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Abstract

correlated the response with plasma viral load.

Background: Human Endogenous Retroviruses (HERVs) comprise about 8% of the human genome and have lost
their ability to replicate or to produce infectious particles after having accumulated mutations over time. We
assessed the kinetics of expression of HERV-K (HML-2) Envelope mRNA transcript and surface unit (SU) and
transmembrane (TM) subunit proteins during HIV-1 infection. We also mapped the specificity of the humoral
response to HERV-K (HML-2) Envelope protein in HIV-1 infected subjects at different stages of disease, and

Results: We found that HIV-1 modified HERV-K (HML-2) Env mRNA expression, resulting in the expression of a
fully N-glycosylated HERV-K (HML-2) envelope protein on the cell surface. Serological mapping of HERV-K
(HML-2) envelope protein linear epitopes revealed two major immunogenic domains, one on SU and another
on the ectodomain of TM. The titers of HERV-K (HML-2) TM antibodies were dramatically increased in HIV-1 infected
subjects (p < 0.0001). HIV-1 infected adults who control HIV-1 in the absence of therapy (“elite” controllers) had a higher
titer response against TM compared to antiretroviral-treated adults (p < 0.0001) and uninfected adults (p < 0.0001).

Conclusions: These data collectively suggest that HIV-1 infection induces fully glycosylated HERV-K (HML-2) envelope
TM protein to which antibodies are induced. These anti-HERV-K (HML-2) TM antibodies are a potential marker of HIV-1

target in HIV-1 infection.

transcripts

infection, and are at higher titer in elite controllers. HERV-K (HML-2) envelope TM protein may be a new therapeutic
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Background

Human endogenous retroviruses (HERVs) comprise about
8% of the human genome [1]. Their ability to replicate or
produce infectious particles is inhibited by host restriction
[2,3] and they are now considered to be stably integrated,
largely silent, and transmitted in a Mendelian fashion [4].
However, HERV-K (HML-2), which is the most recently
integrated of the HERV families, exhibits more ability to
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express proteins than other older HERV families [5,6].
The genome of HERV-K (HML-2), the gag, pol, pro, and
env genes, are flanked by two Long Terminal Repeats
(LTR,) and it is possible to express all the viral proteins
under specific conditions [2,7]. HERV expression has been
associated with autoimmune diseases [8-13] and cancers
[14-19], and in these settings mRNA transcripts and pro-
teins are found in blood or tissues. Despite their status as
self-antigens, translated HERV products can induce an
immune response that correlates with disease progression
or regression in some cancers [20-25].

During HIV-1 infection we have previously shown re-
activation of HERV-K (HML-2) [26,27]. The mechanisms
leading to HERV-K (HML-2) expression are still being
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elucidated but HIV-1 Vif and Tat protein have been impli-
cated [27,28]. These studies strengthen the concept that
HIV-1 specifically induces the transcription of HERV-K
(HML-2) mRNA which results in the expression of
HERV-K (HML-2) proteins in HIV-1 infected cells. We
have shown that an anti-HERV-K (HML-2) cellular im-
mune response is generated in HIV-1 infected patients
(HIVP?®), significantly increased in elite controllers, and
HERV-K specific T-cell clones can eliminate HIV-1 in-
fected cells in vitro [26,27,29]. Whether HERV-K reactiva-
tion in HIV-1 infection leads to an anti-HERV-K (HML-2)
antibody response is controversial [30].

The goal of this study was to identify B-cell epitopes
present on the HERV-K (HML-2) Env protein, and ascer-
tain how HIV-1 infection impacts anti-HERV humoral
immunity. HERV-K (HML-2) Env is composed of three
proteins, the signal peptide (SP), the surface unit (SU) and
the transmembrane (TM) protein [31]. We identified two
major immunogenic domains of HERV-K (HML-2) Env,
one on SU and another on the ectodomain of TM. We
found that HIV-1 preferentially modified the anti-HERV-K
HML-2 TM antibody response. While the anti-SU anti-
body titer was largely unchanged between HIV-1 infected
(HIVP*) or uninfected subjects (HIV"®), the titers of anti-
TM antibodies were dramatically increased in HIVP®®.
Although the anti-HERV-K (HML-2) TM response
correlated with HIV-1 plasma viral load in viremic
non-controllers and was reduced during efficient HAART
treatment, elite controllers who naturally suppress HIV-1
viremia have a higher titer antibody response against
HERV-K (HML-2) TM compared to HIV"* or HAART-
suppressed patients. We determined that HIV-1 infection
modifies HERV-K (HML-2) Env mRNA expression, which
leads to a fully N-glycosylated HERV-K (HML-2) trans-
membrane envelope protein on the cell surface. These
data are consistent with our overall conceptual model that
HIV-1 infection changes HERV-K (HML-2) expression
and protein production within an infected cell.

Results

Identification of two linear antibody epitopes in HERV-K
(HML-2) Envelope

To identify the immunogenic domains on HERV-K
(HML-2) Env, we first mapped humoral linear epitopes
on the HERV-K (HML-2) Env protein using a set of 172
“15mer” HERV-K (HML-2) Env peptides, in a peptide-
based ELISA assay. We used sera from four HIV-1 in-
fected subjects (HIVP*) and two HIV-1 seronegative low
risk healthy donors (HIV"*€). We found two strong im-
munogenic domains, one with homology to a domain
previously described on the HERV-K (HML-2) Env SU
protein [9] (see Discussion), and one novel epitope on
TM (Figure 1A). We then compared the responses using
recombinant HERV SU or TM proteins to individual

Page 2 of 15

peptides and observed concordance. Using HERV-K (HML-2)
SU or TM recombinant proteins, and sera from HIV-1
positive or negative subjects, we observed a concordance
of responsiveness between recombinant protein and pep-
tide (Figure 1B). We confirmed that the humoral response
directed against HERV-K (HML-2) Env was restricted to
two linear epitopes, one on the SU protein and the other
to a novel epitope on the TM protein, in both HIV"®® and
HIVP®® subjects.

Comparison of the HERV-K (HML-2) envelope SU and TM
humoral responses in healthy donors and HIV-1-infected
subjects

Using the two amino-acid sequences identified, we per-
formed a serological screen of HERV-K (HML-2) Env re-
sponses in 80 chronically infected, untreated HIV-1-infected
subjects (HIVP*) and 40 HIV"“ subjects, in a cross sec-
tional study (subject characteristics are detailed in Table 1).
No differences in titer for anti-HERV-K (HML-2) SU re-
sponses between HIVP®® and HIV"® were observed, with
a mean of 1:180 and 1:190 respectively (Figure 2A). How-
ever, compared to uninfected HIV", the antibody response
to HERV-K (HML-2) TM was significantly increased in
HIVP® subjects (p <0.0001), with a mean of titer of 1:450
and 1:1370 respectively (Figure 2B). A comparison of within
each HIVP®® subject anti-HERV-K (HML-2) TM and -SU
responses indicated an exclusivity of response specificity,
as those making anti-HERV-K (HML-2) TM responses
in general did not make anti-HERV-K (HML-2) SU re-
sponses and vice versa (Figure 2C).

To determine whether any relationship existed between
anti-HERV-K (HML-2) Env antibody responses and clin-
ical progression, we assessed responses among 40 elite
controllers and 40 viremic non-controllers. Although no
significant difference was detected for the anti-HERV-K
(HML-2) SU response (data not shown), non-controllers
had a significantly greater titer of anti-HERV-K (HML-2)
TM antibodies (mean 1:1600) compared to controllers
(mean 1:1100). Both controllers and non-controllers had a
greater anti-HERV-K (HML-2) TM response compared to
the HIV"™® subjects (mean 1:450) (Figure 2D). We then ex-
amined responses during antiretroviral treatment, and
found that treatment did not significantly modify the anti-
HERV-K (HML-2) SU titer (mean 1:190 off-HAART versus
1:230 on-HAART). However, successful treatment was
associated with a decrease in the anti-HERV-K (HML-2)
TM response (mean 1:1370 off-HAART versus 1:440 on-
HAART), to a titer similar to that found in seronegative
healthy donors (Figure 2E,F). We examined the potential
relationships between responses, time from infection,
plasma viremia and CD4+ T cell count. While there was no
correlation between the anti-HERV-K (HML-2) SU re-
sponse and plasma viremia or CD4+ T cell count, there was
a direct correlation between the anti-HERV-K (HML-2)
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Figure 1 Identification of two linear epitopes on HERV-K (HML-2) Env. (A) 4 sera from chronically HIV-1 infected patients (HIV"®*; black) and
2 sera from seronegative low risk healthy donors (HIV'®9; grey) were used for antibody epitope identification by ELISA. The 3 sub-units signal
peptide (SP), surface-unit protein (SU) and trans-membrane proteins (TM) are represented by 172 redundant 15mers. The lines represent the
average of duplicate signals (OD) for each individual. (B) Sera from patients have antibodies reacting only with the SU-peptide (HIV#1 and #2),
only with the TM-peptide (HIV#3 and #4), or negative for both epitopes (HIV#5, #6 and HIV'®? #1), were used to confirm the signal obtained with
the peptide-based ELISA. Plain columns represent the peptides and the hatched columns represent the recombinant protein; SU in white and TM
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TM humoral response and the plasma viral load (p =
0.0083) (Figure 3A). Furthermore, there was an inverse cor-
relation between the anti-HERV-K (HML-2) TM humoral
response and CD4+ T cell count (p=0.003) (Figure 3B).
These cross sectional data, from 120 HIVP® subjects,
showed that only the response against HERV-K HML-2

Table 1 Characteristics of study subjects

TM is modified during HIV-1 infection. Although the anti-
HERV-K (HML-2) TM response correlated with the pres-
ence or absence of HIV-1 viremia in non-controllers,
HAART suppressed and HIV"® subjects, a strong anti-
HERV-K (HML-2) TM response was still detected in elite
controllers, despite the absence of detectable viremia.

Participant category (n) Median age Gender® Median CD4+T cell count Median HIV-1 viral
P gory (yr [IQR]) M E (cells/mm3 [IQR]) load (copy/ml [IQR]
Elite controllers (40) 50 [44.25-55.75] 24 15 771 [500-1108] <50
HAART suppressor (40) 50.50 [43.75-54.75] 31 8 609 [452-807] <50
Viremic non controllers (40) 39.50 [32.25-49] 35 3 444 [362-625] 40474 [21,322-83,318]
18-30 (18)
b 31-50 (24)
HIV-1 negative (80) 40 40 n/a
51-70 (34)
>70 (4)

°F, female; M, male.

bSome information about the CD4+ T-cell count was not available (n/a). Only a range of age was available.

“One patient in this cohort was transgender male to female.
*One patient in this cohort was intersex.
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Figure 2 Humoral response against HERV-K Env TM and SU. The detection of antibodies was performed for 40 seronegative low risk healthy
donors (HIV™®9) and 80 chronic HIV-1 subjects (HIVP®), 40 elite controllers (EC) and 40 viremic-non-controllers (VNC). Dashed bar represents the
threshold detection (1:200 dilution). Sera with a negative signal at 1:200 dilution were considered negative, and plotted below the dashed bar.
A) HIV™®9 or HIVP®* showed no difference for the anti-SU response, with a mean titer of 180 and 190, respectively. B) HIVP®* showed an increase
of anti-TM antibody compared to HIV"®?, with a mean titer of 1350 and 450, respectively. C) Plots represent the two antibody responses (SU and
TM) for one HIVP®® patient. Detection was done on the same plate with sera diluted at 1:200 and 1:400 for SU and TM, respectively, n = 80. (D)
VNC had the highest anti-TM titer (1600) compared to HIV"? (450) and EC (1100). EC had a significant higher anti-TM titer compared to HIV™?.
E and F) Comparison of the anti-SU (E), or the anti-TM (F), titers between HIVP® patients on or off HAART. On HAART n = 40; Off HAART n = 80.
Detection of anti-SU antibodies. ODs were normalized with serum from a high responder. The STDEV intra experiment was less than 7%.
Detection of anti-TM antibodies. Sera were used at 1:400. OD were normalized with serum from a high responder. The STDEV intra experiment
was less than 4%. The statistical significance of between the different groups was established using the Mann Whitney T test for A, B, E and F,
and a Kruskal-Wallis and Dunn’s Multiple Comparison Test for D. The figure shows the representative results of three independent experiments. A
p value <0.05 was considered as significant. *p < 0.05, **p < 0.01, **p < 0.001.

Detection of HERV-K (HML-2) envelope specific B-cells assay. For OP-115 we used three time points: an early time
To assess the presence and frequency of HERV-K (HML-2)  point (day 116 post-infection), a later time point (day 352
Env specific B-cells in one healthy donor and one HIV-1  post-infection), and one time point when the patient was
infected subject (OP-115), we used SU and TM epitope-  on anti-retroviral treatment (day 383 post-infection). The
specific peptides conjugated to biotin in a flow cytometry  frequency of both anti-HERV-K (HML-2) SU and anti-
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copy/ml of blood. B) The anti-TM response for 80 HIVP** untreated patients was inversely correlated to the CD4+ T cell count (cells/mm3). The
detection was done on the same plate with sera diluted at 1:800. The statistical analysis was performed with the Spearman test, or with a Mann &
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HERV-K (HML-2) TM-specific B cells among the CD19+
population in OP-115 were greater than those observed in
the uninfected subject (4.11% vs. 0.73% for SU and 3.46%
vs. 0.44% for TM for the early time point) (Figure 4A).
However, in OP-115, the frequency of anti-HERV-K
(HML-2) SU B cells remained stable over time, while the
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frequency of anti-HERV-K (HML-2) TM B cells increased
with sustained high viral load, before decreasing during
antiretroviral therapy, with 3.46% of specific B-cells at day
116, 5.31% at day 352 and 3.62% at day 383 (Figure 4A).
Using membrane IgD and CD27 expression to distinguish
the maturity of the anti-HERV-K (HML-2) SU and anti-
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Figure 4 Anti-HERV-K (HML-2) TM and SU specific B-cell responses. A) The presence of HERV-K specific B-cells was detected at three time
points from the same patient OP-115. CD19+ gated plots show the double population CD19 + tetramer + and the graphics represent the specific
B-cells sub-populations. B) The study of the B-cell subset was based on CD27 and IgD extracellular expression. Memory cells (CD27+) were
identified by their IgD expression; CD27+ IgD+: unswitched memory; CD27+ IgD-: switched memory. A Plasmablast is defined by the absence of
IgD expression and a high expression of CD27.
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HERV-K (HML-2) TM-specific B cells, we observed that
the anti-HERV-K (HML-2) TM- and -SU-specific B cells
had similar status at day 116 (Figure 4B). However, as the
frequency of HERV-K (HML-2) TM-specific B cells in-
creased over time, the subset of unswitched and switched
memory B cells also increased two fold (Figure 4B). Dur-
ing antiretroviral therapy, the frequency of the specific
anti-HERV-K (HML-2) TM B cells and the percentage of
memory cells decreased to baseline post-infection level,
on par with the anti-HERV-K (HML-2) TM antibody re-
sponse observed in HAART treated patients. These results
corroborate the serological studies, and demonstrate the
induction of both anti-HERV-K (HML-2) TM B cells and
anti-HERV-K (HML-2) TM antibody responses after HIV-1
infection, which decrease in frequency and titer respectively
with successful antiretroviral therapy.

Page 6 of 15

A longitudinal study of anti-HERV-K (HML-2) humoral
response before and after HIV-1 infection

To better understand the effect of HIV-1 infection on
HERV-K (HML-2) Env antibody responses, we moni-
tored the anti-SU and anti-TM antibody responses in
four patients in whom samples were available before and
after HIV-1 infection. We found the anti-SU response de-
creased or remained undetectable after infection (Figure 5A)
whilst the anti-TM response increased or remained stable
(Figure 5B). The mean difference of antibody titer (after
infection — before infection) showed a significant differ-
ence between TM and SU (Figure 5C) and confirmed the
results of the cross-sectional study. These two anti-HERV-K
(HML-2) Env antibody responses are differentially modu-
lated during HIV-1 infection, and this occurs from the
earliest stage of infection. We then monitored one subject
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(OP-1830) before and during acute infection, and after
antiviral treatment. This subject had a rapid rise in HIV-1
plasma viremia which peaked at day 42, followed by a
decrease when the subject started antiretroviral drug ther-
apy at day 76 (Figure 5D). Before infection (day O on the
graph), the subject had low anti-HERV-K (HML-2) SU
and -TM antibody titers. These levels remained static at
the time of the first detection of HIV-1 plasma viremia,
estimated to be day 10 after infection (Figure 5D). At day
42, the anti-HERV-K (HML-2) TM response increased in
parallel with HIV-1 plasma viremia, while the level of
anti-SU antibodies decreased below the level of detection.
After initiation of antiretroviral treatment, the anti-HERV-
K (HML-2) TM response decreased in parallel with the
decay of plasma viremia, but the anti-HERV-K (HML-2)
SU response reappeared to reach the pre-infection titer,
corroborating our previous observation (Figure 2E,F
and Figure 4A,B). We observed that the anti-HERV-K
(HML-2) TM IgM peaked at the zenith of HIV-1 viremia
at day 42 while the anti-HERV-K (HML-2) SU IgM peak
was detected after the treatment initiation, at day 76. These
observations suggested that the TM response is tightly
associated to active HIV-1 replication. Furthermore, the in-
duction of anti-HERV-K (HML-2) TM IgM response dur-
ing the peak of HIV-1 viremia suggested that HERV-K
(HML-2) Env TM protein is preferentially expressed dur-
ing infection.

Evidence of HERV-K (HML-2) envelope TM trans-activation
and post-transcriptional maturation

To investigate whether HIV-1 modified HERV-K (HML-2)
Env TM or SU protein expression, we designed primers
and probes to detect HERV-K (HML-2) Env transcripts,
with one pair of primers amplifying a domain coding for
the HERV-K (HML-2) SU epitope (SUpimers), and another
amplifying a domain coding for the HERV-K (HML-2) TM
epitope (TMpyimers). We measured HERV-K (HML-2) Env
mRNA expression iz vitro in a time course experiment at
dO, d1 and d2 after HIV-1 infection of PBMCs. The expres-
sion of HERV-K (HML-2) Env was compared to -actin
mRNA expression. At d0, no HERV-K (HML-2) mRNA
expression was detected. At d1, HERV-K (HML-2) Env
transcripts were detected using the two pairs of primers
(SUprimers and TMpyimers) at a similar level. At d2, we ob-
served an increased of transcription of HERV-K (HML-2)
Env, but the amplicons detected by the TMpimers Were
overrepresented compared to the transcripts detected by
SUprimers (Figure 6A). Cumulative data obtained from inde-
pendent experiments showed that the quantity of tran-
scripts detected using TM, imers Was significantly superior
(mean fold of 77 [4—130]) (Figure 6B). These in vitro ex-
periments suggest that HERV-K (HML-2) Env mRNA is
expressed under a truncated or mutated form in HIV-1 in-
fected cells.
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We then measured HERV-K (HML-2) Env expression
using different primers designed for nested PCR amplify-
ing domains coding for either SU or TM in plasma be-
fore and after HIV-1 infection in subject OP-1830.
Nested PCR was performed on plasma-isolated viral
RNA. There was a strong signal at day 42 (peak of HIV-1
viremia and anti-TM IgM) when TMp imers Were used,
while no HERV-K (HML-2) Env expression was detected
using SU primers (Figure 6C). At d104, after treatment
initiation and decrease in HIV-1 plasma viral load, HERV-K
(HML-2) Env mRNA expression was detected with either
TM or SU primers (Figure 6A). These results corroborated
the in vitro results and suggested that the mechanisms in-
volved in the modification of HERV-K (HML-2) mRNA ex-
pression in vitro occurred in vivo as well. These results
suggest that HIV-1 induces HERV-K (HML-2) TM protein
expression in infected cells.

To investigate HERV-K (HML-2) Env proteins expres-
sion in HIV-1-infected cells, we used Hela-T4 cells that
are permissive to HIV-1. A commercially available anti-
body, previously described as detecting the precursor pro-
tein (70-100 KDa) and the mature form (about 40 KDa)
of TM [32,33] was used to follow HERV-K (HML-2) Env
protein expression (Figure 6D). Uninfected cells, used as
control for basal protein expression, showed not TM ex-
pression (column 1, Figure 6D). Transfected cells with a
plasmid coding for the whole HERV-K (HML-2) envelope
were used as positive controls (column 2, Figure 6D).
HIV-1 infection induced HERV-K (HML-2) Env precursor
and, at a lower level, TM protein expression (column 3,
Figure 6B). Using the N-glycosylation inhibitor Tunicamy-
cin, we observed that the HERV-K (HML-2) Env protein
expressed after HIV-1 infection had a lower MW and
inhibited the expression of the mature form of TM (col-
umn 4, Figure 6B). These results indicate that HIV-1 in-
fection induces the expression of a fully N-glycosylated
HERV-K (HML-2) Env precursor protein and the trans-
membrane glycoprotein.

A study which reconstituted a functional TM from a con-
sensus HERV-K sequence showed that the N-glycosylation
state affects the membrane location and function of TM
[32]. Using immunofluorescence on non-permeabilized
cells we confirmed the expression of HERV-K (HML-2)
Env TM on the cell surface of infected PBMCs (Figure 6E).
Taken together, these data support the hypothesis that
HIV-1 induces HERV-K (HML-2) Env TM expression on
the cell surface.

Discussion

In this study we investigated how infection with HIV-1
influences HERV-K (HML-2) Env mRNA and protein ex-
pression, and assessed the antibody response to the two
HERV-K (HML-2) Env subunits, the surface unit (SU) and
the transmembrane (TM) protein. We found discordant
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(See figure on previous page.)

expression of HERV-K (HML-2) TM.

Figure 6 Evidence of trans-activation and post-transcriptional modification of HERV-K (HML-2) Env TM. A) HERV-K (HML-2) Env mRNA
expression was detected using primers designed to bind the SU domain or TM domain (SUpimers OF TMgrimers respectively) at 0,1 and 2 days post
infection. Copies of HERV-K (HML-2) Env detected by TMyimers (Plain line) increased by the time of infection compared to the copies detected by
SUprimers (dashed line). The graph is a representative experiment of 3 individual independent experiments. Copy number was determined as
described previously, and B-Actin was used as reference gene [52]. B) The graph represents cumulative data from 3 independent experiments
and shows the ratio of copies of HERV-K (HML-2) Env detected by TMgimers/copies detected by SUgimers from HIV-1 4 infected PBMCs 2 days
post-infection. Similar data were obtained using primary isolates (91US_4/R5 tropic and BK132/X4 tropic). C) Nested PCR. The figure shows the
amplicons obtained after the second round of PCR (around 500pb). TM mRNA is over-expressed during the peak of viremia at d42. Antiviral
treatment induced the transcription of both SU and TM mRNA at a similar level. HIV"'®9%: HIV-1 seronegative low risk donor; OP-1830: HIV-1
seroconverter patient (dO: before infection; d12, d42, d76: after infection without treatment, d104: after treatment); water: the non-template well.
(D) Assumed precursor proteins at 75 to 90 kDa and TM subunits at 32 to 38 kDa are visible. Hela-T4 cells are infected by HIV-1LAI in presence
(4) or not (3) of 10 pl/ml of tunicamycin. HERK-Env transfected cells (2) were used as positive controls for HERV-K TM expression. Uninfected-
untransfected cells were used as control for endogenous HERV-K basal expression (1). (E) Representative images of HERV-K TM extracellular
expression on PBMCs. HERM-1811-5 (anti-TM) mouse monoclonal antibody and goat anti-mouse Alexa555 (red) were used to detect extracellular

antibody responses against the two HERV-K (HML-2) en-
velope protein domains, SU and TM, and determined that
HIV-1 influence was at the level of mRNA expression. We
showed that HIV-1 infected elite controllers had higher ti-
ters of anti-HERV-K (HML-2) TM antibodies, compared
to HIV-1 infected patients on effective HAART or healthy
uninfected donors. These findings suggest that the anti-
HERV-K (HML-2) TM humoral response may play a role
in HIV-1 pathogenesis.

The presence and quantity of the antibody response
against HERV-K (HML-2) during HIV-1 infection is
controversial [30]. Some studies have shown an increase
of antibodies against HERV-K (HML-2) [34,35], while
others saw no differences between HIV-1-infected and
non-infected patients [20,36,37]. We had different re-
sults from others [34,35], which might be due to tech-
nical differences in methods. The first study describing
an anti-HERV-K (HML-2) antibody response showed no
difference between HIV-1 infected and uninfected pa-
tients [37]. They assessed the antibody response by west-
ern blot, detecting sera positive for recombinant SU.
They found fifteen percent of HIV-1 infected patients
were seropositive for SU, similar to our findings. An-
other study mapped the anti-SU response in healthy
subjects and patients with autoimmune disorders and
found a similar epitope on SU [9] (Additional file 1:
Figure S1A). In one study, an anti-HERV-K (HML-2)
TM antibody had been generated after immunization
with a recombinant TM protein, and was directed to a
similar epitope present on the ectodomain [33]. This ob-
servation, and the mapping obtained in a preceding study
[9], agree with our findings that the antibody responses
against HERV-K (HML-2) SU and TM are restricted to
one peptide for each subunit.

We determined that the origin of the anti-HERV-K
(HML-2) TM B-cell and humoral response during HIV-1
infection was the induction of the extracellular expression of
the gp36, the transmembrane HERV-K (HML-2) envelope

protein subunit. We showed that in vitro HIV-1 infection
led to the expression of the glycosylated HERV-K (HML-2)
Env precursor. The state of glycosylation is crucial for the
production of a functional glycoprotein HERV-K (HML-2)
Env TM gp36, and a previous study had shown that fully
glycosylated gp36 could reach the cellular membrane [32].

HERV-K (HML-2) SU and TM proteins are translated
from a unique mRNA coding for the protein precur-
sor. The detection of this unique mRNA using either
SUprimers OF TMprimers by qPCR gave non-concordant
results. This could be explained by a difference of the
primers binding efficiency. Similar number of HERV-K
(HML-2) Env mRNA copies were detected using TMpyimers
or SUprimers at d1 post-infection in vitro and, in vivo with
different set of TMpyimers and SUpyimers; when the HIV-1
viral activity was suppressed by the treatment. This sug-
gests that TMpimers and SUpiimers have equivalent effi-
ciency. The increase of HERV-K (HML-2) Env mRNA
copies detected by TMpimers only at d2 post-infection
in vitro and d42 at the peak of viremia in vivo strongly sug-
gests that an aberrant or truncated mRNA is generated
during high HIV-1 transcriptional activity. It is well de-
scribed that HIV-1 or lentiviral vector integration in-
duces alternative splicing and aberrant transcripts [38-40].
Comparative analysis of transcritomic profiles between
HIV-1 infected and uninfected primary T cells revealed
that a large number of host genes is virus-induced [38].
These virus-induced sequences are not restricted to cod-
ing mRNA but also affect non-coding mRNA [41]. Using
next-generation sequencing, it has been determined that
the number of altered host gene copies is low at 12 hours
post-infection, but dramatically increases at the peak of
HIV-1 transcriptional activity after 24 hours post-infection
in vitro [41]. The chronology of HIV-1-induced host gene
transcription supports our finding that the induction of
an alternative HERV-K (HML-2) Env mRNA, undetect-
able with SUpimers, 0ccurs at the peak of HIV-1 transcrip-
tional activity. The anti-SU antibody response observed in
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different pathological contexts, such as cancers, is often
associated and correlated with an increase in SU protein
expression (reviewed in [42]). In our study, our results
suggest that HERV-K (HML-2) SU protein expression is
poorly induced, because of the low mRNA expression in-
duced by HIV-1. That would explain why we, and others,
did not detect an increase in anti-HERV-K (HML-2) SU
IgG titer. An alternative HERV-K (HML-2) Env mRNA may
code for a dysfunctional SU protein that could be quickly
degraded. This hypothesis would support the induction of
a specific anti-SU IgM and B-cell responses, but the low
level of protein induction would not be enough to induce
and maintain a long lasting IgG response.

Although the presence of viral mRNA in the blood
of patients suggests the release of viral particles by
infected cells [28,43], the absence of a functional HERV-K
(HML-2) SU protein makes the release of infectious HERV-K
(HML-2) particles unlikely. However, we cannot exclude
HERV-K (HML-2) mRNA inclusion in HIV-1 viral particles.

The amino acid sequence we identified as DWNTS
(in which the N residue is known to be glycosylated [32])
is nestled between the two cysteines flanking the ectodo-
main (Additional file 1: Figure S1). This sequence is
conserved among HERV-K families (Additional file 1:
Figure S1), and is recognized by sera independent of
disease stage. There is some sequence homology between
the HERV-K (HML-2) TM epitope and an HCV polypro-
tein (Additional file 1: Figure S1). However, we found
no significant difference between HIV-1 positive HCV
positive or HIV-1 positive HCV negative subjects in
their anti-HERV-K (HML-2) TM response (Additional
file 2: Figure S2). The SU epitope also shares some limited
homology with the HIV-1 Tat protein (Additional file 1:
Figure S1), but the absence of significant increase of anti-
HERV-K (HML-2) SU response in HIV-1 infected patients
or controllers suggests a limited impact of any potential
cross-reactive anti-Tat activity.

To understand the potential role of HERV-K (HML-2)
during HIV-1 disease progression, we compared anti-
HERV-K (HML-2) TM responses in elite controllers and
individuals on effective antiretroviral therapy. Although
the level of viremia in these two groups are low, the level
of residual HIV-1 replication (as compared to simply
production) is known to be higher in controllers than
antiretroviral drug treated subjects. We found higher
anti-HERV-K (HML-2) TM antibody responses in con-
trollers, suggesting ongoing rounds of HIV-1 replication
drive HERV-K (HML-2) expression. An alternative ex-
planation is that a higher level of immune activation in
elite controllers compared to antiretroviral-treated sub-
jects or healthy donors, might drive antibody production
independent of the level of HERV-K protein production,
although as we observed no differences in SU titer this ex-
planation is unlikely. The ratio of anti-HERV-K (HML-2)
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TM/total IgG and anti-SU confirmed the cross-sectional
study, and showed that the TM humoral response was not
increased due to polyclonal expansion. Thus, elite control-
lers have anti-HERV-K (HML-2) TM antibody production
even in the absence of detectable viremia (Additional
file 3: Figure S3).

Although the only prior study that demonstrated TM
protein expression was during pregnancy in the extravil-
lous cytotrophoblast, TM seems to be absent from the cel-
lular membrane at a normal physiological state [33,42].
This raises the possibility that HERV-K (HML-2) may
prove to be a marker of an HIV-1 infected cell, and thus
could be considered as an HIV-1-Associated Neo Antigen
(HANA).

In assessing a potential role for anti-HERV-K (HML-2)
TM antibodies in pathogenesis, we observed a correl-
ation between the anti-HERV-K (HML-2) TM response
and loss of CD4+ T cells for viremic non-controllers sug-
gesting that during viremic rebound anti-TM antibodies
could target HERV-K (HML-2) Env TM-expressing HIV-1
infected CD4+ cells and accelerate CD4+ T cell depletion
through mechanisms such as antibody-dependent cell-
mediated cytotoxicity or complement-dependent cytotox-
icity. However, the presence of an intermediate high
anti-HERV-K (HML-2) TM level in elite controllers in
the absence of detectable viremia suggests that the anti-
body response could also play a role in the control of virus
through similar mechanisms.

The expression of the HERV-K (HML-2) Env TM protein
during HIV-1 infection could have a direct role in immuno-
pathogenesis. Some studies have shown that retroviral
transmembrane glycoproteins such as HERV-K (HML-2)
TM contain an immunosuppressive domain that inhibits
lymphocyte proliferation and plays a role in the immune es-
cape [33,42,44-47]. The increase of expression in viral non-
controllers might be linked to progression of the disease.
Antibodies present in elite controllers might help to inhibit
a TM immunosuppressive effect.

The use of HERV-K (HML-2) proteins as tumor- or
viral-associated antigens has already been investigated in
different models. HERV-K (HML-2) Env elicits antibodies
in patients with breast cancer [19,24] and melanoma [21].
A mouse monoclonal antibody directed against SU showed
strong anti-tumor activity in vitro and in vivo in a mouse
model [25,45,48]. In melanoma, pancreatic or prostate can-
cer, the tumor-associated antigen HERV-K-MEL has been
proposed as a specific target for tumor cells [16,23,49].
One concern with a HERV-based approach to vaccination
or therapeutic treatment is autoimmunity and immuno-
pathogenesis. However, we have demonstrated the immuno-
genicity and safety of an endogenous retrovirus vaccine in
non-human primates. The vaccine, a combination of DNA
and adenovirus coding for Simian-ERV-K, induced spe-
cific T-cell and B-cell responses, including an anti-TM
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antibody response [50]. Thus, ERV-K Env-specific anti-
bodies may not be inherently detrimental to the host due
to the restricted expression of ERV-K Env.

Conclusions

In summary, we have found a novel HERV-K (HML-2)
Envelope TM neo-antigen over-expressed in the context
of an HIV-1 infected cell, and this stimulates a specific
antibody response against HERV-K (HML-2) Envelope
TM. Our determination that naturally aviremic HIV-1
infected “elite” controllers have higher titers of this anti-
body compared to HAART-treated aviremic patients sug-
gests that this antibody response may be of importance in
viral control. We speculate that anti-HERV (HML-2) Env
TM antibodies could also target infected HIV-1 infected
latent “reservoir” cells. As this epitope is highly conserved
and not subject to mutation, these findings could lead to a
new approach to HIV-1 vaccines or immunotherapy.

Methods

Study populations

Samples of peripheral blood mononuclear cells (PBMCs)
were selected from participants in two different San
Francisco-based HIV-1-infected cohorts: OPTIONS (n = 5)
and SCOPE (n =120). Samples from HIV-1-negative con-
trols were obtained from the Blood Center of the Pacific of
San Francisco (n=280). The study was approved by the
local institutional review board (University of California
San Francisco Committee on Human Research), research
conducted according to the Declaration of Helsinki, and
individuals gave written informed consent. Studies were
performed on cryopreserved PBMCs and sera.

PBMC and sera samples were obtained from the follow-
ing categories of chronically HIV-1-infected individuals: 40
elite controllers (EC: naive for treatment, undetectable viral
load for two years, CD4 > 350); 40 highly active antiretro-
viral therapy (HAART: Viremic suppressed with undetect-
able viral load for at least two years, CD4 > 350), and 40
untreated virologic non-controllers (naive for treatment,
viral load >2000 copies/mL).

HIV-1, 4, stock virus

Stocks of HIV-1p 51, a CXCR4-tropic laboratory strain,
were obtained from the AIDS Research and Reference
Reagent Program and amplified on stimulated PBMCs for 7
days [51,52]. HIV-1-infected cells were pelleted at 3,000 rpm
for 20 min, and supernatant fluid was passed through a
0.2-pum filter and frozen in aliquots at —80°C. The titers of
stocks were determined using TZM cells [53-56].

Ex vivo mRNA isolation nested RT-PCR

Viral mRNA was isolated from 140 pL of plasma using
QIAamp® Viral RNA Mini Kit from Qiagen. mRNA ob-
tained were directly used in One-Step RT-PCR Kit (Qiagen)
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according to the manufacturer. Briefly, 5 pl of viral RNA
equivalent to 15 pl of plasma was reverse transcribed at
50°C for 30 min. The 1st round PCR was performed in 20
cycles consisting of 94°C for 30 sec; an annealing step at
55°C for both pairs of outer primers (SU Forward: GTAT
CAATGGTGGTAAGTCTCC; SU Reverse: CACTGCA
ATTAAAGTAAAAAT; TM Forward: GCCATTTTATA
CTRTCGTCCTAA; TM reverse: GACAAAACCRCCATC
GTACTCAT) for 30 sec; and an extension step of 90 sec
at 72°C. PCR product were next diluted at 1:50 and used
as template for the 2nd round PCR. The second round
was performed using Phusion® High-Fidelity PCR Master
Mix in 35 cycles consisting of 98°C for 10 sec; an annealing
step at 60°C for both pairs of inner primers (SU Forward:
TGGATAATCCTATAGAARTAT; SU Reverse: TATGTTT
GTCTAAACTTTCTGT; TM Forward: GCTGTAGCAG
GAGTTGCATTG; TM reverse: TAATTGTAGTACTTC
CAATGGTC) for 30 sec; and an extension step of 60 sec
at 72°C. PCR products were separated on 1% agarose gels.

In vitro mRNA isolation and Q-PCR

mRNA was isolated from PBMCs using RNeasy Mini Kit
(Quiagen) with on-column DNAase treatment (Qiagen
RNase-Free DNase Set) and eluted in 30 pl of RNase-free
water according to the manufacturer. A second step of
DNAse treatment using TURBO™ DNase (Life Technologies)
was performed to eliminate efficiently DNA contaminants.
qPCR was performed using TagMan® One-Step RT-PCR
or TagMan® Universal PCR Mastermix for no-RT control.
PCR was performed with one step at 48°C for 30 minutes,
95°C for 10 minutes and 40 cycles consisting of 95°C for
15 sec; an annealing/extension step at 60°C for both pairs
of primers (SU Forward CCTGCAGTCCAAAATTGG
TT; SU Reverse GCCACACATTCTTCCCAAAGC; SU
Probe CTCAGGCCACGGGTAAATTA; TM Forward GT
TGCGTAAAGCCCCCTTAT; TM Reverse CCCTCTC
TTGCTCTCACCAG; TM Probe AATTGGCAACACC
GTATTCTG; B-Actin Forward GAGCGCGGCTACAG
CTT; B-Actin Reverse TCCTTAATGTCACGCACGAT
TT; B-Actin PROBE ACCACCACGGCCGAGCGQG) for
60 sec. Thermal cycling was performed using a StepOne™
Real-Time PCR System (Applied Biosystems). Data was
analyzed using StepOne™ Software (Applied Biosystems).
Gene expression and fold induction was determined using
the comparative Ct method [57].

Plasmid and recombinant proteins
HERV-K (HML-2) Env nucleotide sequence of HERV-K
(HML-2) 102 was cloned in a pCDNA3.1 plasmid by CellFree
Sciences Co. (Japan). The sequence presents high homology
(>98%) with the major HERV-K (HML-2) family members
as presented in Additional file 1: Figure S1.

SU and TM sequences were cloned in a pGAEx vector
(GENEART vector). Both proteins were produced in HEK293
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cells and purified 6 days post transfection by Ni-HiTrap
columns by GENEART, Burlingame, CA.

Transfection and HIV-1- 5, infection/N-glycosylation
inhibition

Hela-T4 [58] were plated in 12 well plates at 0.8 x 10°
cells/well and transfected with HERV-K (HML-2) Env
coding plasmid using Lipofectamine™ 2000 (Invitrogen)
according to the manufacturer’s protocol. Briefly, plasmid
and Lipofectamin™ were mixed at a 1:2 ratio for 20 min at
RT, and incubated with cells for 16 h. Untransfected and
transfected cells were washed with PBS and infected with
HIV- o1 with 10 pg/ml of tunicamycin (Sigma) or grow
medium for 16 h.

Western blot

Hela T4 cells were lysed in presence of anti-protease
cocktail (Sigma) in n-Dodecyl 3-D maltoside (Sigma) di-
luted at 0.1 mg/ml according the manufacturer protocol
in dH20/0.05 M-TRIS HCI/0.15 M-NaCl lysis buffer.
Prior to loading, the samples were mixed with lamely buf-
fer 2x and boiled at 95°C for 5 minutes. Approximately,
25 pg of total proteins assayed with BCA Proteins assay
kit (Thermo Scientific) were loaded on 4-16% gradient
precast gels (Pierce). PVDF (Biorad) membranes were
blocked 1 h at RT in PBS/0.05%-Tween 20/10%-non fat
dry milk and incubated with mouse monoclonal anti-
HERV-K TM HERM-1811-5 (Austral Biologicals) in PBS/
0.05%-Tween 20/5%-nonfat dry milk at 1/1000 over-night
at 4°C. Membranes were then washed 3 times in PBS/
0.1%-Tween 20 and incubated with an HRP-conjugated
anti-mouse (Abcam) 2 hours at room temperature. After
6 washes, the membranes were incubated with ECL-plus
(GE Healthcare) and exposed at different time points on
Kodak® Biomax™ MR film.

PBMC infection

Fresh PBMCs were isolated by standard Ficoll-Hypaque
density gradient centrifugation on fresh blood samples and
immediately cryopreserved in fetal calf serum (HyClone,
Logan, UT) containing 10% DMSO (Sigma Aldrich, St.
Louis, MO) in liquid nitrogen. PBMCs were stimulated
with 2 pg/ml of phytohemagglutinin (PHA-L; Sigma, St.
Louis, MO) for 48 h in RPMI-10% FBS complemented
with IL-2 70U/ml before the addition of HIV-1;,; at a
MOI of 0.005 in RPMI-10% EBS.

Immunofluorescence

PBMCs were fixed in PBS/PFA 2% (Electron Microscopy
Sciences) and coated on slides using Cytospin (300 rpm
2 minutes), washed twice with PBS and blocked 15 mi-
nutes in PBS/0.5%-BSA/10%-Goat serum. Cells were in-
cubated with mouse anti-HERV-K TM (HERM-1811-5,
Austral Biologicals) at 1:50, dilution in a humidified dark
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room at room temperature for 1 hour and then washed
5 times with PBS. Then, the cells were incubated with
an Alexa-555 anti-mouse IgG (Invitrogen) at 1:500 in a
humidified dark room at room temperature for 1 hour
and then washed 5 times with PBS. DNA was then
stained with DAPI (0.5 pg/ml) for 5 minute at RT and
the cells washed 5 times in PBS and 1 time with dH20.
Coverslips are next mounted with PermaFluor (Thermo
Electron Corporation) on microscope slides (Fischerbrand)
and dried in the dark. Slides were analyzed on a LEICA
DM6000B microscope and photos acquired on Image-pro
6.2 (Scientific Computing).

ELISA

A set of 172 overlapping “15-mer” HERV-K (HML-2) Env
peptides (JPT Peptide Technologies, Berlin, Germany)
were used to comprehensively map the antibody response.
Positive signals were confirmed by peptides produced
by two other companies (New England Peptide and Gene
Script). Two peptides corresponding to the immuno-
dominant epitopes defined on SU (RPKGKPCPKEIPKES)
and TM (HRFQLQCDWNTSDFC) were used for the
whole study (Gene Script). 96 microtiter wells plate (Nunc-
Immuno Plate MaxiSorp Surface) were coated for 1 hour at
37°C with peptides at 10 pg/ml in PBS or over-night at 4°C
with recombinant protein (GeneArt) at 5 pg/ml in PBS.
Plates were then washed 3 times with 200 pL of PBS/
0.05%-Tween 20 and blocked with 100 pL of blocking buf-
fer (PBS/2.5%-BSA) at room temperature (RT). The sam-
ples were diluted in blocking buffer and incubated 2 h at
RT in duplicates. Plates were then washed 3 times with
200 pL of PBS/0.05%-Tween 20. An anti-human IgG or
anti-human IgM HRP-conjugated secondary antibody was
diluted at 1:1000 in blocking buffer and incubated at RT for
1 hour. Plates were then washed 6 times with 200 pL of
PBS/0.05%-Tween 20 and incubated for 10 minutes with
100 pL of TMB (Invitrogen). Addition of 50 pL H2SO4
2 M stopped the reaction. The plates were read at 450 nm
and 690 nm for the background on a plate reader. Back-
ground from 690 nm uncoated wells and PBS-BSA as
negative controls was subtracted from the mean absorb-
ance of the coated wells. Titers were determined as the re-
verse of the highest dilution of each serum sample that
gives an optical density superior than its respective nega-
tive control average. Detection of anti-SU antibodies. ODs
were normalized with serum from a high responder in a
standard curve. The STDEV intra experiment was less
than 7%. Detection of anti-TM antibodies. Sera were used
at 1:400. OD were normalized with serum from a high re-
sponder in a standard curve. The STDEV intra experi-
ment was less than 4%.

Tetramer preparation and B-cell staining
Adapted from Franz et al. [59].
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All tetramers were prepared freshly for each experiment.
Biotinylated-SU or -TM peptides (Gene Script) were incu-
bated with premium-grade phycoerythrin-labeled strepta-
vidin (Molecular Probes) for at least 20 minutes on ice at
a molar ratio of 4:1. Before cell staining, tetramer prepara-
tions were centrifuged for 10 minutes at maximum speed
to remove aggregates.

PBMCs were isolated by standard Ficoll-Hypaque dens-
ity gradient centrifugation on fresh blood samples and
immediately cryopreserved in fetal calf serum (HyClone,
Logan, UT) containing 10% DMSO (Sigma Aldrich, St.
Louis, MO) in liquid nitrogen. The cryopreserved cells
were stored in liquid nitrogen until they were used.

Cells were thawed, washed, counted, and resuspended
in PBS/5% FCS. For memory B-cell labeling, cells were
enriched with the use of Human B Cell Enrichment Kit
(Miltenyi). After enrichment, cells were adjusted to a
density of 5 x 10° cells/mL and stained with SU-Tet or
TM-Tet and incubated on ice for 30 minutes with inter-
mittent gentle vortexing. Cells were co-stained with, IgD-
APC (BD Biosciences), CD27-PacificBlue (BD Biosciences),
and CD19-APC-H7 (BD Biosciences) for an additional 20
minutes on ice. LIVEDEAD® Fixable Dead Cell Stain Kit
was used to discriminate live and dead cells. Cells were
washed and stored in 2% paraformaldehyde at 4°C until ac-
quisition on the LSR-II flow cytometer.

For all flow cytometry experiments, data were acquired
with an LSR-II system (Becton Dickinson). At least 100,000
events were collected and analyzed with FlowJo software,
version 9.0 (Tree Star, Ashland, OR).

Statistical analyses

Humoral responses assayed by ELISA were compared
between groups using the Kruskal-Wallis, Dunn’s mul-
tiple comparison, or two-tailed Mann—Whitney t tests.
Linear regression and Spearman correlation analyses were
used to measure associations between humoral response
and HIV-1 viral load or CD4+ T cells count. All tests were
conducted using GraphPad Prism, version 5.00 (GraphPad
Software, San Diego, CA), with the statistical significance
of the findings set at a p value of less than 0.05.

Additional files

Additional file 1: Figure S1. Epitope mapping and comparison
homology studies. A, and B), Identification of the residues recognized by
sera on SU and TM peptides. A set of peptides with the single mutation
X to A were used in a peptide-based ELISA to determine which amino
acids (aa) were recognized. The graphics represent the% of binding of
the sera on the mutated peptide compared to the original peptide

[(OD mutated peptide/OD original peptide)*100]. The original peptide
corresponds to the peptide that gave the better signal for the mapping
(see method section). The precise aa sequence was determined by
reduction of binding. For both epitopes, sera from infected and healthy
donor were used (6 for SU and 9 for TM). The graphs show the average
of the 6 and 9 sera used respectively for SU and TM mapping. The results
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show that the sequences recognized were PKEIPKE for SU epitope and
DWNTS for the TM epitope. C) Comparison of the sequence of SU and
TM peptides among the different main HERV-K (HML-2) families. Dots
represent the same aa as the original sequence; (=) represents an aa
deletion; a letter represents a mutation. On the left are the names of the
HERV-K (HML-2) families. Corresponding PubMed access numbers: K101
(AF164609.1); K102 (AF164610.1); K103 (AF164611.1); K104 (AF164612.1);
K107 (AF164613.1); K108 (AF164614.1); K109 (AF164615.1); K113
(AY037928.1); K115(AY037929.1) D) Major homology of sequence be-
tween SU and TM sequence with other viruses. Underscored letters are
the epitopes determined in Additional file 1: Figure STA; homologies are
represented in bold. The homologies were determined by using Blast
tool from the PubMed website.

Additional file 2: Figure S2. Anti-TM response in HCV positive patients.
Results from the cross sectional studies were analyzed with respect to
the HCV serostatus of the 120 HIV-1 infected patients. 47 were identified
as HCV positive and 69 as HCV negative. This clinical information was not
available for 4 patients. The statistical significance of data between the
two groups was established using the Mann & Whitney T test.

Additional file 3: Figure S3. Ratio anti-HERV-K (HML-2) Env antibodies/
total IgG. The total IgG level was assayed using a human IgG ELISA kit
(Mabtech) according to the provider's protocol. The sera were diluted at
1/4000000. A ratio was calculated as follows: anti-SU or anti-TM titer
(OD)/total 1gG (OD). n =40 for each groups. The ratio difference shows
the humoral responses against SU and TM do not result from a nonspecific
polyclonal expansion. The statistical significance of data between the
different groups was established using ANOVA Kruskal-Wallis and Dunn'’s
Multiple Comparison. The figure shows the representative results of three
independent experiments. A p value <0.05 was considered as significant.
*p < 0,05, **p < 001, **p < 0.001.
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