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Abstract

Background: Type | interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and
pathways. It has long been recognized that type | IFNs can potently block HIV-1 replication in vitro; as such, HIV-1
has been used as a system to identify and characterize IFN-induced antiviral proteins responsible for this block.
IFN-induced HERC5 contains an amino-terminal Regulator of Chromosome Condensation 1 (RCC1)-like domain and
a carboxyl-terminal Homologous to the E6-AP Carboxyl Terminus (HECT) domain. HERCS is the main cellular E3
ligase that conjugates the IFN-induced protein ISG15 to proteins. This E3 ligase activity was previously shown to
inhibit the replication of evolutionarily diverse viruses, including HIV-1. The contribution of the RCC1-like domain to
the antiviral activity of HERC5 was previously unknown.

Results: In this study, we showed that HERCS inhibits HIV-1 particle production by a second distinct mechanism
that targets the nuclear export of Rev/RRE-dependent RNA. Unexpectedly, the E3 ligase activity of HERC5 was not
required for this inhibition. Instead, this activity required the amino-terminal RCC1-like domain of HERC5. Inhibition
correlated with a reduction in intracellular RanGTP protein levels and/or the ability of RanGTP to interact with
RanBP1. Inhibition also correlated with altered subcellular localization of HIV-1 Rev. In addition, we demonstrated
that positive evolutionary selection is operating on HERC5. We identified a region in the RCC1-like domain that
exhibits an exceptionally high probability of having evolved under positive selection and showed that this region is
required for HERC5-mediated inhibition of nuclear export.

Conclusions: We have identified a second distinct mechanism by which HERC5 inhibits HIV-1 replication and

demonstrate that HERCS is evolving under strong positive selection. Together, our findings contribute to a growing
body of evidence suggesting that HERC5 is a novel host restriction factor.
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Background

The cellular HERC5 protein was recently identified as an
antiviral protein that inhibits replication of evolutionarily
diverse viruses [1-3]. HERC5 belongs to a family of 6
HERC proteins containing an amino-terminal RCC1-like
domain, a spacer region that does not share homology
with any known protein, and a carboxyl-terminal HECT
domain. Phylogenetic analysis of the HERC family revealed
that the HERC#4 ancestor emerged in nematodes and that
the HERC family expanded to six members during animal
evolution, with HERCS being the most recently emerged
family member [4]. HERCS5 is ubiquitously expressed in
many cell types and tissues including, but not limited
to, effector and central memory T cells, dendritic cells,
CD14+ monocytes, monocyte-derived macrophages,
embryonic and induced pluripotent stem cells, hema-
topoietic and granulopoietic stem cells, testis (germ and
leydig cells), ovary, liver and lung [5-17]. HERC5 expres-
sion is up-regulated in response to IFN [18,19], in vitro
and in vivo virus infection [1,20-25], lipopolysaccharide,
tumor necrosis factor o, and interleukin-1f3 [26].

HERCS is the main cellular E3 ligase that conjugates
the ubiquitin-like protein ISG15 to proteins in human
cells via a hierarchical enzymatic cascade involving E1
activating enzyme UbelL and E2 conjugating enzyme
UbcHS8 [18,19]. The conjugation of ISG15 to proteins
is commonly referred to as ISGylation. We previously
showed that HERC5 inhibits HIV-1 Gag particle assembly
by a mechanism correlating with the post-translational
modification of Pr55Gag with ISG15 [1]. HERCS5 inhibits
influenza A virus replication by catalyzing the conjugation
of ISG15 to the viral NS1 protein, thereby preventing NS1
from forming homodimers and inhibiting corresponding
antiviral processes [2]. Furthermore, HERC5 conjugates
ISG15 to the human papillomavirus (HPV) L1 capsid pro-
tein, conferring a dominant-inhibitory effect on the infect-
ivity of HPV16 pseudoviruses [3].

Although much is known about the HECT domain of
HERCS and its critical role in E3 ligase activity, little is
known about the contribution of the RCCI1-like do-
main region to the antiviral activity of HERC5. Pro-
teins such as HERC5 that contain RCC1-like domains
belong to a phylogenetically widespread RCC1 super-
family of proteins [27,28]. The prototypical member of
this superfamily is human RCC1. RCC1 is character-
ized by the presence of 7 repeats of ~60 amino acids in
length that assume a 7-bladed [B-propeller structure.
RCC1 is localized in the nuclei of eukaryotic cells
where it binds and activates the GTPase Ras-related
nuclear (Ran) protein [29,30]. Subsequent hydrolysis
of GTP to guanosine diphosphate (GDP) by its intrin-
sic GTPase activity returns Ran to an inactive state.
RCCI1 maintains a higher level of RanGTP in the nu-
cleus compared to the cytoplasm (>1000-fold), which
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is critical for Crml-dependent nuclear export of
macromolecules [31].

Here we present the molecular characterization of a
second distinct and novel antiviral function of HERCS5.
This function targets HIV-1 Rev/RRE function and in-
volves the RCC1-like domain of HERC5. We also dem-
onstrate that HERCS5 is evolving under strong positive
evolutionary selection. Together, these observations
provide new insight into the innate immune response
towards HIV-1.

Results

HERCS5 inhibits HIV-1 particle production by an E3
ligase-independent mechanism

The E3 ligase activity of HERC5 was previously shown to
contribute to the inhibition of Pr55Gag particle produc-
tion [1]. To examine the contribution of the RCC1-like
domain to inhibition of infectious HIV-1 particle produc-
tion, we generated flag-tagged HERC5 constructs lacking
the RCC1-like domain (HERC5-ARLD) or lacking E3 lig-
ase activity (HERC5-C994A) (Figure 1A). Cysteine 994 is
essential for HERC5-induced ISGylation [18]. Quantitative
Western blot analysis of cell lysates showed that all
HERCS5 constructs exhibited similar levels of intracellular
protein expression (Figure 1B). The HERC5 constructs
were also analyzed by confocal immunofluorescence mi-
croscopy and found to be localized in the cytoplasm of
U20S cells, similar to wild type HERC5 (Figure 1C). Simi-
lar localization was observed in 293T and HeLa cells (data
not shown).

We then tested the ability of these HERC5 constructs to
inhibit HIV-1 replication. 293 T cells were co-transfected
with plasmids encoding full-length, replication-competent
HIV-1 (pR9) and either empty vector, wild type HERCS5,
HERC5-ARLD or HERC5-C994A. Forty-eight hours after
transfection, infectious virus released into the supernatant
was measured using an infectious HIV-1 release assay
(Figure 1D). The expression of HERC5 and HERC5-
C994A significantly reduced the amount of infectious
virus released into the supernatant compared to the con-
trol cells (P <0.0001, student’s paired t test). In contrast,
HERC5-ARLD failed to inhibit infectious virus release
compared to the control cells (P> 0.05, student’s paired t
test). Quantitative Western blot analysis of viral particles
released into the supernatant and of producer cell lysates
revealed that inhibition of HIV-1 particle production by
HERC5 and HERC5-C994A resulted in a substantial re-
duction in total intracellular Gag protein and in HIV-1
particles released into the supernatant (Figure 1E and F).
Cells expressing HERC5-ARLD produced similar levels of
intracellular Gag protein as the empty vector control cells;
however, these cells did not exhibit a full rescue of re-
leased HIV-1 particles into the supernatant.
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Figure 1 HERCS5 inhibits HIV-1 particle production via an E3 ligase-independent mechanism. A, Schematic of HERC5 domains and the
various mutant constructs generated (not to scale). B, Western blot analysis of 293T cells transfected with either empty plasmid or a plasmid
encoding flag-tagged HERCS, HERC5-C994A or HERC5-ARLD. Anti-flag was used to detect HERCS and anti-B-actin was used as a loading control.
Numbers above bands represent densitometric quantification relative to wildtype HERC5 after normalization to B-actin. C, U20S cells were transfected
as described in panel B. Forty-eight hours post-transfection, cells were analyzed by confocal immunofluorescence microscopy using anti-flag. Scale

bars = 10 um. D, 293T cells were co-transfected with pR9 and either empty plasmid, pHERCS, pHERC5-C994A, or pHERC5-ARLD. Forty-eight hours
after transfection, infectious virions released into the supernatant were quantified using GHOST(3) indicator cells. The averages +/— SD from at
least three independent experiments are shown. E, Forty-eight hours after 293T cells were transfected as described in panel D, virions released
into the supernatant and Gag within cell lysates were analyzed by Western blotting using anti-p24CA or anti-B-actin. F, Densitometric analysis
of the indicated bands relative to the empty vector control from at least three independently generated experiments similar to that shown in
panel E. Values were normalized to B-actin. ****P < 0.0001; **P < 0.01; *P < 0.05; n.s. P > 0.05 (student’s paired t test). G, Western blot analysis of
293T cells co-transfected with pR9 and either empty plasmid, flag-tagged pHERC5 or pHERC5-C994A. Forty-eight hours after transfection, cell
lysates were analyzed using anti-p24CA, anti-flag or anti-R-actin. H, Cells were co-transfected with pUbe1l, pUbcH8 and myc-tagged ISG15 and
either empty vector, pUbp43, flag-tagged pHERCS or pHERC5-C994A. Cell lysates were analyzed by Western blotting using anti-flag or anti-3-actin.
Data shown is representative of at least three independent experiments.

\

Notably, HERC5-C994A inhibited infectious HIV-1  migrating forms of HERC5 represented ISGylated HERC5
particle production significantly better than wild type protein [1]. To enhance detection of ISGylated species,
HERC5and yielded substantially less intracellular Gag  wildtype HERC5 was expressed in the presence of the
protein compared to wild type HERC5 and the control  ISG15 conjugation system consisting of E1 activating en-
cells (P <0.01, student’s unpaired t test) (Figure 1E and F).  zyme UbelL, E2 conjugating enzyme UbcH8 and ISG15.
This enhanced activity correlated with the loss of slowly  As shown in Figure 1H, slowly migrating forms of HERC5
migrating species of HERC5 protein (Figure 1G). We used  were observed. When wildtype HERC5 was expressed in
a standard ISGylation assay to determine if these slowly  the presence of the ISG15-specific deconjugating enzyme
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Ubp43 [32], substantially less slowly migrating forms of
HERCS5 were observed. Cells expressing HERC5-C994A,
which is defective for ISGylation, also did not yield slowly
migrating forms of ISGylated HERC5-C994A protein.
These data indicate that the slowly migrating forms of
HERCS5 are modified with ISG15.

Endogenously expressed HERC5 inhibits intracellular Gag
protein production

To assess whether endogenously-expressed HERC5 in-
hibits intracellular Gag protein expression from infec-
tious HIV-1, we knocked down endogenous HERC5
RNA using short hairpin RNA (shRNA) and examined
the influence of reduced HERC5 expression on intracellu-
lar Gag protein production, compared with cells express-
ing scrambled shRNA. Western blot analysis of cell lysates
from transfected 293T cells, before or after treatment with
IEN-B, revealed that HERC5 shRNA-expressing cells
exhibited substantially more intracellular Gag protein
than cells expressing scrambled shRNA (Figure 2A and B).
A similar effect was observed in primary human macro-
phages from two different donors (Figure 2C). Cells ex-
pressing HERC5 shRNA exhibited an average of 3.2-fold
less HERC5 RNA than control cells expressing scrambled
shRNA, as determined by quantitative reverse transcrip-
tion polymerase chain reaction (qQPCR). As a control for
specificity, we similarly measured the effect of the scram-
bled and HERC5 shRNA on HERC3 RNA levels and
found them to be equivalent. Together, these data suggest
that endogenously expressed HERC5 provides a significant
barrier to intracellular Gag protein production with and
without IFN pre-treatment.

HERCS5 inhibits nuclear export of HIV-1 genomic RNA
To investigate the mechanism by which HERC5 in-
hibits intracellular Gag protein production, we asked if
HERCS5 induced the degradation of intracellular Gag
protein. 293T cells were co-transfected with plasmids
encoding replication-competent HIV-1 and HERC5
and then treated with the proteasome inhibitor MG132
or the lysosome enzyme inhibitor amantidine. Western
blot analysis of cell lysates revealed that MG132 or
amantidine treatment did not rescue levels of intracel-
lular Gag protein (Figure 3A). This finding suggests
that HERC5 does not induce Gag protein degradation.
MG132 and amantidine treatment also did not rescue
the release of extracellular HIV-1 particles into the cell
supernatant. MG132-treated control cells exhibited a
reduction in the production of extracellular virus, as
previously reported [33]. Similar results were obtained
using U20S cells (data not shown).

Since Gag protein is expressed from unspliced HIV-1
genomic RNA in the cytoplasm, we asked if HERC5 inter-
fered with the nuclear export of unspliced HIV-1 RNA.
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293T cells were co-transfected with plasmids encoding
full-length replication-competent HIV-1 (pR9) and either
empty vector or HERC5. A plasmid encoding green fluor-
escent protein (GFP) was also co-transfected to serve as a
transfection control. Total RNA was harvested from total
cell extract or cytoplasmic extract only and subjected to
qPCR with primers specific to either unspliced HIV-1 gen-
omic RNA (e.g. Gag), fully spliced RNA (e.g. Rev), total
HIV-1 RNA (e.g. LTR), B-actin (loading control) or GFP
(transfection control). Cells expressing HERC5 exhibited a
2.7 to 4.2-fold reduction in the amount of HIV-1 genomic
RNA exported to the cytoplasm compared to the control
cells (P =0.0003, student’s paired t test). In contrast, no
significant difference was observed in the export of fully-
spliced HIV-1 Rev transcripts (Figure 3B).

To further investigate the effect of HERC5 on the
localization of unspliced HIV-1 RNA, we utilized an estab-
lished assay involving the bacteriophage MS2 coat protein
to determine the localization of HIV-1 genomic RNA.
HIV-1 NL4-3 genomic RNA was tagged with 24 copies of
the MS2 binding RNA stem loops (NL4-3-SL). These stem
loop structures bind with high affinity and specificity to a
fusion protein consisting of the bacteriophage MS2 coat
protein and GFP (MS2-GFP). The MS2 RNA stem loops
were inserted such that unspliced full-length genomic
RNA would be labelled with MS2-GFP, as previously de-
scribed [34]. MS2-GFP contains a nuclear localization
signal sequence that targets the fusion protein to the
nucleus; however, MS2-GFP can shuttle to the cytoplasm
when bound to cargo destined for the cytoplasm.

MS2-GFP expressed alone localized exclusively in the
nucleus as expected (Figures 3C, D and Additional file 1:
Figure S1). When the MS2-GEFP signal intensity was in-
creased, no MS2-GFP signal was observed in the cyto-
plasm (Additional file 1: Figure S1B). When MS2-GFP
was co-expressed with NL4-3-SL, MS2-GFP localized in
both the nucleus and cytoplasm as expected. However, in
the presence of HERC5 or HERC5-C994A, MS2-GFP lo-
calized predominantly in the nucleus (Figure 3C and D).
Similar to the MS2-GEFP only control, no MS2-GFP signal
was observed in the cytoplasm after the signal intensity
was increased (Additional file 1: Figure S1B). In contrast,
MS2-GEP localized in both the nucleus and cytoplasm in
the presence of HERC5-ARLD, indicating that the HERC5
RCCl1-like domain is required for inhibiting nuclear ex-
port of HIV-1 genomic RNA (Figure 3C and D). Taken to-
gether, these data demonstrate that HERCS5 inhibits
nuclear export of unspliced HIV-1 RNA.

HERCS5 inhibits nuclear export of Rev/RRE-dependent
HIV-1 RNA

In eukaryotic cells, intron-containing messages are nor-
mally retained in the nucleus, whereas completely spliced
messages are allowed to exit into the cytoplasm. HIV-1
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Figure 2 Endogenous HERCS5 inhibits intracellular Gag protein
production. A, 293T cells were co-transfected with pR9 and either
pScram or pHERCS¢rua- Forty-eight hours after transfection, cell
lysates were subjected to Western blotting using anti-p24CA or
anti-B-actin as a loading control. B, Cells were transfected as in part
A for 24 hours and then treated with 500 units/ml of IFN-B. Sixteen
hours after IFN-B treatment, cell lysates were subjected to Western
blotting using anti-p24CA or anti-3-actin as a loading control. Data
shown in panels A and B are representative of at least three
independent experiments. C, Human monocyte-derived macrophages
from two different donors were transfected as in panel A. Seventy-two
hours after transfection, cell lysates were subjected to Western blotting
using anti-p24CA or anti-B-actin as a loading control.

overcomes this checkpoint in cells through expression of
the HIV-1 regulatory protein Rev. Rev promotes nuclear
export of intron-containing HIV-1 mRNAs by binding to
a specific cis-acting element called the rev-response elem-
ent (RRE), located within the HIV-1 intron [35-39]. Rev
binds to the CRM1/RanGTP complex and translocates
through the nuclear pore complex to the cytoplasm via
the CRM1-dependent nuclear export pathway. The consti-
tutive transport element (CTE) from Mason-pfizer mon-
key virus (MPMYV) is a structured RNA element that also
functions in cis, but it does not require co-expression of a
viral Rev-like protein for the nuclear export of intron-
containing RNA. Instead, CTE-containing RNA recruits
the NXF1/NXT1 proteins, which direct nuclear export
of the RNA via the NXF1-dependent pathway and is
independent of RanGTP [40-42].

To determine if HERC5-mediated inhibition of HIV-1
RNA nuclear export was Rev/RRE-dependent, we tested
the ability of HERC5 to inhibit Gag expression from
Rev-dependent (e.g. GagPol-RRE) and Rev-independent
(e.g. GagPol-4xCTE and codon-optimized Gag-only)
constructs, as previously described (Figure 4A) [43].
293T cells were co-transfected with increasing concen-
trations of plasmids encoding HERC5, with or without
pGagPol-RRE, pGagPol-4xCTE or pGag. As shown in
Figure 4B, HERC5 potently inhibited Gag expression from
the GagPol-RRE construct. In contrast, a modest reduction
in Gag expression was observed from the GagPol-4xCTE
construct (Figure 4C). No reduction in Gag expression
was observed from the RRE/CTE-independent Gag-only
construct (Figure 4D).

HERC5 targets RanGTP and alters Rev localization

RCC1 is localized in the nucleus and stimulates the con-
version of RanGDP into RanGTP. A steep gradient of
RanGTP between the nucleus and cytoplasm is essential
for Crm1-dependent nuclear export, but not the NXF1-
dependent export [31]. To determine if HERC5 interacts
with Ran, cells expressing or not expressing flag-tagged
HERCS5 were lysed under non-denaturing conditions and
subjected to co-immunoprecipitation using anti-Ran or
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Figure 3 HERC5 inhibits nuclear export of HIV-1 genomic RNA. A, 293T cells were co-transfected with pR9 and either empty vector or
pHERCS. Forty hours post-transfection, cells were treated with the proteasomal inhibitor MG132 (20 uM) or the lysosomal inhibitor amantidine
(1.5 mM) for 16 hours. Virus released into the supernatant or total cell lysates were subjected to quantitative Western blot analysis using

anti-p24CA and anti-§ actin as a loading control. B, Cells were transfected as in (A). Forty-eight hours after transfection, total RNA was extracted
and reverse transcribed into cDNA from whole cell lysates or from the cytoplasmic fraction only. Quantitative PCR was performed on each fraction
using primers specific to unspliced HIV-1 genomic RNA (e.g. Gag), fully spliced RNA (e.g. Rev), total HIV-1 RNA (e.g. LTR), #-actin (loading control)
or GFP (transfection control). The proportion of unspliced or fully-spliced HIV-1 RNA in the cytoplasmic fraction compared to total amount of
HIV-1 RNA (nuclear plus cytoplasmic) was determined for control cells and cells expressing HERC5. Fold-change in copy number relative to control
cells is shown. Data shown represents the average (+/— SEM) from six independent experiments. ***P = 0.0003; not significant (n.s.) P > 0.05
(student’s paired t test). C and D, Hela cells were co-transfected with plasmids encoding MS2-GFP alone, MS2-GFP and NL4-3-SL, or MS2-GFP +
NL4-3-SL and either flag-tagged HERCS, HERC5-C994A or HERC5-ARLD. Forty-eight hours post-transfection, cells were fixed, stained with anti-flag
and DAPI and imaged using fluorescence confocal microscopy. MS2-GFP localization was assessed in each cell and categorized according to
localization in the nucleus only or both the nucleus and cytoplasm (C). Results shown are from at least three independent experiments (n = 331).

Representative images of the predominant phenotypes are shown (D). Blue, nucleus; green, MS2-GFP; red, flag-tagged HERCS. Scale bars = 10 um.

anti-flag. Western blot analysis of the precipitated proteins
revealed that Ran and HERC5 co-precipitated (Figure 5A).
We then asked if HERC5 expression affected intracellu-
lar RanGTP levels. Due to the lack of a specific antibody
that distinguishes RanGTP from RanGDP, we utilized a
RanGTP pull-down assay involving Ran binding protein 1
(RanBP1)-coated agarose beads. RanBP1 binds specifically
to RanGTP and not RanGDP. Control cells treated with
non-hydrolyzable GTPYS, transfected with empty vector,
or transfected with pHERC5 were lysed and mixed with
RanBP1-coated beads. RanGTP protein eluent was mea-
sured using quantitative Western blotting with anti-Ran.

Control cells treated with GTPyS and empty vector
control cells readily pulled down RanGTP (Figure 5B).
In stark contrast, substantially less RanGTP was pulled
down in cells expressing HERCS5, indicating that HERC5
reduced intracellular levels of RanGTP or interfered with
the interaction between RanGTP and RanBP1.

Since nuclear-cytoplasmic shuttling of HIV-1 Rev is
critically dependent on RanGTDP, we asked if the effect
of HERC5 on RanGTP correlated with aberrant Rev
localization. U20S cells, which do not express endogen-
ous HERCS5, were co-transfected with plasmids encod-
ing flag-tagged HERC5 and HIV-1 Rev and imaged by
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confocal immunofluorescence microscopy. Quantitative
analysis of cells co-expressing HERC5 and Rev revealed
that 34% of cells expressing HERC5 and 56% of cells
expressing HERC5-C994A exhibited Rev localization
at or near the nuclear membrane compared to 10% in
the control cells (P=0.0004 and P <0.0001 respectively,
Fisher’s exact test) (Figure 5C and D). Nine percent of cells
expressing HERC5 and 8% of cells expressing HERC5-
C994A exhibited Rev localization in the cytoplasm only
compared to 0% in the control cells (P =0.0032 and P =
0.0032 respectively, Fisher’s exact test) (Figure 5C and D).
These data indicate that HERC5 expression significantly
alters the subcellular localization of Rev.

Positive selection is operating on HERC5

The antiviral activities of HERC5 towards evolutionarily
diverse viruses, together with the realization that HERC5
orthologs exist in evolutionarily diverse mammals,
identifies HERC5 as a candidate host factor that has
likely experienced genetic conflict with viruses during
mammalian evolution. Therefore, we asked if positive
evolutionary selection is operating on HERC5. The com-
puter software Selecton (Server for the Identification of
Site-Specific Positive Selection & Purifying Selection)

combines the implementation of state-of-the-art methods
for detecting positive evolutionary selection [44,45].
Selecton has been shown to successfully detect site-
specific selection forces on the retroviral restriction fac-
tor TRIM5a, a protein that has recently been shown to
have undergone positive selection during the course of
primate evolution [44,46,47]. Selecton analysis also en-
abled the detection of positively selected regions that cor-
related with the previously identified species-specificity
determinants of TRIM5a [44].

We used a similar Selecton analysis to test for positive se-
lection on HERC5 using 13 evolutionarily diverse HERC5
sequences as input sequences (Figure 6A and Additional
file 1: Figure S2). HERC5 evolution in mammals was evalu-
ated under several standard models of sequence evolution
as implemented in the Selecton program. This comprised
two nested pairs of models (M8a and M8; and M7 and
M8), in which the first model of each pair is nested in
the second model. The M8 model, but not the M8a or
M7 models, allows sites to evolve under positive selec-
tion. A non-nested pair (M8a and MEC) model com-
parison was also performed. The MEC model differs
from the other models in that it takes into account the
differences between amino acid replacement rates [44].



Woods et al. Retrovirology 2014, 11:27
http://www.retrovirology.com/content/11/1/27

Page 8 of 16

£
A *AQ’ o B
S & &
< Q{o o AQ’(} S
O
¢ i ¥ &
WB: anti-HERC5 K S
IP: anti-Ran . © <« <
= s \\/B: anti-Ran ek e RanGTP
1.00 0.08
IP: anti-flag == \WB: anti-HERC5 “— Ran
- =mem \\VB: anti-Ran 3% input
1.0 6.3
110
100
90
» 80
g 70 DNucIear membrane
S 60 I} Nuclear+Cytoplasmic
T 50 .
g 20  — DCyTopIasmm
o Nucleolar
T 3 -
20
10

Empty HERC5 HERCS-
vector C994AA

Nucleolar

Nuclear
membrane

Cytoplasmic

Figure 5 HERC5 interacts with Ran and reduces RanGTP levels
and/or its binding with RanBP1. A, 293T cells were co-transfected
with either empty vector or a plasmid encoding flag-tagged HERCS.
Forty-eight hours after transfection, cells were lysed under
non-denaturing conditions and subjected to immunoprecipitation
using anti-Ran or anti-flag. Precipitated proteins were separated by
SDS-PAGE and subjected to Western blotting using anti-HERC5 or
anti-Ran. Numbers below the lower blot represent the densitometric
quantification of the non-specific band in the empty vector control
and Ran in the HERC5-expressing cells. B, U20S cells were
transiently-transfected with empty vector or a plasmid encoding
HERCS. Forty-eight hours after transfection, total cell lysate was mixed
with RanBP1-bound agarose beads to selectively isolate and pull-down
RanGTP. As a control, cell lysate was incubated with non-hydrolyzable
GTPyS prior to incubation with the agarose beads. The eluate, including
input lysate (3%), were separated by SDS-PAGE gel and subjected to
quantitative Western blotting using anti-Ran. Note, bands shown in
the input samples represents total Ran protein and does not
distinguish RanGTP or RanGDP. The blot shown is representative of
three independent experiments. Numbers represent the densitometric
quantification of RanGTP after normalization to Ran levels. C, U20S
cells were co-transfected with plasmids encoding HIV-1 Rev and
either flag-tagged HERC5 or HERC5-C994A. Forty-eight hours
post-transfection, cells were fixed, stained with anti-flag and/or
anti-Rev and DAPI and imaged using fluorescence confocal
microscopy. Rev localization was assessed in each cell and
categorized as either: near the nuclear membrane, in both the
nucleus and cytoplasm, in the cytoplasm only, or nucleolar. Results
shown are from at least three independent experiments (n = 500).
D, Representative images of the predominant phenotypes. Blue,
nucleus; green, flag-tagged HERC5; red, Rev. Scale bars =10 um.

The nested models were compared using the likelihood
ratio test. In each case, allowing sites to evolve under
positive selection (M8) gave a significantly better fit to
the HERC5 sequence data than the corresponding model
without positive selection (M8a and M7) (Figure 6B). The
MEC model, which allows for positive selection, was com-
pared with the M8a null model, which does not allow for
positive selection. Comparison of the AIC. scores (M8a:
28432; MEC: 28016) revealed that the MEC model fits the
HERCS5 data better than the M8a model (Additional file 1:
Table S1). The results of the MEC analysis were projected
by Selecton onto the primary sequence of human HERC5
(Figures 6B, C and Additional file 1: Figure S3). The re-
sults show that positive selection is operating on HERC5
and that several codons situated in the RCC1-like domain,
the spacer region and the HECT domain exhibit excep-
tionally high probabilities of having evolved under positive
selection. Notably, 27 out of 50 of these codons cluster
within the first 100 amino acids of the amino terminus
of the RCCl-like domain, encompassing blade 1 and
part of blade 2 of its predicted 7-bladed B-propeller struc-
ture (Figure 6D).

Since there was a marked enrichment in positively se-
lected sites within blades 1 and 2, we generated a HERC5
mutant lacking amino acids 2—103 (HERC5-RLDA2-103)
and tested whether these blades contributed to the
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Figure 6 Positive evolutionary selection analysis of HERC5. A, Neighbor-joining phylogenetic tree for progressive alignment of 13 different
HERCS5 species using constraint-based alignment tool (COBALT) for multiple protein sequences (Additional file 1: Figure S4). Branch lengths are
proportional to the amount of inferred evolutionary changes. B and C, Selecton analysis for positive selection was performed using HERC5
sequences from human, chimpanzee, gorilla, marmoset, baboon, squirrel monkey, gibbon, horse, panda, sheep, cow, dog and cat. Evolutionary
analysis for positive selection in HERC5 using various models of evolution where M8 and MEC allow for sites to evolve under positive selection
and M7 and M8a models do not. (B) A plot of the Ka/Ks ratio at each codon in an alignment of HERC5 coding sequences is shown. Codons with
Ka/Ks ratios >1 indicate positive selection, =1 neutral selection and <1 purifying selection. C, A plot showing the results of a Bayesian analysis
approach to identify sites where Ka/Ks >1, mapped to the different HERC5 domains. Shown are the sites where Ka/Ks >1.5 and the 95%
confidence interval is larger than 1; hence considered statistically significant. D, The HERC5 RLD was modeled using SWISS-MODEL (Swiss Institute
of Bioinformatics: http://swissmodel.expasy.org/) and visualized and colored using DeepView/Swiss-PDBViewer, v4.0.1. The region corresponding
to amino acids 2-103 is colored red. All other colors are arbitrary and used to highlight the different blades of the B-propeller structure. The inset
numbers identify the different blades. “N" and “C" denote the amino- and carboxyl-termini respectively.
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HERC5-mediated inhibition of HIV-1 particle produc-
tion. Similar to our observations with HERC5-ARLD,
HERC5-RLDA2-103 produced similar levels of intra-
cellular Gag protein as the empty vector control cells
and did not exhibit a full rescue of released HIV-1 par-
ticles into the supernatant (Figure 7A). Furthermore,
HERC5-RLDA2-103 failed to inhibit nuclear export of
HIV-1 genomic RNA compared to wild type HERC5
(Figure 7B and C). These findings indicate that blades
1 and 2 are required for the HERC5-mediated inhib-
ition of nuclear export.

Discussion
Previously, we showed that HERCS5 inhibits an early
stage of HIV-1 Gag assembly at the plasma membrane by
a mechanism correlating with the modification of Pr55Gag
with ISG15 [1]. Here we demonstrate that HERC5 inhibits
HIV-1 particle production by a second distinct mechanism
targeting Rev/RRE function. A region of the RCCl-like
domain of HERC5 was required for this inhibition, which
is also evolving under strong positive selection. Although
deleting the RCCl1-like domain of HERC5 rescued inhib-
ition of Rev/RRE function, HERC5-ARLD inhibited HIV-1
particle release at levels comparable to wild type HERC5.
HERC5-ARLD has been shown to possess some E3 ligase
activity for ISG15 conjugation; therefore, it is likely that
this E3 ligase activity contributed to inhibition of particle
release via ISGylation of HIV-1 Gag [19,48]. However, the
infectivity of HIV-1 particles released from cells expressing
HERC5-ARLD did not differ from those released from the
control cells. By inhibiting the nuclear export of HIV-1
genomic RNA, the RCC1-like domain may also promote
the release of non-infectious HIV-1 particles (i.e. particles
lacking genomic RNA). We also showed that HERC5-
C994A was able to inhibit HIV-1 particle production bet-
ter than wild type HERC5. This potent inhibition corre-
lated with the loss of ISGylated forms of HERC5. Given
that HERC5 modifies itself with ISG15, it is possible that
auto-ISGylation negatively regulates HERC5 antiviral
activity. This auto-regulation may represent a mechan-
ism by which HERC5 maintains tight control over its E3
ligase-independent activity, particularly during periods
of high-expression such as after induction by IFN. A
similar finding was previously observed for the E3 ligase
TRIM25 where auto-ISGylation negatively regulated its
activity for conjugating ISG15 to 14-3-3sigma [49].
HERCS5 expression is significantly up-regulated in cells
after exposure to IFN [18,19]. We showed here that
knocking down HERCS5 in a background of IFN exposure
substantially increased intracellular HIV-1 Gag production
after 48 hours, indicating that HERC5 is an important
mediator of the IFN response towards HIV-1. Knocking
down endogenous levels of HERC5 in primary macro-
phages, in the absence of exogenous IFN, also resulted
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in a substantial increase in HIV-1 particle production.
This finding suggests that endogenous levels of HERC5
may serve to limit, but not fully restrict, HIV-1 particle
production in the absence of IFN. As HERC5 levels in-
crease, such as after exposure to IFN, HERC5 may be
more able to restrict HIV-1 particle production. This
finding contrasts our previous finding that knockdown
of HERC5 did not exhibit a substantial effect on the
intracellular production of Pr55Gag from full-length
replication-competent HIV-1 [1]. A likely explanation
for the difference is that the data in the present study
was obtained 48 hours post-transfection, compared to
24 hours in our previous study. Another contributing
factor could be that the level of HERC5 knockdown
achieved in the present study was higher than our previ-
ous study (3.2-fold versus 2.3-fold respectively). In both
studies, HERC5 had no substantial effect on intracellular
Pr55Gag levels when expressed from a Rev-independent
Gag-only construct.

Most eukaryote messenger RNAs undergo splicing to
remove introns before they are exported to the cytoplasm
via the NXF1/NXT1-dependent nuclear export pathway
[50-53]. However, the expression of HIV-1 genes is a not-
able exception. Unspliced and singly-spliced HIV-1 RNA
must be exported to the cytoplasm before they are fully-
spliced by host machinery in the nucleus [54-57]. These
incompletely-spliced RNAs are essential for steps such as
incorporation of full-length genomes into new virions and
for expression of Gag, Gag-Pol, Env, Vif, Vpr and Vpu pro-
teins. Nuclear export of incompletely-spliced HIV-1 RNAs
occurs when the Rev/RRE complex recruits the dimeric
complex of Crm1/RanGTP before translocating through
the nuclear pore to the cytoplasm via the Crm1/RanGTP-
dependent nuclear export pathway. Once in the cyto-
plasm, the complex dissociates and RanGTP is converted
to RanGDP with the help of RanBP1 and RanGAP1, which
then shuttles back into the nucleus for another round of
export [35-39,58].

We showed that HERC5 interacts with Ran and sub-
stantially reduces intracellular levels of RanGTP and/or
inhibits the association of RanGTP with RanBP1. Cells
require a high concentration (>1000-fold) of RanGTP in
the nucleus, which is believed to provide directionality
for nuclear export to the cytoplasm [31]. Perturbing
this nuclear:cytoplasmic RanGTP gradient by either re-
ducing total RanGTP levels or increasing the cytoplas-
mic RanGTP level by interfering with the interaction
between RanGTP and RanBP1, halts nuclear export of
Crm1/RanGTP-dependent cargo. Consistent with this idea,
we observed altered localization of Rev protein and Rev/
RRE-dependent RNA in the presence of HERC5. With the
ability of HERC5 to interact with Ran, it is possible that
HERCS5 binds and sequesters Ran in the cytoplasm. This
activity would interfere with the shuttling of RanGDP into
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Figure 7 Amino acids 2-103 of HERC5 are required for
inhibiting nuclear export of HIV-1 genomic RNA. A, Western blot
analysis of 293T cells co-transfected with pR9 and either empty
plasmid or a plasmid encoding HERCS5, HERC5-C994A, HERC5-ARLD
and HERC5-RLDA2-103. Forty-eight hours after transfection, HIV-1
virions released into the supernatant and Gag levels within the cell
lysates were analyzed by quantitative Western blotting using
anti-p24CA or anti-p-actin as a loading control. B, Hela cells were
co-transfected with plasmids encoding MS2-GFP alone, MS2-GFP
and NL4-3-SL, or MS2-GFP + NL4-3-SL and either flag-tagged HERCS,
HERC5-C994A, HERC5-ARLD or HERC5-RLDA2-103. Forty-eight hours
post-transfection, cells were fixed, stained with anti-flag and DAPI
and imaged using fluorescence confocal microscopy. Representative
images of the predominant phenotypes are shown. Blue, nucleus; green
MS2-GFP; red, flag-tagged HERCS. Scale bars = 10 pm. C, MS2-GFP
localization was assessed in each cell and categorized according to
localization in the nucleus only or both the nucleus and cytoplasm.
The results of the phenotypic quantification are shown and were
obtained from at least three independent experiments (n = 235).

the nucleus, thereby interfering with the production of
RanGTP in the nucleus. Another possibility is that HERC5
stimulates guanine nucleotide release from Ran in the
cytoplasm. It was previously shown that the related RCC1-
like domain 1 of human HERCI stimulates GDP release
from the small GTPase proteins ARF1/6 and Rab, but not
from Ran [59,60]. Therefore, it is plausible that the HERC5
RCC1-like domain performs a similar function on Ran,
with which it interacts. Further experiments are needed to
further dissect this mechanism.

HERCS5 orthologs have been identified in a variety of
evolutionarily diverse mammals spanning >75 million
years of evolution. Genetic conflict arising from the co-
evolution of hosts and pathogens can lead to rapid selec-
tion of amino acid substitutions that alter amino acid
composition of the host factors and their pathogen antag-
onists, thereby conferring an evolutionary advantage to
the host or the pathogen [61,62]. This process of positive
selection is not a common phenomenon and is typically
not apparent in most examined datasets [63,64]. However,
recent evolutionary studies on host antiviral factors have
shown that they are rapidly evolving genes due to genetic
conflict between hosts and pathogens [65]. Several of these
host factors such as apolipoprotein B mRNA-editing
enzyme catalytic polypeptide 3G (APOBEC3G) [66];
tripartite motif protein 5 alpha (TRIM5«) [46]; bone mar-
row stromal antigen 2 (BST2)/tetherin [67,68]; sterile alpha
motif (SAM) domain and histidine/aspartic acid domain
(HD)-containing protein 1 (SAMHD1) [69]; MxA [70]
contain genetic ‘signatures’ of positive selection. Positively
selected residues have been shown to play key functional
roles in the antiviral activities of these proteins.

We demonstrated here that HERCS also contains
genetic signatures of strong positive selection. Twenty-
seven of 50 codons predicted to be evolving under strong
positive selection in HERC5 map to blades 1 and 2 of the
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predicted p-propeller structure of the RCC1-like domain.
This finding identifies blades 1 and 2 as a functionally
important region of HERC5 and may represent a highly
dynamic interface with viral antagonists. Fifteen of 50
codons predicted to be evolving under strong positive
selection map to the spacer region of HERC5. The high
proportion of amino acids predicted to be evolving under
purifying selection in blades 3—7 of the RCC1-like domain
and the majority of the HECT domain indicates that puri-
fying selection is playing an important role in maintaining
the long-term stability of these domains. These two do-
mains are highly conserved in evolutionarily diverse mam-
mals, suggesting they play fundamental roles in biology.
Indeed, the HECT domain of HERC5 confers its E3 ligase
activity and HERC5 has been shown to be the main
cellular E3 ligase for host ISGylation.

Conclusions

Here we have demonstrated that HERC5 possesses a
second distinct mechanism by which it blocks HIV-1
particle production. By being able to inhibit both nu-
clear export of incompletely-spliced HIV-1 RNA and an
early step in HIV-1 Gag assembly at the plasma mem-
brane, HERC5 represents a significant challenge for
HIV-1 replication. The work presented here contributes
to the growing body of evidence that HERCS5 is a novel
host restriction factor. Currently, HERC5 satisfies 3 of
the 4 hallmarks of restriction factors: HERC5 exhibits
strong ‘signatures’ of positive selection, is up-regulated
by IENP and virus infection, and has antiviral activity as
its major biological function. A direct viral antagonist of
HERCS is yet to be identified; although antagonists to
HERCS5 function (e.g. ISGylation) have been identified
from several evolutionarily diverse viruses [71-78]. It
will be interesting to discover the evolutionary pressures
that drive positive selection in HERC5 and how HIV-1
and/or other viruses circumvent HERCS5 activity in vivo.

Methods

Ethics statement

Informed consent was obtained from all subjects accord-
ing to an ethics protocol approved by The University
of Western Ontario Research Ethics Board for Health
Sciences Research Involving Human Subjects (HSREB).

Cells and cell lines

All cell lines were obtained from American Type Culture
Collection unless otherwise stated. Cells were main-
tained in standard growth medium (Dulbecco’s Modified
Eagle’s Medium (DMEM)), supplemented with 10% heat-
inactivated Fetal Bovine Serum (FBS), 100 U/ml Penicillin
and 100 pg/ml Streptomycin) at 37°C with 5% CO,. Hu-
man primary monocyte-derived macrophages were gener-
ated from peripheral blood mononuclear cells (PBMCs) of
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healthy volunteer donors. PBMCs were isolated by density
gradient centrifugation using Histopaque-1077 (Sigma).
Monocytes were purified using a CD14+ cell isolation
kit from Miltenyi Biotec. The purity of CD14+ cells
was >90% as determined by flow cytometric analysis
using anti-human CD14 PE-Cyanine7 (eBiosciences).
Monocytes were cultured for 6 days in RPMI-1640 supple-
mented with 10% FBS and 50 ng/ml recombinant human
granulocyte-macrophage colony stimulating factor (GM-
CSF) (Peprotech) as previously described [79]. The fol-
lowing reagents were obtained through the NIH AIDS
Research and Reference Reagent Program, Division of
AIDS, NIAID, NIH: (GHOST (3) R3/X4/R5; Cat.
3943) from Dr. Vineet N. KewalRamani and Dr. Dan
R. Littman [80].

Plasmids, transfections and antibodies

Plasmids: pR9, pUbelLl, pUbcHS8, myc-tagged ISG15
(pMyc-1SG15), flag-tagged HERC5 (pHERCS5) and flag-
tagged HERC5-C994A (pHERC5-C994A) were described
previously [1]. The promoterless empty vector plasmid
pGL3 was purchased from Promega, p3xFLAG from
Sigma, and pUbp43 from Thermo Scientific. Plasmids
encoding HERC5-ARLD, and HERC5-RLDA2-103 were
generated using standard domain deletion mutagenesis
using the QuikChange® Lightning Site-Directed Muta-
genesis Kit (Stratagene) according to manufacturer’s in-
structions. Primer pairs used in the reactions are as
follows: HERC5-ARLD = forward- 5 GAC ATG GAG
CGC CGC AGC ATG ATT GCT GGA GGG AAT
CAA AGC ATT TTG CTC TGG 3’ and reverse 5’
GCT TTG ATT CCC TCC AGC AAT CAT GCT GCG
GCG CTC CAT GTC GTC 3’; HERC5-RLDA2-103 =
forward 5° GAC ATG GAG CGC CGC AGC CAG
GGA GCC GAA CAC ATG CTG 3’ and reverse 5’
GTG TTC GGC TCC CTG GCT GCG GCG CTC CAT
GTC GT 3'. pMS2-GFP was obtained from Addgene (cat#
27121). pNL4-3-SL was kindly provided by Dr. Hu
(National Cancer Institute, Frederick, Maryland, USA).
pGagPol-RRE and pGagPol-4xCTE were provided by
Dr. M. Malim (King’s College London). pScram was de-
scribed previously [1]. pHERC5¢,pna (cat. #RHS4533-NM_
016323, TRCN0000004171) was obtained from Thermo
Scientific (Open Biosystems). Transfections: plasmid trans-
fections were performed using standard calcium phosphate
transfection or Lipofectamine 2000 (Invitrogen). Trans-
fection of primary human macrophages was performed
using GenJet™ In Vitro DNA Transfection Reagent for
Primary Macrophages (FroggaBio). Co-transfections were
performed at a ratio of 10:1 (pHERC5 construct:pR9)
unless otherwise stated. The following reagents were
obtained through the NIH AIDS Research and Reference
Reagent Program, Division of AIDS, NIAID, NIH: HIV-1
p24 Monoclonal Antibody (183-H12-5C) from Dr. Bruce
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Chesebro and Kathy Wehrly [81-83]). Antibodies: anti-
HERC5 was obtained from Abnova, anti-FLAG from
Sigma, and anti-myc and anti-B-actin from Rockland.

Quantification of infectious virus

Clarified supernatants containing virus particles were
pelleted over a 20% sucrose cushion for 2 hours at
21,000 x g and lysed for quantitative Western blot ana-
lysis. Alternatively, the clarified supernatants were used to
infect GHOST(3(3)R3/X4/R5 indicator cells. Quantifica-
tion of infectious virus release using GHOST(3)R3/X4/R5
indicator cells has been described previously [80].

Quantitative real-time PCR

Total RNA was extracted from total cell lysate or the
cytoplasmic fraction only using the R&A-BLUE Total
RNA Extraction kit (Frogga Bio). 3 pg of RNA was re-
verse transcribed to ¢cDNA using the M-MLV reverse
transcriptase and Oligo(dT) primers (Life Technologies).
Prior to real-time PCR, cDNA samples were diluted 1:10
with water. Each PCR reaction consisted of 10 pl of
SYBR Green Master Mix, 2 pl of Gag or Rev-specific
primers (1 pl of 10 uM forward primer and 1 pl of
10 puM reverse primer), 1 pl of diluted cDNA, and water
to a total volume of 20 pl. Real-time PCR was run on
the Rotor-Gene 6000 real-time PCR machine (Corbett
Life Science) under the following cycling conditions:
10 min at 95°C and 40 cycles of 10 sec at 95°C, 15 sec at
60°C, and 20 sec at 72°C. The Rotor-Gene 6000 series
software (version 1.7) was used to determine the Ct for
each PCR reaction.

Western blotting and confocal microscopy

Cells were cultured in 12-well plates on 18 mm cover-
slips and co-transfected with pHERC5 (or pHERCS5-
C994A or empty vector), pUbcHS, pUbelL, pISG15 and
pGag (10:5:5.5:1 ratio respectively). Twenty-four hours
post-transfection, the coverslips containing the cells
were washed twice with PF buffer (I1x PBS + 1% FBS),
fixed for 10 minutes in 1x PBS containing 5% formalde-
hyde and 2% sucrose, permeabilized in 1x PBS contain-
ing 5% NP-40 and then washed twice more with PF
buffer. The coverslips were incubated with primary
antibodies for one hour, washed 6x with PF buffer, incu-
bated with secondary antibodies (Alexa Fluor 546
anti-mouse or AlexaFluor 488 anti-rabbit, Invitrogen)
for one hour and then washed 6x with PF buffer. Cover-
slips were mounted onto glass slides with ~10 pl of
Vectashield mounting media with DAPI (Vector
Laboratories) and then sealed with nail polish. Slides
were examined using a Zeiss LSM 510 confocal fluores-
cence microscope and images were obtained with
sequential imaging.
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Immunoprecipitation

For immunoprecipitation, cells were lysed with cold non-
denaturing lysis buffer (1% (w/v) SDS, 50 mM Tris-Cl
pH 7.4, 5 mM EDTA pH 8.0, 300 mM NaCl, 0.02% (w/v)
sodium azide with Roche protease inhibitor) for 20 mi-
nutes. Cyanogen bromide-activated Sepharose beads (GE
Health Care) were swollen in 1 mM HCI for 10 minutes
followed by antibody coupling using either 5 pl of rabbit
anti-p24CA or 1 pl of mouse anti-FLAG (Sigma) per 75 pl
of beads in coupling buffer (0.1 M NaHCO; pH 8.3 with
0.5 M NaCl) overnight at 4°C. The beads were then
washed three times with coupling buffer to remove excess
antibody. The beads were blocked with blocking buffer
(0.1 M Tris—HCI buffer pH 8.0) for 2 hours at 4°C. The
beads where then washed with 3 cycles of alternating
pH (0.1 M sodium acetate pH 4 with 0.5 M NaCl; 0.1 M
Tris—HCl pH 8.0 with 0.5 M NaCl). The cell lysates
were added to the beads for 1 hour at 4°C. The beads
were washed 8 times with non-denaturing lysis buffer
and the protein was eluted with 0.5 mM NaCl.

RanGTP pull-down assay

Forty-eight hours after transfection, the media was aspi-
rated from a confluent 10 cm dish of 293T cells. Cells
were washed twice with ice-cold 1x PBS, scraped from
the dish and placed into an appropriately sized tube and
kept on ice at all times. Cells were processed using the
Ran Activation Assay Kit (Cell BioLabs, Inc.) according
to the manufacturer’s protocol.

Positive selection analysis

HERCS5 sequences were aligned and a phylogenetic tree
generated using COBALT (http://www.ncbi.nlm.nih.gov/
tools/cobalt/) [84]. HERCS sequences were obtained from
Genbank: Homo sapiens (“Human”) (NP_057407.2), Pan
troglodytes (“Chimpanzee”) (XP_003310459.1), Gorilla gorilla
gorilla (“Gorilla”) (XP_004039179.1), Callithrix jacchus
(“Marmoset”) (XP_002745648.1), Papio anubis (“Baboon”)
(XP_003898997.1), Saimiri boliviensis boliviensis (“Squirrel
monkey”) (XP_003924055.1), Nomascus leucogenys (“Gibbon”)
(XP_003265940.1), Equus caballus (“Horse”) (XP_001915
115.2), Ailuropoda melanoleuca (Giant Panda”) (XP_0029
13645.1), Ovis aries (“Sheep”) (XP_004009762.1), Bos taurus
(“Cow”) (NP_001095465.1), Canis lupus familiaris (“Dog’)
(XP_535652.3), Felis catus (“Cat”) (XP_003985249.1). At
least 2 independent sequences were available for human,
sheep, baboon, marmoset, gibbon, squirrel monkey. The
following sequences were not independently validated: cat,
dog, cow, horse, sheep and giant panda. The identification
of site-specific positive selection and purifying selection
was generated using the Selecton Server (http://selecton.
tau.ac.il/index.html) as previously described [44,45]. The
HERCS5 phylogenetic tree was used in the Selecton ana-
lysis. Nested pairs of models (M8a and M8; and M7 and
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M8) and a non-nested pair (M8a and MEC) were com-
pared using the likelihood ratio test implemented in the
Selecton program.

Statistical analyses

GraphPad Prism v5.03 was used for all statistical ana-
lyses stated in the text. P values and statistical tests used
are stated in the text where appropriate. P values less
than 0.05 were deemed significant.

Highlights

— HERCS targets HIV-1 Rev/RRE function by a
mechanism requiring the RCC1-like domain.

— HERCS is evolving under positive evolutionary
selection.

— Blades 1 and 2 of HERCS5 are required for inhibiting
nuclear export.

— HERCS interacts with Ran and targets RanGTP.

Additional file

Additional file 1: Description of data: Table S1, Figure Legends,
Figure S1, Figure S2, Figure S3.
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