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Abstract
Studies of retroviral mRNA export identified two distinct RNA export elements utilizing conserved
eukaryotic mRNA export mechanism(s), namely the Constitutive Transport Element (CTE) and
the RNA Transport Element (RTE). Although RTE and CTE are potent in nucleocytoplasmic
mRNA transport and expression, neither element is as powerful as the Rev-RRE
posttranscriptional control. Here, we found that whereas CTE and the up-regulatory mutant
RTEm26 alone increase expression from a subgenomic gag and env clones, the combination of these
elements led to a several hundred-fold, synergistic increase. The use of the RTEm26-CTE
combination is a simple way to increase expression of poorly expressed retroviral genes to levels
otherwise only achieved via more cumbersome RNA optimization. The potent RTEm26-CTE
element could be useful in lentiviral gene therapy vectors, DNA-based vaccine vectors, and gene
transfer studies of other poorly expressed genes.

Background
Posttranscriptional events determine the fate of cellular
and viral mRNAs through concerted actions promoting
nuclear trafficking and cytoplasmic transport, stabiliza-
tion and translation. Simian type D (SRV/D) retroviruses
and intracisternal A-particle retroelements (IAP) have pro-
vided us with unique mRNA transport elements, which
utilize conserved cellular export machinery [1-13]. The
export of the SRV/D unspliced mRNA is mediated by the

cis-acting constitutive transport element CTE [8,10-13]
through interaction with the cellular NXF1 protein [1],
which is also the key factor mediating general mRNA
export [1-5], a property which is conserved among eukary-
otes (reviewed in [14-16]). We previously identified
another functionally similar but structurally unrelated
posttranscriptional RNA Transport Element RTE [6,7],
which is present in a subgroup of murine IAP. Both CTE
and RTE utilize the conserved eukaryotic mRNA transport
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machinery. Here, we demonstrate that the combination of
RTE and CTE in cis leads to synergistic increase in lentiviral
gene expression.

Results
Synergistic activation of gene expression in the presence of 
a combination of RTE-CTE
Since the presence of RTE or CTE positively affects produc-
tion of poorly expressed retroviral genes, we asked
whether the RTE-CTE combination in cis has an additive
or synergistic effect on gene expression. For this, we used

the up-regulatory mutant RTE (RTEm26) (Figure 1A),
known to increase RTE function by 2-fold [7], in combi-
nation with the SRV-1 CTE. The reporter plasmids used for
these studies encode HIV-1 gag or env genes (Figures 1 and
2), which are known to be poorly expressed in the absence
of a positive-acting posttranscriptional regulatory system
[17-29]. In pNLgagRTEm26-CTE, the RTEm26 was
inserted 5' to the CTE into reporter pNLgagCTE (Figure
1A). Upon transfection into human HeLa cells, we found
that whereas RTEm26 or CTE alone activated Gag produc-
tion by ~20-fold and ~50-fold, respectively (Figure 1B) as

RTEm26-CTE is a potent combination of RNA transport elementsFigure 1
RTEm26-CTE is a potent combination of RNA transport elements. A) Structure of the gag reporter plasmid. The 
HIV-1 gag gene is flanked by the 5' and 3'LTRs providing promoter and polyadenylation signals, respectively. NLgag contains the 
major splice donor of HIV-1 located 5' to gag and a cryptic splice acceptor between RNA export elements and the 3'LTR and 
expresses HIV-1 gag [23, 24, 39]. The RTE structure [7] shows the nucleotide changes in mutant RTEm26 (nt 190–193 CACA 
changed to GCGG). The 226-nt RTE and the 173-nt CTE were inserted between the gag gene and the 3'LTR, generating the 
NLgagRTEm26-CTE. B) Expression of the gag reporter pNLgag plasmids, containing either no insert, RTEm26 or CTE alone, 
or the RTEm26-CTE combination. Cell extracts from transfected HeLa cells were analyzed for Gag production using an HIV-1 
gag antigen capture assay. Gag expression is presented as fold induction as compared to the gag levels produced by pNLgag. 
Standard deviations are shown. C) Northern blots of total polyA-containing (top panel) and cytoplasmic (bottom panel) 
mRNAs from cells transfected with pNLgag or pNLgag containing RTEm26, CTE, or RTEm26-CTE were hybridized with a 
probe spanning the 3'end of the gag mRNAs [12]. Hybridization of the blot with a GFP probe serves as internal control of 
transfection efficiency and RNA preparation. The blots shown in the top and bottom panels are from two independent exper-
iments. Note that the cytoplasmic poly-A mRNA samples are unequally loaded, and the CTE lane has 2.5-fold more GFP 
mRNA while the RTEm26-CTE lane has 60% of the GFP mRNA compared to the other lanes (no insert, RTEm26). The blots 
were quantitated using the STORM860 phosphoimager.
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expected, the combination of these elements had a syner-
gistic effect, leading to a dramatic ~570-fold activation
(Figure 1B). Synergy was only observed when the ele-
ments were present in cis, but not upon co-transfection of
the RTE- and CTE-containing reporters within the same
cells (data not shown). Similar data were obtained by
using a splice donor-deleted gag reporter, pNLcgag [24],
which only produces an unspliced gag mRNA [24]. This
experiment suggests that the synergistic effect of RTEm26-
CTE is independent of splicing (data not shown). Analysis
of total poly-A containing mRNAs from the transfected
HeLa cells (Figure 1C) showed that the presence of either
element alone elevated gag mRNA levels (4- and 12-fold,
respectively) and the RTEm26-CTE combination resulted
in a further increase (29-fold). Analysis of cytoplasmic
mRNA (Figure 1C, bottom panel) confirmed that
RTEm26-CTE promotes an increase of the cytoplasmic
level of the reporter gag mRNA that is in accord with ele-
vated levels of Gag protein production. We also noted a
reproducible difference in the increase of gag mRNA and
Gag protein levels, suggesting that posttranscriptional reg-
ulation was affected at all steps from transport, stabiliza-
tion to translation. This is in accord with previous
observations [30-33] that posttranscriptional regulation
of such mRNAs includes both export and translation.

Synergistic effect of RTEm26CTE on HIV-1 env expression
To rule out that the observed synergistic effect is a unique
feature of the gag reporter mRNA, we inserted RTEm26-
CTE into an HIV-1 env reporter plasmid pNL1.5E (Figure
2A), expressing the authentic env cDNA from the HIV-1
LTR promoter. Like gag, env is poorly expressed (Figure 2B,
lane 8) in the absence of a positive-acting export system,
as expected. Both plasmids, containing either CTE (lanes
1, 2) or RTE (lanes 3, 4) alone, showed ~10× fold increase
in Env production compared to the pNL1.5E (lane 8). The
presence of RTEm26-CTE led to an additional increase in
Env production (lane 5). A semi-quantitative analysis
using serial dilutions (lanes 5–7) of the cell extract shows
a ~100× fold activation, confirming synergistic effect of
RTEm26-CTE. This expression level was comparable to
that obtained in the presence of Rev (lanes 9–11). These
data demonstrate that the synergistic effect of the combi-
nation of RTEm26-CTE export elements is applicable for
different poorly expressed, unstable HIV-1 mRNAs.

Synergistic effect of RTEm26CTE on expression of a Rev- 
and RRE-deficient HIV-1 and SIV molecular clones
To test the synergistic potency of the RTEm26-CTE in a
more complex system, we inserted the combination ele-
ment into the Rev- and RRE-minus molecular clones of
HIV-1 NL4-3 (Figure 3) and SIVmac239 (Figure 4). Both
of these viruses are unable to produce structural proteins
or infectious virus in the absence of the viral Rev/RRE reg-
ulatory system [6,11,12,19,23,34,35] (see also Figure 3B).

Upon insertion of CTE or RTE alone into the Rev- and
RRE-minus NL4-3, we had previously shown that these
RNA transport elements are able to partially replace the
viral Rev-RRE system resulting in the production of infec-
tious virus [6,9,11,12] (Figure 3B and 3C). Interestingly,
Western immunoblot analysis showed that the presence
of RTEm26-CTE mediated a dramatic synergistic increase
in expression of both env and gag compared to the clones
containing each element alone (Figure 3B). Quantitation
of gag expression using an antigen capture assay showed
an increase of ~1 log over the presence of CTE or RTE
alone. The expression level in the presence of RTEm26-
CTE was only slightly lower (~3x-fold) than those
obtained by the wild type HIV-1 NL4-3 (Figure 3B). Upon
infection of Jurkat cells, the RTEm26-CTE containing Rev-
independent HIV-1 clone as well as the RTE- or CTE-con-
taining clones showed similar replicative capacities to lev-
els ~1 log lower than that of the wild type HIV-1 (Figure
3C). Thus, the presence of RTEm26-CTE is able to pro-
mote a balanced expression of the viral proteins able to
generate infectious virus.

Similarly, we found that the presence of RTEm26-CTE
also greatly increased expression of the Rev- and RRE-
minus molecular clone of SIVmac239 (Figure 4B) to levels

RTEm26-CTE synergistically increase HIV-1 env productionFigure 2
RTEm26-CTE synergistically increase HIV-1 env pro-
duction. A) The structure of the env cDNA plasmid 
pNL1.5E containing the RTEm26-CTE. The env gene contains 
the Rev-responsive element RRE within env and is expressed 
from the HIV-1 LTR promoter. RTE, CTE and RTEm26-CTE 
were inserted between the env gene and the 3' LTR. B) HLtat 
cells were transfected with the indicated plasmids and ana-
lyzed for Env production by Western blot analysis using a 
rabbit anti-HIV-1 env serum.
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about ~10x-fold higher than those obtained by SIV clone
containing only the CTE. Like its HIV counterpart, the
RTEm26-CTE-containing SIV produces infectious virus
(Figure 4C). We noted that it replicates with growth kinet-
ics similar to the wild type SIV, in both CEMx174 cells
(Figure 4C) and monkey PBMCs (data not shown),
despite its slightly reduced level of expression (Figure 4B).
In contrast to its HIV counterpart, the presence of the
more potent RNA export element combination improved
the replicative capacity when compared to the virus that

contains only the CTE (compare peak at day 14 postinfec-
tion). Since we could not test propagation of SIV and HIV
in the same cell types, it is possible that cellular factors
may contribute to this phenomenon and this was not fur-
ther investigated.

In conclusion, we have shown that the potent posttran-
scriptional effect of the RTEm26-CTE combination of
RNA export elements from simple expression vectors (Fig-
ures 1 and 2) as well as from the complex array of mRNAs

RTEm26-CTE replaces Rev/RRE of HIVFigure 3
RTEm26-CTE replaces Rev/RRE of HIV. A) Structure of rev and RRE-minus HIV-1 containing RTEm26-CTE. Multiple 
point mutations inactivate both rev and RRE. CTE, RTE or RTEm26-CTE were inserted between env and the 3'LTR, rendering 
these clones nef-minus. B) Human 293 cells were transiently transfected with the indicated plasmids. Two days later, cell 
extracts were analyzed on Western immunoblots using HIV patient sera. Total intra- and extracellular Gag production was 
measured using commercial HIV p24 antigen capture assays and GFP production was quantitated. Normalized values (total gag 
in pg/total GFP units) are shown. C) HIV propagation in Jurkat cells. Transfected 293 cells were cocultivated with Jurkat cells: 
wild type NL4-3 (filled triangle), the Rev-independent HIV containing RTEm26-CTE (two clones filled diamond, open circle), 
CTE (open triangle), RTE (filled circle), and no insert (open diamond). Virus production was monitored over time using a com-
mercial HIV p24gag antigen capture assay. Similarly, upon cell-free infection (not shown), the RTEm26-CTE replicates to a sim-
ilar extent like the RTE- or CTE-containing Rev-independent HIV viruses.
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produced from the molecular clones of HIV and SIV (Fig-
ures 3 and 4).

Synergy depends on the spatial arrangement of RTEm26 
and CTE
To further understand the mechanism of the synergistic
effect we generated a series of RTE-CTE containing plas-
mids with variations in the type of elements and their spa-
tial arrangement. Since all our expression vectors utilize

the 3' LTR as polyadenylation signal, we first asked
whether the choice of this signal could contribute to the
synergistic effect. Replacing the HIV-1 polyadenylation
signal with that of the bovine growth hormone had no
effect (data not shown). Next, we tested the effect of wild
type RTE instead of the up-regulatory mutant RTEm26.
Figure 5A shows that the substitution of RTEm26 within
the context of the combination element with the wild type
RTE led to a ~2-fold lower expression. This reduction can

RTEm26-CTE replaces rev/RRE of SIVFigure 4
RTEm26-CTE replaces rev/RRE of SIV. A) Structure of the rev- and RRE-minus SIVmac239 containing RTEm26-CTE. Mul-
tiple point mutations inactivate both rev and RRE of SIVmac239. CTE or RTEm26-CTE was inserted between env and the 
3'LTR. B) Human 293 cells were transiently transfected with the indicated plasmids. Two days later, cells and supernatant were 
analyzed for gag and env expression. Intracellular (1/10 of cell extract) and extracellular (1/150 of supernatant) were analyzed 
on Western immunoblots using a serum pool from SIV-infected monkeys. Total intra- and extracellular Gag production was 
measured using commercial SIV p27gag antigen capture assay and GFP production was quantitated. Normalized values (total 
gag in pg/total GFP units) are shown. C) SIV propagation in CEMx174 cells. Virus stock were generated upon cocultivation of 
transfected 293 cells with CEMx174 cells and then used to infect fresh CEMx174 cells: wild type SIVmac239 (filled triangle), 
two stocks containing the Rev-independent SIV containing CTE (filled circle and X, respectively), and two stocks containing the 
RTEm26-CTE (filled diamond and open square, respectively). Virus production was monitored over time using a commercial 
SIV p27gag antigen capture assay.
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be explained by the 50% reduced activity of the wild type
RTE compared to RTEm26 [7]. To further support the
notion that active elements are required for synergy, we
tested the combination of RTEm26 and the inactive CTE
(mutant CTEm36 [8]), which lacks the NXF1 binding site
but maintains the overall secondary structure. This combi-
nation of elements showed activity similar to a single
RTEm26 (data not shown). Therefore, to achieve maximal

synergistic effect requires the presence of both elements in
their most active form.

We then tested whether the spatial arrangement of
RTEm26 and CTE contributed to the synergistic effect.
First, the reversal of the order of the elements from
RTEm26-CTE to CTE-RTEm26 (Figure 5B) showed that
the combination of the elements functions similarly in
either configuration. Second, the 28 nt spacer between the
elements was increased by insertion of a 325-nt spacer
sequence (SP1), which led to a significant loss of synergy
(Figure 5B). To exclude that the nature of the spacer RNA
contributed to this effect, a different RNA fragment (SP2)
was used (Figure 5B), resulting in a similar decrease in gag
expression. Separation of the elements by shorter spacers
of 202 and 100 nt led to gradual decrease in RTEm26-CTE
activity (data not shown). Thus, the optimal synergistic
effect requires the up-regulatory mutant RTE (RTEm26)
and a functional CTE at close proximity.

The question arose whether multimers of CTE or RTE
alone could achieve a similar effect. The presence of a CTE
multimer has been reported to improve expression i.e.
4xCTE in a gag/pol reporter further elevated expression but
this depended on the nature of the polyA signal [36],
whereas multiple copies of the CTE had little or no effect
in other mRNAs ([36], our own observations), suggesting
that an effect of CTE multimers depended on the mRNA
context. Using the gag reporter plasmid used herein, pNL-
gag, we found that two adjacent CTE elements also syner-
gized reaching ~75% of the effect observed for RTEm26-
CTE. In contrast, we found that RTEm26 does not syner-
gize with itself. Thus, while the effect of CTE multimers is
transcript dependent, the RTEm26-CTE mediated syner-
gistic increase in gene expression was persistently
observed using different mRNAs (Figures 1, 2, 3, 4). Most
importantly, the use of RTEm26-CTE has another great
advantage, because this combination avoids the presence
of adjacent repeated sequences, which may cause plasmid
instability during growth in bacteria.

Discussion
The rather unexpected finding of this work was that the
combination of two retroviral/retroelement-derived cis-
acting RNA export elements, RTE and CTE, synergistically
increased expression of different retroviral mRNAs that
are otherwise poorly expressed (Figures 1, 2, 3, 4). Since
the function of RTEm26-CTE is conserved in mammalian
cells, their integration into expression vectors provides a
potent tool to improve expression of poorly expressed,
unstable retroviral mRNAs to levels otherwise only
achieved via more cumbersome RNA optimization.

Whereas the main restriction retroviral mRNAs encounter
is their nucleocytoplasmic transport, other mRNAs may

Optimal design of RTEm26-CTE combination elementFigure 5
Optimal design of RTEm26-CTE combination ele-
ment. A) Expression of pNLgag containing up-regulatory 
mutant RTEM26 or the wild type RTE in combination with 
the CTE. HeLa cells were transfected with the independent 
clones of indicated plasmids and analyzed for Gag expression 
as described in Figure 1. Standard deviations are shown. B) 
Organization of RTEm26-CTE element. pNLgag containing 
either RTEm26-CTE or the CTE-RTEm26, having the ele-
ments in reverse order separated by a 28-nt polylinker 
spacer, were analyzed. A spacer of 325 nt from either a syn-
thetic HIV-1 tat gene (SP1) or from the cat gene (SP2) were 
inserted between RTEm26 and CTE in pNLgagRTEm26-CTE. 
A typical experiment is shown using the average of two to 
four plasmids per construct. The data are presented in % of 
Gag production by normalizing the values produced by 
pNLgagRTEm26-CTE to 100%.
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have different restrictions. The question arises whether the
RTEm26-CTE combination has any effect on the expres-
sion of genes or cDNAs, which have posttranscriptional
restrictions other than those of the lentiviral mRNAs. No
improvement of expression was found using either the
RTE, the CTE or the RTEm26-CTE combination in a
MuLV-derived retroviral vector [37], while insertion of the
woodchuck element WPRE augmented expression of this
MuLV mRNA. These data indicate that oncoretrovirus and
lentivirus expression have distinct restrictions. We further
tested whether the presence of these RNA export elements
could counteract posttranscriptional control that is not
exerted at the RNA transport level but only involves cyto-
plasmic control. We noted that these export elements, as
expected, did not alleviate the downregulatory effect of
the AU-rich element (ARE)-containing IL-3 mRNA using
the GFP-IL-3 hybrid mRNAs as a model system [38]. Thus,
this finding supports the specific mechanism of function
of the RTE, CTE and RTEm26-CTE, namely nucleocyto-
plasmic export. For this reason, we tested RTEm26-CTE
effect upon insertion into some of our already RNA-opti-
mized HIV and SIV gag and env cDNAs vectors, whose
mRNAs are efficiently exported leading to very high
expression in cultured cells. As expected, we only found a
less than 2-fold effect on this already optimized mRNAs.
It remains to be tested whether export signals like the
RTEm26-CTE could act as additional positive acting sig-
nals and mediate higher expression levels in primary cells,
for example upon DNA vaccination of animals or using
gene transfer vectors.

NXF1 provides a key molecular link between mRNA and
components of the nuclear pore complex. A possible
model to explain the synergistic effect of RTE and CTE is
that the duplication of these export elements may provide
an improved target for NXF1 resulting in more efficient
nucleocytoplasmic mRNA transport. Using in vitro gel-
shift assays, we found that the binding of NXF1 (aa 61–
372) to radiolabeled CTE is competed similarly by both
excess cold CTE as well as RTEm26-CTE RNAs (data not
shown). These data indicate that NXF1 binds to CTE as
well as to the RTEm26-CTE RNA targets with similar affin-
ity. We have previously shown that NXF1 is not a high
affinity binder of RTE when compared to the CTE [6], sug-
gesting the role of a distinct cellular protein mediating
RTE RNA export. It is plausible that this putative factor
tethers the RTE-RNAs directly or indirectly to the NXF1
pathway. Therefore, it is likely that the putative RTE-bind-
ing protein and NXF1 may act cooperatively. Studies are
on-going to delineate the detailed mechanism of function
mediating this cooperativity.

mRNA expression is controlled at several steps including
nuclear export, cytoplasmic trafficking and polysomal
association. The use of strong mRNA export elements is a

powerful tool to alleviate restrictions linked to nuclear
export. For a subset of lentiviral mRNAs encoding gag, pol
or env, posttranscriptional control has been shown at mul-
tiple steps of export and polysomal association. The pres-
ence of potent RNA export elements is sufficient to
alleviate all of theses restrictions. Integration of RTEm26-
CTE into lentiviral vectors will increase gene expression
essential for applications such as in gene therapy that are
otherwise only obtained through RNA optimization. For
DNA-based vaccine vectors, it remains to be seen whether
the presence of strong binding sites for the cellular mRNA
transport machinery is of further advantage when intro-
duced into primary tissues in animals as compared to cul-
tured cells. In addition, these retroviral/retroelement
derived RNA export elements provide unique tools to fur-
ther dissect mechanisms involved in posttranscriptional
regulation of viral and cellular genes.

Conclusion
The use of the combination of RNA export elements, com-
prising the up-regulatory mutant RTEm26 and the CTE,
potently increase lentiviral gene expression.

Methods
Plasmids
The RTE, RTEm26, and CTE were inserted into pNLgag
[23,24,39] between the gag gene and the 3'LTR and have
been described [7]. RTE or RTEm26 was inserted into the
SacII site located 5' to the CTE, generating pNLgagRTE-
CTE and pNLgagRTEm26-CTE, respectively. In pNLgag
RTEm26-SP1-CTE, a spacer sequence (SP1) of 325 nt from
a synthetic HIV-1 tat gene (BamHI-XbaI from plasmid
32H) was inserted between RTEm26 and CTE. In pNLgag
RTEm26-SP2-CTE, a spacer (SP2) from a different source
(cat gene) of 325 nt was inserted. Similarly spacers or 202
and 100 nt were inserted. The bovine growth hormone
polyadenylation signal was inserted between SalI and
XhoI sites 3' to RTEm26-CTE replacing the 3'LTR. pNLcgag
[24] is similar to pNLgag, except it lacks the major splice
donor. pNL1.5E expresses the authentic HIV-1 env cDNA
from the LTR promoter [40]. RTE, CTE and RTEm26-CTE
were inserted as SmaI-XhoI fragment between the env gene
and the 3' LTR into BlpI and XhoI digested pNL1.5E. The
Rev-independent clones of NL4-3 [RRE(-)Rev(-), RRE(-
)Rev(-)CTE, and RRE(-)Rev(-)RTE] have been published
previously [6,12,41]. RTEm26-CTE was inserted into the
XhoI site of the RRE(-)Rev(-) NL4-3. The SIVmac239
RRE(-)Rev(-)nefdelCTE is similar to the published
SIVmac239 RRE(-)Rev(-)Nef(-)CTE [35] but contains an
additional deletion of the remaining nef region 3' to the
CTE [42]. RTEm26-CTE was inserted in the place of CTE.
The GFP-IL-3 plasmid contains the IL3 3'UTR inserted 3'
to the enhanced green fluorescent protein (GFP) gene in
pFRED25 [43]. RTEm26, CTE, or RTEM26CTE were
inserted between GFP and the 3'UTR. These elements were
Page 7 of 9
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further inserted between the cDNAs and the polyadenyla-
tion signals of vectors expressing the RNA-optimized HIV-
1 env (75 H).

Transfections
Human HLtat, a HeLa-derivative producing HIV tat [44]
or human 293 cells were transfected with 1 µg of the
NLgag plasmids. HLtat provides Tat to activate gene
expression from the viral LTR promoter. For transfection
of 293 cells a tat expression plasmid, pBstat, was also co-
transfected. We routinely analyzed 2–3 independent
clones in duplicate determinations. Two to three days
later, the cell extracts were analyzed for Gag expression
using a commercial HIV-1 p24gag or the SIV p27gag anti-
gen capture assay. Gag and Env production was also ana-
lyzed on Western immunoblot using plasma from HIV-1
infected persons, rabbit anti-HIV-1 env serum or SIVmac
infected rhesus macaques [23]. Cotransfection of 0.8 µg of
the GFP expression vector pFRED25 [43] served as inter-
nal control. Cotransfection of the secreted version of alka-
line phosphatase SEAP [45] as internal control was used
in some experiments and SEAP levels were determined
from the culture supernatant using a commercial kit
(Tropix, Inc.). Transfections of 293 cells were performed
using FUGENE-6, whereas the Calcium-phosphate copre-
cipitation technique was used for HeLa cells. GFP-IL3
plasmids were transfected into NIH3T3 cells and analyzed
by fluorescent activated cell sorting (FACS) as described
[38]. Total and cytoplasmic polyadenylated mRNA was
isolated and analyzed as described [12,46]. Hybridization
of the blots with a GFP probe was used to evaluate trans-
fection and RNA extraction efficiency. Blots were quanti-
tated using the STORM860 phosphoimager.
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