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Abstract

Background: Severe genetic bottleneck occurs during HIV-1 sexual transmission whereby most infections are
initiated by a single transmitted/founder (T/F) virus. Similar observations had been made in nonhuman primates
exposed mucosally to SIV/SHIV. We previously reported variable clinical outcome in rhesus macaques inoculated

intravaginally (ivg) with a high dose of R5 SHIVsri2p3n. Given the potential contributions of viral diversity to HIV-1
persistence and AIDS pathogenesis and recombination between retroviral genomes increases the genetic diversity,
we tested the hypothesis that transmission of multiple variants contributes to heightened levels of virus replication
and faster disease progression in the SHIVsgeop3n ivg-infected monkeys.

Results: We found that the differences in viral replication and disease progression between the transiently viremic
(TV; n=2), chronically-infected (CP; n=8) and rapid progressor (RP; n =4) ivg-infected macaques cannot be
explained by which variant in the inoculum was infecting the animal. Rather, transmission of a single variant was
observed in both TV rhesus, with 1-2 T/F viruses found in the CPs and 2-4 in all four RP macaques. Moreover, the
genetic relatedness of the T/F viruses in the CP monkeys with multivariant transmission was greater than that seen

tropism in HIV-1 transmission and persistence.

in the RPs. Biological characterization of a subset of T/F envelopes from chronic and rapid progressors revealed
differences in their ability to mediate entry into monocyte-derived macrophages, with enhanced macrophage
tropism observed in the former as compared to the latter.

Conclusion: Our study supports the tenet that sequence diversity of the infecting virus contributes to higher
steady-state levels of HIV-1 virus replication and faster disease progression and highlights the role of macrophage

Keywords: Vaginal transmission, Transmitted/founder virus, Quasispecies complexity

Background

The human immunodeficiency virus type 1 (HIV-1) is
composed of swarms of related viruses, forming what are
known as viral quasispecies [1-4]. HIV-1 heterogeneity is
the result of the high error rate and lack of proof-reading
mechanisms of reverse transcriptase [5-7] as well as gen-
etic recombination between the retroviral genomes [8].
Quasispecies diversity after primary infection has been im-
plicated in the pathogenesis of polioviruses [9,10], the
West Nile virus [11] and HIV [12-15]. Acute infection with
heterogeneous HIV populations has also been suggested
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to promote viral persistence and rates of disease develop-
ment [16-20]. It is hypothesized that through recombin-
ation and cooperative interactions, the viral quasispecies
provide greater probability to evolve and escape the chan-
ging host selective pressures during early infection, with
consequences for viral pathogenesis and therapy [21]. In-
deed, it has recently been reported that recombination oc-
curs frequently and rapidly in vivo, replacing the parental
T/F viral populations within four months of infection [22].

In this regard, severe genetic bottleneck occurs during
HIV-1 transmission. Most heterosexual mucosal infections
are initiated with a single transmitted virus [23], with
higher multiplicity of infection seen in men who have sex
with men (~40%) and intravenous drug users (~60%), con-
sistent with the relative risks of transmission via these
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routes [24,25]. Similar observations had been made in rhe-
sus macaques (RMs) exposed intrarectally (ir) or intravag-
inally (ivg) to low-dose SIV and SHIV [26-29], and in
depo-provera treated macaques exposed vaginally to a sin-
gle supra-physiological dose of R5 SHIV [30], highlighting
the effectiveness of the transmission bottleneck. Given the
potential contributions of viral diversity to HIV-1 persist-
ence and AIDS pathogenesis, the restriction in quasispe-
cies population diversity in the recipient hosts upon HIV-
1 transmission, in particular via vaginal exposure, could
prove disadvantageous to viral persistence and disease in-
duction in the new host. The initial process of fitness
recovery therefore may require early and rapid diversifica-
tion of the transmitted viruses to combat the evolving host
selection pressures. This could be achieved through viral
turnover of a highly infectious transmitted virus. Alterna-
tively, since recombination between retroviral genomes is
estimated to exceed the rate of mutation [31-34], and ex-
tensive recombination among HIV-1 quasispecies has
been shown to contribute to viral diversity in infected pa-
tients [22,35], it is reasonable to hypothesize that trans-
mission of multiple variants facilitates the generation of
genetic variations and increase in viral fitness, leading to
heightened levels of virus replication and rapid disease
progression. We tested this hypothesis by investigating the
population size and characteristics of the T/F viruses in R5
SHIVgp16op3n intravaginally infected macaques with vari-
able clinical outcome.

Results

Variable disease outcome in macaques infected
intravaginally with SHIVsg62p3n

We previously observed variable clinical outcome in rhe-
sus macaques (RMs) infected intravaginally (ivg) with high
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dose R5 SHIVspigopan [36]. The animals were not syn-
chronized with respect to the stage of the menstrual cycle
before ivg challenge, and were inoculated with different
doses (1,000 and 10,000 TCIDsp) and exposure frequen-
cies (once or twice within the same day) using the same
batch of virus stock (Table 1). Two ivg-inoculated ma-
caques showed transient viremia (Figure 1A), while estab-
lishment of chronic infection in eight (Figure 1B) and
rapid disease progression in four was observed (Figure 1C).
A dose-dependency in ivg infection outcome was not ob-
served in this small cohort of animals studied. Moreover, a
paradoxical inverse association between exposure frequen-
cies and clinical outcome was noted: a rapid progressor
(RP) phenotype was absent in the four macaques receiving
two high dose virus inoculations four hours apart, with an-
imals either showing transient viremia (AH94, DE37) or
slow disease progression (CF18, FH84). This inverse as-
sociation between exposure frequencies and clinical out-
come could not be explained by MHC class I and
TRIM5a genetic polymorphisms or selection for particular
T/F viruses ([36]; this study), and is seen only with intrava-
ginal and not with intrarectal challenge, raising the possi-
bility of differential anatomical host response to the virus
dose or nonviral constituents present in the virus superna-
tants that could potentially influence viral infectivity and
early infection events. Studies in additional animals will be
required to address this. As anticipated, peak and cumula-
tive viral load up to the time of euthanasia or over a one-
year infection period were significantly higher in the RPs
than the chronic progressors (CPs) (p=0.0162 and p =
0.004 respectively; Figure 2). The four RPs succumbed to
AIDS within 30 weeks of infection in the absence of sero-
conversion, while all eight chronic progressors and one of
the transient viremic (TV) animals (AH94) seroconverted

Table 1 Clinical outcome of macaques infected intravaginally with R5 SHIVsgq62p3n

Clinical status Animal Challenge dose; frequency Time to necropsy (weeks)
Transient Viremic AH94 10,000; 2X 54
DE37 10,000; 2X 59
Chronic progressor CG45 1,000; 1X 59
CG63 1,000; 1X 59
FR25 10,000; 1X 129
Fv44 10,000; 1X 53
GH62 10,000; 1X 53
GR56 10,000; 1X 53
CF18 10,000; 2X 52%
FH84 10,000; 2X 104*
Rapid progressor DG17 1,000; 1X 22%
GC70 1,000; 1X 24*
El77 10,000; 1X 27%
EL48 10,000; 1X 17*

*AIDS-related euthanasia.
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Figure 1 Plasma viremia over time in R5 SHIVsg62p3n-ivg infected macaques. Viral load in (A) Transiently viremic (TV, n=2), (B) chronic
progressor (CP, n=8) and (C) rapid progressor (RP, n=4) rhesus infected with the same batch of R5 SHIVsg62p3n Virus stock is shown. The
animals were not synchronized with respect to the menstrual cycle stage prior to ivg challenge. 1 indicates euthanasia with clinical symptoms
of AIDS.

at 4-6 week post-infection (wpi). Seven of eight CP and  approach are similar to those obtained by conventional
both TV animals remained AIDS-free after one year of in-  PCR (Figure 3B), consistent with reports that bulk sequen-
fection. The difference in survival between the RPs and  cing captures a measure of population diversity similar to

CPs is statistically significant (p <0.001; Figure 2). that determined by SGA [37].

Primary infection with multiple HIV variants from a sin-
Faster disease progression correlates with increase gle source as determined by heteroduplex mobility track-
number and complexity of transmitted founder viruses ing of proviral DNA had been suggested to accelerate rates

Consistent with our preliminary findings in the CP  of disease development in human [19], but the degree of
FH84 and TV DE37 [36], phylogenetic tree analysis of population diversity and the number of transmitted vari-
env V3-V5 sequences in the first viral RNA positive ants were not investigated in this study. Accordingly, we
plasma samples of the ivg-infected animals shows that determined the number of transmitted/founder viruses in
those from the TV, CP and RP macaques intermingled the ivg-infected macaques. Consistent with reports in HIV
(Figure 3A), suggesting that the differences in viral repli-  transmission in human and SIV transmission in macaques
cation and disease progression among these three groups  [17,23,27,29,38], vaginal transmission of SHIVspieppsn in
of animals cannot be explained by transmission/infection =~ RMs is characterized by a genetic bottleneck, with a single
with specific genotypic variants. Because conventional or limited number of viral variants transmitted despite the
nested PCR and cloning was employed to characterize  use of high inoculum doses and increased frequency of ex-
most env sequences, we performed single genome amplifi-  posure in several animals. Enumeration of the number of
cation (SGA) and direct sequencing of uncloned env  transmitted variants by Highlighter plot analysis shows
amplicons from early plasma of two infected macaques however that more variants were transmitted in the RP
(GR56, GH62) to address the concerns that the results ob-  than in the CP or TV macaques (Figure 4). Both TV ani-
served may be due to Tag-induced PCR errors. Data  mals were infected with a single variant, with 1-2 trans-
showed that the env sequences obtained with the SGA  mitted variants found in CPs and 2—4 variants in the four
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Figure 2 Comparison of peak, cumulative viral load and survival in R5 SHIVsg62p3n-ivg infected macaques. Mean peak, cumulative viral
burden (computed as an integration of the area under the curve) and survival over a one-year infection period in the transiently viremic (TV; in
green), chronically-infected (CP; in blue) and rapid progressor (RP; in red) ivg-infected macaques were compared. An asterisk (*) indicates statistical
significance (p < 0.05).
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Figure 3 Phylogenetic tree analyses of T/F env from R5 SHIVsg62p3n-ivg infected macaques. (A) Neighbor-joining tree of env V3-V5
sequences from each of the TV (green circle), CP (blue circle) and RP (red circle) macaque is shown. A total of 485 env V3-V5 sequences were
analyzed (an average of 35 sequences per animal; range, 19 to 59). (B) Comparison of env V3-V5 sequences of GR56 and GH62 T/F viruses
obtained by conventional PCR/cloning (e) and SGA (A). Sequences are rooted to SF162.
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RP monkeys. The difference in the number of transmit-
ted variants between the latter two groups of animals
approached statistical significance (p = 0.0727). Further-
more, pairwise distance analysis shows that T/F variants
are more genetically diverse in the RP than in the CP
and TV animals (Figure 5). Overall diversity, expressed
as the percent of the average pairwise difference in T/F
env V3-V5 sequences is greater in the RP than the CP
and TV. Mean percentage sequence variation among
the T/F viruses of TV is 0.050%, and this increases to
0.549% in the CPs and 1.105% in the RPs, with statisti-
cally significant differences among the groups that sup-
port a positive correlation between the heterogeneity of
the infecting virus population and subsequent clinical
outcome (p <0.0001; Figure 5B). Table 2 summarizes
the estimated number and genetic diversity of T/F vari-
ants in R5 SHIVgpgop3n ivg-infected macaques, show-
ing that virus replication and disease progression in R5
SHIVsri62p3n ivg-infected macaques are associated with
the population size and env sequence diversity of the
transmitter/founder (T/F) viruses.

T/F viruses in chronic progressors are more macrophage-
tropic than those in rapid progressors

HIV-1 mucosal transmission is primarily associated with
CD4+ T cell tropism and CCR5 use, with lower levels of
replication in monocyte-derived macrophages (MDM)
compared to CD4+ T cells for subtype C and B transmitted
viruses [24,39]. Because infected macrophages are long-

lived [40,41] and resistant to CTL suppression [42,43], and
HIV-1 particles within infected macrophages are protected
from neutralization antibodies [44-46] and can be trans-
mitted efficiently to T cells [47,48], we compared infection
of PBMCs and MDMs mediated by representative Envs
from each of the T/F clusters in six of eight CP and all four
RP macaques to determine if the latter plays a role in post-
acute infection. Results showed no significant difference in
the ability of the Envs from the two groups of infected ma-
caques to mediate entry into mitogen-stimulated PBMCs
that express high amounts of CD4 and CCR5 (Figure 6A).
In contrast, while a wider range of macrophage tropism
was seen in the CPs than in the RPs, T/F viruses in
RPs overall are less macrophage-tropic than the CPs, with
the difference being statistical significance (p =0.0383;
Figure 6B).

Discussion

By characterizing a cohort of R5 SHIVgpigpp3n-ivg in-
fected macaques that display distinct clinical outcomes,
here we show that a specific viral variant in the chal-
lenge stock was not consistently transmitted by intrava-
ginal inoculation and the relative dose of the inoculum
did not correlate grossly with the number of variants
transmitted. Transmission of multiple and genetically di-
verse viral variants from the inoculum however is asso-
ciated with higher peak and chronic viral load as well
as accelerated rates of disease development. More-
over, macrophage tropism of the transmitted/founder
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Figure 5 Pairwise distance analysis of T/F env in R5 SHIVsgq62p3n ivg-infected macaques. Data for env V3-V5 sequences from all individual
macaque (A) and among the TV (in green), CP (in blue) and RP (in red) groups (B) is shown. The sampling time (wpi) for each animal in the three
groups is indicated in (A). The lines in bold in (A) and (B) represent the mean pairwise distance for each individual animal or group, respectively,

with an asterisk (*) in (B) indicating statistical significance (p < 0.05).
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Table 2 Summary of the estimated number and genetic diversities of T/F variants in SHIVsgq6,p3n ivg-infected

macaques

Clinical Animal  Sampling time  vVRNA (copies/ml plasma) at time No. of env sequences No. of identified T/F  Mean env
status point (wpi) of sampling analyzed viruses diversity

Transient DE37 2 2,939 44 1 0.0004

viremic - atos 3 74929 28 1 0.0006

Chronic FR25 1 2,458 21 1 0.0005

Progressors — cpyg 1 1413 19 1 0.0006

CGe3 2 61,996,000% 20 1 0.0030

Fva4 2 39,494 30 2 0.0030

FH84 2 36,073,000% 49 2 0.0032

GH62 2 3,902,206* 59* 2 0.0034

CG45 1 7,140 24 2 0.0126

GR56 3 1,186,674* 58" 2 0.0176

Rapid GC70 2 67,857,860% 24 2 0.0052

Progressors ez 1 10844 29 3 00122

EL48 1 48,548 42 4 0.0130

El77 1 17,119 38 2 0.0138

*indicates time of peak viremia; # designates the two animals (GH62, GR56) where both SGA and conventional cloning was performed to generate the env
sequences: 19 SGA and 40 cloning sequences for GH62 and 27 SGA and 31 cloning sequences for GR56 were analyzed. All the analyses were performed with a

660 bp env V3-V5 sequences.

virus contributes to the establishment of a persistent
infection.

A correlation between peak viral load and the number
of transmitted viruses was observed for macaques in-
fected intrarectally with SIVsmE660 and SIVmac251
[26], a finding that is recapitulated here in our R5 SHIV
vaginal transmission model in which SHIVspigop3n-in-
fected RPs had the highest peak viremia and numbers of
T/F viruses. Furthermore, co-infection with divergent
HIV-1 subtypes has been associated with more severe
disease progression in human [16,18], and heteroduplex
tracking assay analysis showed that women who ac-
quired multiple variants from a single source had a sig-
nificantly higher chronic viral load and lower CD4+ T

cell count compared to women who were infected with
a single viral genotype [19]. Our study extends these
early observations by showing that the number of vari-
ants, sequence diversity and macrophage tropism of the
T/F populations also contribute to higher steady-state
levels of HIV-1 virus replication and faster disease pro-
gression. Since viral diversity was examined, in most
cases, at the first VRNA positive time point (1-2 weeks
post-challenge), the finding of higher levels of acute
viremia (2-3 wpi) in monkeys with genetically diverse
viruses is most likely due to transmission of multiple en-
velope genotypes and not the result of viral turnover of
highly infectious transmitted viruses. Indeed, we did not
find statistically significant differences in the ability of
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Figure 6 PBMC (A) and MDM tropism (B) of T/F Envs. Pseudotype viruses bearing T/F Envs from six CP (in blue) and four RP (in red)
macaques are tested for their ability to infect peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs). To
control for differences in viral entry, infectivity in macrophages was normalized to that achieved in PBMCs from the same donor. Data shown are
for individual Env clones (2-5) from each animal and is the average of at least two independent experiments. The lines represent the median
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T/F Envs from the CP and RP macaques to mediate
entry into mitogen-stimulated PBMCs that would be
suggestive of differences in the infectiousness of their T/
F viruses. Collectively our data establishes a role of T/F
quasispecies diversity in HIV-1 pathogenesis.

The number of T/F variants in our study is likely to be
underestimated, since only the gpl120 V3-V5 sequences
were analyzed. Nonetheless, an association between trans-
mission of diverse population of SHIV variants, higher
viral burden and rapid disease progression was seen, sup-
porting a scenario whereby viral quasispecies that are more
fit and capable of escaping early host selective pressures
are generated through recombination and cooperative
interactions between the transmitted variants. Multiple
variant transmission represents a significant fraction of
transmission events: 24% and 22% for subtype B and C
sexually infected men and women, respectively [17,23].
Factors that influence transmission of diverse viruses how-
ever are unclear. Biological factors such as gender, viral
subtypes, routes of transmission and the presence of STDs
can affect multiple variant transmission frequencies. The
impact of these factors however is controlled in our study
where female macaques were infected via the same route
and with the same virus stock in the absence of STDs.
Multivariant transmission susceptibility could also be in-
fluenced by age, vaginal flora and timing of the menstrual
cycle before challenge [49], parameters that were not con-
trolled for in our small cohort study. Moreover, polymor-
phisms in alpha-interferon (IFN-a) induced restriction
factors such as TRIM5-a, APOBEC3G, tetherin and MX2
that affect their expression levels and/or functions may
also play a role [50-52]. Indeed, a recent study showed that
compared to chronic viruses, subtype B but not subtype C
T/F viruses in human are more resistant to IFN-o [53].
However, we did not find any differences in the IFN-« sen-
sitivity of HIV-1 NL4-3 reporter genome pseudotyped with
T/F Envs from the RP and CP rhesus (unpublished obser-
vations). Studies using full-length infectious T/F molecular
clones and in a larger cohort of ivg-infected macaques
therefore will be needed to determine the effect of varying
biologic and innate host factors in multivariant transmis-
sion frequency.

In agreement with a recent report that all T/F viruses
replicated in MDM to various levels [54], our study
shows variability in the ability of T/F Envs to function
with primary macrophages, with those derived from CP
macaques mediating more efficient entry than the ones
from RP rhesus. These immune cells play a duplicitous
role during early HIV-1 infection. Macrophages in the
vaginal mucosa have been shown to be productively in-
fected [55], secreting cytokines to recruit CD4+ T cells
at the sites of viral entry to fuel the infection [56]. More-
over, infected macrophages possess potent immune eva-
sion mechanisms, are long-lived viral reservoirs and are
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particularly efficient at transmitting the virus to new
CD4+ T cells [57]. At the same time, as antigen present-
ing cells, macrophages can take up and process virus for
priming of CD4+ and CD8+ T cells to initiate and or-
chestrate antiviral humoral and cellular immune re-
sponse. Thus, it is conceivable that the inability of the
RP macaques to control virus infection is due in part
to inefficient macrophage infection of the T/F viruses
which hampered the development of effective adaptive
immune responses. Conversely, efficient macrophage in-
fection by T/F viruses in the CP rhesus promotes not
only viral transmission and spread, but T and B cell re-
sponses to reduce acute viremia, leading to the onset of
a persistent chronic infection.

Conclusions
Our study established the view that the population size
and genetic complexity of the transmitted virus popula-
tion impact the subsequent course of R5 SHIV vaginal
infection and highlights the role of acute quasispecies di-
versity and macrophage tropism in

HIV-1 associated pathogenesis. We posit that in-
creased complexity of the T/F populations coupled with
inefficient macrophage infection hampers the initiation
and orchestration of adaptive immune responses and
contributed to the inability of the R5 SHIVspigopan ivg-
infected RP macaques to control viral replication. It will
be of interest to characterize and compare the occur-
rence, frequency and kinetics of retroviral recombination
in CP and RP macaques that are infected with multiple
variants to assess the effect of T/F diversity on viral evo-
lution, fitness and host immune response.

Methods

Ethical statement

This work used blood from SHIV infected macaques
housed at the Tulane National Primate Research Center
(TNPRC) in accordance with the animal Welfare Act
and Guide for the Care and Use of Laboratory Animals.
TNPRC is accredited by the Association and Assessment
and Accreditation of Laboratory Animal Care (AAALAC
#00594). The OLAW animal welfare assurance number
for TNPRC is A4499-01 and the USDA registration
number is 72-R-002. All procedures were performed on
anesthetized animals and post-operative analgesics were
administered as needed in accordance with the Tulane
IACUC approval.

Cells

293 T cells were maintained in DMEM supplemented
with 10% fetal bovine serum (FCS), 100 U/ml penicillin,
100 pg/ml streptomycin and 2 mM L-glutamine (complete
medium). Human peripheral mononuclear cells (PBMCs)
were prepared by Ficoll gradient centrifugation, stimulated
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with phytohemagglutinin (PHA, 3 pg/ml; Sigma, St. Louis,
MO) in RPMI medium containing 10% FCS, penicillin,
streptomycin, L-glutamine and 20 U/ml interleukin-2
(Novartis, Emeryville, CA). Monocytes were enriched by
centrifugation of PBMCs through a 40% percoll cushion
followed by plastic adherence, and cultured in RPMI 1640
medium supplemented with 10% FCS, 5% human AB
serum and 25 ng/ml GM-CSF (Invitrogen, Carlsbad, CA)
for 5-7 days to allow for differentiation into macrophages.

Plasmid constructs and pseudotyped virus production

For expression of envelope glycoproteins (Env), viral RNA
was prepared from 0.5 — 1 ml plasma using a commer-
cially available RNA extraction kit (Qiagen, Chatsworth,
CA) followed by reverse-transcription (RT) with Super-
script III RT (Invitrogen) and random hexamer primers
(Amersham Pharmacia, Piscataway, NJ). Full-length gp160
coding sequences were amplified from cDNA by single
genome amplification (SGA) or by conventional PCR. For
SGA, ¢cDNA was titrated by endpoint dilution and a single
copy obtained in a two-step nested PCR procedure using
Platinum 7aq High Fidelity polymerase (Invitrogen) and
the primers SH50 (5'-TAGAGCCCTGGAAGCATCCAG
GAAGTCAGCCTA -3') and SH51 (5" -TCCAGTCCCC
CCTTTTCTTTTATAAAA -3°), and SH43 (5'-AAGA
CAGAATTCATGAGAGTGAAGGGGATCAGGAAG -3")
and SH44 (5'-AGAGAGGGATCCTTATAGCAAAGCCC
TTTCAAAGCCCT -3’) for the first and second rounds of
PCR, respectively. The same primers were used for conven-
tional nested PCR. Amplicons were subcloned into the
pCAGGS vector and sequenced, and trans-complementa-
tion assay was then used to generate luciferase reporter vi-
ruses capable of only a single round of replication. Briefly,
Env expression plasmid and the NL4.3LucE-R + vector
were cotransfected with polyethylenimine (PEL, Polyscience,
Warrington, PA) into 2.5 x 10° 293 T cells plated in a 100-
mm plate. Cell culture supernatants were harvested
72 hours later, filtered through 0.45-pm filters, and stored
at —70°C in 1-ml aliquots. Pseudotyped viruses were quanti-
fied for p24 Gag content (Beckman Coulter, Fullerton, CA).

Virus infectivity

For assessment of entry efficiency into primary cells, 10°
and 10° human PBMCs and macrophages respectively
were infected in duplicate with 5 ng p24 Gag equivalent of
the indicated pseudotype viruses in each well of a 96-well
plate. Infected cells were cultured for 72 h at 37°C, at
which time the cells were harvested, lysed and processed
for luciferase activity according to the manufacturer’s in-
structions (Luciferase Assay System; Promega, Madison,
WI). Entry, as quantified by luciferase activity, was mea-
sured with an MLX microtiter plate luminometer (Dynex
Technologies, Inc., Chantilly, VA). To control for differ-
ences in Env entry efficiencies, infectivity in macrophages
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was expressed as a ratio of the infectivity for these cells
compared to the infectivity in PBMCs from the same
donor.

Phylogenetic and Highlighter Plot analysis of env viral
sequences

DNA sequences encompassing env V3 to V5 region of
gpl20 (660 bp) were aligned by Clustal W [58], using
SF162 strain as reference. A codon-based alignment was
also performed in order to remove sequencing errors, gaps
and homopolymeric regions. Neighbor-joining phylogen-
etic trees were generated by MEGA 5.2.2 [59], using the
Jukes Cantor model of evolution [60], with a gamma dis-
tribution of site-to-site rate variation as estimated by the
FindModel tool from the Los Alamos National Laboratory
(LANL) HIV Database (http://hiv.lanl.gov). Gaps but not
hypermutated sequences were excluded from the analyses.
Viral sequences were visually assessed using the High-
lighter tool at the LANL HIV Database.

Hamming and pairwise distance analyses

DNA sequences encompassing the V3 to V5 regions of
env were first aligned by ClustalW [58]. Consensus se-
quences were then generated with the Consensus Maker
tool provided by the Los Alamos National Laboratory
(LANL) HIV Database (http://hiv.lanl.gov). Best fitting
Poisson distributions and Hamming distance frequency
distributions were then computed utilizing the Poisson-
Fitter tool found at http://hiv.lanl.gov [61], whereby no
APOBEC correction was applied and mutation rates
were adjusted such that the time estimates since the
most recent common ancestor best matched the time of
sequencing for each animal. Lastly, pairwise distances
were calculated from ClustalW-aligned sequences using
MEGA 5.2.2 [59].

Statistical analysis

All statistical analyses were performed using GraphPad
Prism (version 6.0; GraphPad Software, San Diego, CA).
Differences in time to AIDS onset between groups were
assessed using the log-rank test, while differences among
groups in peak viremia, cumulative viral load, pairwise
distance and cell tropism were examined using the
Mann—Whitney two-tailed t tests. A P value of <0.05
was considered to be statistically significant.
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