 2001, 15:2343-2360.
Khorasanizadeh S: The nucleosome: from genomic organiza-
tion to genomic regulation. Cell 2004, 116:259-272.

Lee DY, Teyssier C, Strahl BD, Stallcup MR: Role of protein meth-
ylation in regulation of transcription. Endocr Rev 2005,
26:147-170.

Miranda TB, Miranda M, Frankel A, Clarke S: PRMT7 is a member
of the protein arginine methyltransferase family with a dis-
tinct substrate specificity. | Biol Chem 2004, 279:22902-22907.
Lin WJ, Gary JD, Yang MC, Clarke S, Herschman HR: The mamma-
lian immediate-early TIS21 protein and the leukemia-associ-
ated BTGI protein interact with a protein-arginine N-
methyltransferase. | Biol Chem 1996, 271:15034-15044.

Scott HS, Antonarakis SE, Lalioti MD, Rossier C, Silver PA, Henry MF:
Identification and characterization of two putative human
arginine methyltransferases (HRMTILI and HRMTIL2).
Genomics 1998, 48:330-340.

Tang ), Gary JD, Clarke S, Herschman HR: PRMT 3, a type | pro-
tein arginine N-methyltransferase that differs from PRMTI
in its oligomerization, subcellular localization, substrate spe-
cificity, and regulation. | Biol Chem 1998, 273:16935-16945.
Zhang X, Zhou L, Cheng X: Crystal structure of the conserved
core of protein arginine methyltransferase PRMT3. EMBO |
2000, 19:3509-3519.

Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW,
Stallcup MR: Regulation of transcription by a protein methyl-
transferase. Science 1999, 284:2174-2177.

Lee ), Sayegh J, Daniel ], Clarke S, Bedford MT: PRMTS8, a new
membrane-bound tissue-specific member of the protein
arginine methyltransferase family. | Biol Chem 2005,
280:32890-32896.

Pollack BP, Kotenko SV, He W, lIzotova LS, Barnoski BL, Pestka S:
The human homologue of the yeast proteins Skbl and Hsl7p
interacts with Jak kinases and contains protein methyltrans-
ferase activity. | Biol Chem 1999, 274:31531-31542.

Branscombe TL, Frankel A, Lee JH, Cook JR, Yang Z, Pestka S, Clarke
S: PRMTS5 (Janus kinase-binding protein |) catalyzes the for-
mation of symmetric dimethylarginine residues in proteins.
J Biol Chem 2001, 276:32971-32976.

Lee JH, Cook JR, Yang ZH, Mirochnitchenko O, Gunderson SI, Felix
AM, Herth N, Hoffmann R, Pestka S: PRMT7, a new protein
arginine methyltransferase that synthesizes symmetric
dimethylarginine. | Biol Chem 2005, 280:3656-3664.

Cook JR, Lee JH, Yang ZH, Krause CD, Herth N, Hoffmann R, Pestka
S: FBXOII/PRMTY, a new protein arginine methyltrans-
ferase, symmetrically dimethylates arginine residues. Bio-
chem Biophys Res Commun 2006, 342:472-481.

Kzhyshkowska ], Schutt H, Liss M, Kremmer E, Stauber R, Wolf H,
Dobner T: Heterogeneous nuclear ribonucleoprotein EIB-
APS5 is methylated in its Arg-Gly-Gly (RGG) box and inter-
acts with human arginine methyltransferase HRMTILI. Bio-
chem | 2001, 358:305-314.

Miranda TB, Webb K|, Edberg DD, Reeves R, Clarke S: Protein
arginine methyltransferase 6 specifically methylates the
nonhistone chromatin protein HMGAIla. Biochem Biophys Res
Commun 2005, 336:831-835.

Bannister AJ, Schneider R, Kouzarides T: Histone methylation:
dynamic or static? Cell 2002, 109:801-806.

Page 14 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8806671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8806671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8806671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12614157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12614157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14701878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14701878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14701878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9765402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9765402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9765402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15749819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15749819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15749819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15516266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15516266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2752419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2752419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2752419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10984616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10984616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9341215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9341215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9341215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9305730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9305730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9305730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8703216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8703216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15294891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15294891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15294891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15043924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15043924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15043924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15949040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15949040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15949040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12594955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12594955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9360927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9360927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9360927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9360926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9360926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15866169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15866169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9752719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9752719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11461695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11461695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10638745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10638745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11562345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11562345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11562345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14744436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14744436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15479858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15479858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8663146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8663146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8663146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9545638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9545638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9642256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9642256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9642256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10381882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10381882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16051612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16051612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16051612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10531356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10531356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10531356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11413150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11413150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16487488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16487488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11513728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11513728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11513728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110177

Retrovirology 2006, 3:93

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

6l.

62.

Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagi-
wara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ,
Kouzarides T: Histone deimination antagonizes arginine
methylation. Cell 2004, 1 18:545-553.

Wang Y, Wysocka ], Sayegh |, Lee YH, Perlin R, Leonelli L, Sonbuch-
ner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stall-
cup MR, Allis CD, Coonrod SA: Human PAD4 regulates histone
arginine methylation levels via demethylimination. Science
2004, 306:279-283.

Cheng D, Yadav N, King RW, Swanson MS, Weinstein EJ, Bedford
MT: Small molecule regulators of protein arginine methyl-
transferases. | Biol Chem 2004, 279:23892-23899.

Li Y], Stallcup MR, Lai MM: Hepatitis delta virus antigen is meth-
ylated at arginine residues, and methylation regulates sub-
cellular localization and RNA replication. | Virol 2004,
78:13325-13334.

Shire K, Kapoor P, Jiang K, Hing MN, Sivachandran N, Nguyen T,
Frappier L: Regulation of the EBNAI Epstein-Barr virus pro-
tein by serine phosphorylation and arginine methylation. |
Virol 2006, 80:5261-5272.

Duong FH, Christen V, Berke JM, Penna SH, Moradpour D, Heim MH:
Upregulation of Protein Phosphatase 2Ac by Hepatitis C
Virus Modulates NS3 Helicase Activity through Inhibition of
Protein Arginine Methyltransferase |I. J Virol 2005,
79:15342-15350.

Boulanger MC, Liang C, Russell RS, Lin R, Bedford MT, Wainberg MA,
Richard S: Methylation of Tat by PRMTé6 regulates human
immunodeficiency virus type | gene expression. | Virol 2005,
79:124-131.

Kwak YT, Guo J, Prajapati S, Park KJ, Surabhi RM, Miller B, Gehrig P,
Gaynor RB: Methylation of SPT5 regulates its interaction with
RNA polymerase Il and transcriptional elongation proper-
ties. Mol Cell 2003, 11:1055-1066.

Willemsen NM, Hitchen EM, Bodetti T), Apolloni A, Warrilow D,
Piller SC, Harrich D: Protein methylation is required to main-
tain optimal HIV-1 infectivity. Retrovirology 2006, 3:92.

Bustin SA: Absolute quantification of mMRNA using real-time
reverse transcription polymerase chain reaction assays. | Mol
Endocrinol 2000, 25:169-193.

Bustin SA: Quantification of mMRNA using real-time reverse
transcription PCR (RT-PCR): trends and problems. | Mol
Endocrinol 2002, 29:23-39.

Bustin SA, Nolan T: Pitfalls of quantitative real-time reverse-
transcription polymerase chain reaction. | Biomol Tech 2004,
15:155-166.

Bulau P, Zakrzewicz D, Kitowska K, Wardega B, Kreuder |, Eickelberg
O: Quantitative assessment of arginine methylation in free
versus protein-incorporated amino acids in vitro and in vivo
using protein hydrolysis and high-performance liquid chro-
matography. Biotechniques 2006, 40:305-310.

Harada K, Martin SS, Tan R, Frankel AD: Molding a peptide into
an RNA site by in vivo peptide evolution. Proc Natl Acad Sci U §
A 1997, 94:11887-11892.

Hope TJ, Huang X], McDonald D, Parslow TG: Steroid-receptor
fusion of the human immunodeficiency virus type | Rev
transactivator: mapping cryptic functions of the arginine-
rich motif. Proc Natl Acad Sci U S A 1990, 87:7787-7791.

Ylisastigui L, Archin NM, Lehrman G, Bosch R}, Margolis DM: Coax-
ing HIV-1 from resting CD4 T cells: histone deacetylase inhi-
bition allows latent viral expression. AIDS 2004, 18:1101-1108.
Kameoka M, Rong L, Gotte M, Liang C, Russell RS, Wainberg MA:
Role for human immunodeficiency virus type | Tat protein
in suppression of viral reverse transcriptase activity during
late stages of viral replication. | Virol 2001, 75:2675-2683.

http://www.retrovirology.com/content/3/1/93

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 15 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15056663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15056663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15542683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15542683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15542683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16699006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16699006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16306605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16306605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16306605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15596808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15596808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12718890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12718890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12718890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17169163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17169163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11013345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11013345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15331581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15331581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16568819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16568819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16568819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9342332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9342332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2217212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2217212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2217212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15166525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15166525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15166525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222691
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	HIV-1 Rev is specifically methylated by PRMT6
	PRMT6 methylates Rev in vivo and attenuates Rev protein levels
	PRMT6 reduces binding of Rev to RRE
	PRMT6 diminishes viral RNA export mediated by Rev

	Conclusion
	Methods
	Reagents
	Methylation assays
	Mass spectrometry
	Co-immunoprecipitation
	In vivo methylation
	Real-time RT-PCR
	Generation of HeLa cells stably expressing siRNA against PRMT6
	CAT assay for Rev-RRE interaction
	CAT assay for Rev-mediated RNA export

	Authors' contributions
	Acknowledgements
	References

