Retrovirology

Oral presentation

Open Access

Vaginal Lactobacilli for Mucosal Delivery of the Anti-HIV Microbicide, Cyanovirin-N (CV-N)

Qiang Xu*^{‡1}, Laurel Lagenaur¹, Xiaowen Liu¹, David Simpson¹, Kirsten Essenmacher¹, Courtney Parker¹, Chia-Hwa Chang¹, Daniel Tsai¹, Srinivas Rao², Dean Hamer³, Thomas Parks¹ and Peter Lee¹

Address: ¹Osel, Inc., 1800 Wyatt Dr., Ste. 14, Santa Clara, CA 95054 USA, ²Laboratory Animal Medicine, VRC, NIH, Bethesda, MD 20892 USA and ³National Cancer Institute, NIH, Bethesda, MD 20892 USA

Email: Qiang Xu* - qxu@oselinc.com

* Corresponding author \$\pm\$Presenting author

from 2005 International Meeting of The Institute of Human Virology Baltimore, USA, 29 August – 2 September 2005

Published: 8 December 2005

Retrovirology 2005, 2(Suppl 1):S87 doi:10.1186/1742-4690-2-S1-S87

Background

Women are particularly at risk of HIV infection and there is an urgent need for female-controlled approaches to block the heterosexual transmission of HIV.

Material and Methods

Our work is aimed at the development of a simple, cost-effective, female-controlled preventative against heterosexual transmission of HIV in women, based on our previous proof-of-concept study employing a natural component of the vaginal microflora, as a delivery vehicle for the anti-HIV protein (PNAS, 2003, 100:11672-11677).

Results

A human vaginal isolate of *Lactobacillus jensenii* was engineered, by stable integration of an optimized expression cassette into the bacterial genome, to secrete high levels of the highly potent HIV inhibitor, CV-N. The L. *jensenii*-expressed CV-N dramatically decreases infectivity of CCR5-tropic HIV_{BaL} and CXCR4-tropic HIV_{IIIB} *in vitro*. We further demonstrate that this strain is genetically stable and can transiently colonize animal vaginal mucosa, while retaining important characteristics of the native bacterial phenotype.

Conclusion

This live microbicide represents a novel approach in the development of an inexpensive and stable protein-based microbicide to curtail the HIV/AIDS pandemic worldwide.