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Abstract

Background: HIV-1 infection of target cells is mediated via the binding of the viral envelope protein, gp120, to the
cell surface receptor CD4. This interaction leads to conformational rearrangements in gp120 forming or revealing
CD4 induced (CD4i) epitopes which are critical for the subsequent recognition of the co-receptor required for viral
entry. The CD4-bound state of gp120 has been considered a potential immunogen for HIV-1 vaccine development.
Here we report on an alternative means to induce gp120 into the CD4i conformation.

Results: Combinatorial phage display peptide libraries were screened against HIV-1 gp120 and short (14aa) peptides
were selected that bind the viral envelope and allosterically induce the CD4i conformation. The lead peptide was

subsequently systematically optimized for higher affinity as well as more efficient inductive activity. The peptide:
gp120 complex was scrutinized with a panel of neutralizing anti-gp120 monoclonal antibodies and CD4 itself,
illustrating that peptide binding does not interfere with or obscure the CD4 binding site.

Conclusions: Two surfaces of gp120 are considered targets for the development of cross neutralizing antibodies
against HIV-1; the CD4 binding site and CD4i epitopes. By implementing novel peptides that allosterically induce
the CD4i epitopes we have generated a viral envelope that presents both of these surfaces simultaneously.
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Background

Infection of CD4 positive cells by HIV-1 is realized via a
series of protein:protein interactions that escort the virus
through specific “checkpoints” which include sequential
recognition events of two cellular receptors with the viral
envelope (trimeric gp120 + gp41). The binding of HIV-1
gpl120 to cellular CD4 is the first of these critical steps
[1,2], triggering conformational rearrangements in both
proteins, forming and revealing CD4 induced (CD4i) epi-
topes [3-7]. These neo-epitopes have been demonstrated
by the isolation of discriminating monoclonal antibodies
(mAbs) that show a distinct preference [8-13] or an abso-
lute stringent requirement [14-17] for the gpl20:CD4
complex as compared to binding of either CD4 or gp120
alone. Subsequent binding of a second receptor, the che-
mokine receptors CCR5 or CXCR4 [18-20], becomes pos-
sible as a result of the stabilization and exposure of a
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specific CD4i epitope comprised of 4 anti-parallel beta
strands of the gpl20 outer domain referred to as the
“bridging sheet” [9]. Following gp120:CCR5 interaction,
further conformational rearrangements ensue leading to
the assembly of the 6 helix bundle in gp41, juxtaposing
the viral membrane to that of the cell facilitating their fu-
sion [7,21,22]. As a result, the viral core enters the cellular
cytoplasm and proceeds to infect the target cell.
Obviously, the two critical binding surfaces of gp120 are
“strapped” — restricted in their ability to undergo substan-
tial genetic variation [9,23]. These surfaces are compelled
to conserve structural complementarity to their corre-
sponding cellular receptors, CD4 and CCR5/CXCR4 re-
spectively, so to ensure efficient binding. Consequently,
the virus has evolved various strategies to reduce the ac-
cessibility of these functional, conserved surfaces in order
to evade immune surveillance [24]. Nonetheless, mAbs
that target the CD4 binding site (CD4bs) and CD4i epi-
topes are generated and not surprisingly, constitute hall-
mark components of broadly cross neutralizing (BCN)
serum of those HIV-1 infected individuals that are able to
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keep the virus in check (e.g. natural viral suppressors)
[25-31].

Hence, as the efforts to develop an effective prophylac-
tic vaccine against HIV involve numerous strategies
[32-34], one aspect of vaccine design becomes the at-
tempt to focus the B-cell response towards the con-
served CD4bs and CD4i epitopes. Native gpl20 and
trimeric envelope have evolved to suppress the immuno-
genicity of these sites. So the challenge is to create pre-
ferred more effective presentations of the viral envelope
that better accentuate those conserved surfaces HIV-1
would otherwise conceal. One approach for this has
been the idea of using the gp120:CD4 complex as a vac-
cine [14,35], thereby stabilizing the CD4-bound con-
formation of gpl20 thus constitutively presenting its
CD/4i epitopes, although at the expense of occluding the
CD4bs. Indeed, stabilization of the gp120:CD4 complexes
either through chemical cross linking or by molecular gen-
etic construction of gp120 linked directly to CD4 to create
full length single chain (FLSC) gpl120:CD4 has proven
useful [35,36]. DeVico et al. demonstrated that SHIV-
challenged rhesus macaques first immunized with cross-
linked or FLSC gp120:CD4 complexes elicited high titers
of CD4i Abs which correlated with lower blood and
tissue-viremia, indicating that persistent presentation of
CD4i epitopes in a vaccine could be beneficial [37].

Here we describe unique peptide modulators of gp120
that specifically interact with the viral envelope, elicit
the CD4i epitopes recognized by defining antibodies but
do so allosterically, ie., without binding or obstructing
the CD4bs. The peptide modulators bind monomeric as
well as trimeric gp120 and lock the envelope in the pre-
ferred CD4-bound conformation while retaining a fully
accessible CD4bs.

Results

Isolation of a novel gp120-binding peptide

The HIV envelope undergoes conformational rearrange-
ments upon association with CD4. These conformational
changes can be monitored by the acquisition of binding
of CD4i mAbs that are specific for the CD4-complexed
gp120. CD4i mAbs can be divided into two categories;
relaxed mAbs that bind gp120 albeit with a preference
for the gp120:CD4 complex, as is the case for mAb 17b
[9,11]; and stringent CD4i mAbs (e.g, CG10, 19e and
N12-i15 [14-17,25,38-40]) that have an absolute strict re-
quirement for bound CD4 before gp120 can be recog-
nized. The objective of this study was to select a peptide
that binds to the HIV-1 envelope and in doing so in-
duces the stringent CD4i conformation, i.e., the ability to
bind CG10 in the absence of CD4. For this, a random
phage display peptide library (complexity =5 x 10°) was
screened using monomeric T-cell lab-adapted HIV-1
CDC451 gpl120 as bait. Multiple rounds of biopanning
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of the phage display peptide library led to the isolation
of a phage, designated ml (amino acid sequence dis-
played: C-DRRDLPQWAKRE-C), which not only bound
to gp120 but also enabled the binding of the stringent
CD4i mAb CG10 [14,16,17,38,39] (Figure 1A and B).

A simple explanation of these results could be that
ml-phage acts as a CD4-mimetic; binding gp120 at the
CD4bs, inducing the corresponding conformational re-
arrangement. In order to test this hypothesis, the m1-
peptide displaying phages were captured with an anti-
M13 mAb and reacted with gp120 compared to gp120
mixed equi-molarly with soluble CD4 to generate a
gp120:CD4 complex. Surprisingly, as shown in Figure 1C,
CD4 did not compete for ml-phage binding to gp120.
Quite the contrary, CD4 seemed to enhance the binding
of m1-peptide for g120 while no affinity for CD4 alone
could be detected (see Figure 1C). The fact that CD4
and m1l-phage bound simultaneously to gp120 indicates
that the two molecules have different and distinct epi-
topes on the HIV envelope.

The ml-peptide is thus a unique conformation-
modulator of gpl20 as it not only binds gpl20 and
drives the exposure of the CD4i epitopes but does so al-
losterically, i.e., without binding and occluding the bind-
ing site for CD4, as will be further substantiated below.
Such a peptide might be valuable in the design of a
gpl20-based immunogen since it allows simultaneous
exposure of the CD4i epitopes along with a functional
CD4bs, which are both perceived to be targets of BCN
antibodies [9,23,26,29-31,37,40-44].

Optimization of the m1-peptide

In light of the potential importance of the m1-phage as an
envelope conformation-modulator, efforts were made to
optimize and isolate an improved, high affinity version of
this peptide. For this we constructed a custom tailored,
second generation library using biased random mutagen-
esis [45]. This method was developed to better exploit the
size and complexity of random peptide phage display li-
braries. In principle, a lead peptide serves as a template for
potential modification at every amino acid position which
can assume any of the other 19 residues as compared to
the “native” template (see Methods). Hence, using 3.3%
contamination of the “other” phosphoramidites at each
position, a library was produced containing 4 x 10® m1-
mutants which on average varied by 3—4 amino acids from
the original m1-peptide. Screening of this library against
gpl20 CDC451, while applying standard or stringent
biopanning conditions (see Methods), led to the isolation
of gp120-specific peptides as are listed in Table 1. These
peptides differed in their binding strength to gpl20
CDC451 and in their ability to induce the CD4i conform-
ation in gp120, as demonstrated in Figure 2, which shows
the transition from the original m1-phage to a high affinity
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The experiment was carried out in triplicate.
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Figure 1 The m1-phage binds gp120 and locks it into a CD4i conformation without interfering with CD4 binding. A. Dot blot illustrating
the stringent dependence of mAb CG10 on CD4. CDC451 gp120 was spotted onto nitrocellulose and detected with HIVIg, mAb CG10 or mAb
CG10 in the presence of CD4. CG10 is strictly dependent on the presence of CD4 for gp120 binding. B. Equal amounts of phages displaying the
m1-peptide, phages with no insert (fth-1) or CD4 were spotted to nitrocellulose filters. Filters were incubated with gp120 CDC451 or in blocking
solution without gp120 (no signals developed in the absence of gp120, not shown) and bound gp120 was detected using HIVIg or the CD4i
CG10 mAb. C. Equal amounts of phages displaying the m1-peptide or phages with no insert (fth-1) were captured on ELISA wells using an
anti-M13 mAb. Wells were incubated with pre-formed gp120 CDC451:CD4 complex (stoichiometric molar ratio of 1:1), gp120 or CD4 alone, as
indicated. Bound gp120 was detected using a biotinylated anti-gp120 9G3 mAb; bound CD4 was detected by a biotinylated anti-CD4 mAb CGO.

envelope binder, designated m2-phage (amino acid se-
quence: C-DRRDLPDWAIRA-C). Figure 2 depicts a semi-
quantitative dot blot analysis where phages are titrated
and normalized for equal concentrations. In this manner,
comparison of binding activities between different phages
and a common target gpl20 can be made. Clearly, m2-
phage is a marked improvement over ml-phage and an
intermediate phage 2A6. This is seen for both general
binding to gp120 CDC451 and the induction of CD4i epi-
topes as detected by CG10 binding. As illustrated, this im-
provement is the result of only three compositional
modifications. It would appear that slight reduction of the
positive charge enhances the affinity for gp120, as the loss
of lysine at position 10 of the peptide is common for both
improved versions.

To further confirm that the sequence of m2-peptide is
specific for its binding activity to gp120, this binding was
compared to a scrambled version of the same composition
yet different linear sequence (C-DLWRIRADRAPD-C, note
the flanking cysteine residues were maintained to ensure a
disulfide looped conformation, see Figure 2).

Next, we tested whether or not m2-peptide had ac-
quired the ability to bind and induce conformational
changes in envelopes which have been proposed as po-
tential vaccine candidates, such as gp120 from the BaL
isolate of HIV-1 [36,37,46] as well as trimeric gp140
[47,48]. As can be seen in Figure 3, m2-phage, compared
to m1, indeed gained the ability to bind gp120 from the
primary BaL isolate as well as trimeric R2 gp140, and
was able to elicit CG10 binding in both.
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Table 1 Sequences of affinity-selected phages from
gp120 CDC451 screens

standard stringent

*CDRRDLPQWAIREC CARSDLPLWAKREC **CDRRDLPDWAIRAC
CDRSDLPQWATSVC CDRKDLPEWAKREC CDRRDLPEWALRAC
CDRRDLPQWAETVC CDRRDLPEWAKREC CARSDLPEWANRAC
CDRRDLPQWANRAC ~ CDRLDLPQWANRAC CDRRDLPQWAVSAC
CGRRDLPKWAMREC CDRSDLPQWAISAC CDRRDLPQWAKEVC
CDRNDLPQWAKSAC CDRRDLPQWAISAC
CERRDLPQWAMSVC CDRRDLPQWAISVC

CERSDLPQWAISVC CDRRDLPQWALSAC
CDRSDLPQWATRAC ~ CDRRDLPQWAMSAC

The biased random mutagenesis library was screened using standard or
stringent conditions as indicated (see Methods). Hundreds of potential gp120
CDC451 binding clones were obtained and confirmed for gp120 binding, the
sequences of a collection of which are given above. *The sequence of 2A6
peptide. **The sequence of m2-peptide (see Figure 2). For convenience, the
constant first and last cysteine residues as well as residues of a common motif
(XRXDLPxWAXxxx) are shown in bold.

Figure 4 demonstrates the capacity of m2-phage to in-
duce the binding of multiple stringent CD4i mAbs
[14-17,25,38-40] as well as enable the binding of three
CD4bs mAbs [41,49,50] which represent different as-
pects of the complex CD4bs [41,51,52]. This latter ob-
servation is consistent with the conclusion that m2
binds a distinct and different epitope on HIV envelope
as compared to CD4 and CD4bs mAbs. This was further
substantiated by three independent lines of investigation:

Simultaneous binding of CD4 or CD4 binding site mAbs
with m2-phage

In Figure 5, CD4 was plated onto ELISA wells and used
to capture gp120 BaL. It is clearly shown that although
the CD4bs is occupied, m2-phage continues to bind to
the captured gp120. The fact that CD4 binding is the
sole mechanism for gp120 capture is illustrated by the
lack of mAb b12 binding in the same experiment. Like-
wise, this can be further supported when mAb b12 is
used to capture the viral envelope protein (Figure 6A).
Once again it is clearly shown that m2-phage is able to
bind mAb b12-captured gp120 BaL. In fact, mAb b12
binding may be considered an even more demanding
criterion than other neutralizing mAbs that target the
CD4bs, as it requires a complementary pocket to accom-
modate W100 of its CDR3 [51] .

Binding of the 1B6 mAb

Another line of support is found in using a different
mAb, mAb 1B6, specific for gp120, which does not
interfere with mAb b12 or CD4 binding, yet selectively
competes and inhibits m2-phage binding. Thus one con-
cludes that the two epitopes, those of 1B6 and b12/CD4
are different and distinct (Figure 6B and Figure 7).
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Point mutagenesis of the CD4 binding site
A third line of proof for allosteric binding of m2-phage
compared to CD4 is given in Figure 7. Here we com-
pared the binding of m2, CD4 and mAb b12 to gpl20
Bal. and D368R mutated gp120 Bal. As expected, the
D368R mutant had no affinity for either CD4 or bl2
[53-58] yet continued to bind m2-phage. Hence, the m2:
gpl120 complex differs structurally from that of CD4
complexed gp120, in that in the latter the CD4bs is oc-
cluded thus preventing the binding by b12 and other
CD4bs mAbs. These CD4bs defining mAbs bind m2:
gp120 complex as is demonstrated in Figures 4, 6 and 7.
Other truncations and modifications of gp120 which
were recently implicated as important for the regula-
tion of the CD4-bound state [59] (deletion of the V1,
V2 and V3 loops) do not affect CD4 binding or m2 bind-
ing as well (not shown), indicating that the m2 binding
site, like that of CD4, does not require either of these vari-
able loops.

Attempts to further optimize the m2-peptide

The transition from ml-peptide (C-DRRDLPQWAKRE-C)
to an improved version, m2-peptide (C-DRRDLPDWAIRA-
C), was accomplished by construction and stringent screen-
ing of a randomly mutated peptide library based on the
ml-peptide (Figure 8A, upper logo). Examination of the
sequences obtained from the screens revealed a core
motif of six residues common to all of the peptides that
continued to demonstrate induction of the CD4i conform-
ation (Figure 8A, lower logo). The fact that these residues
were specifically selected over a number of amplification
rounds, and in different screens suggested that this core
motif was functionally important. The other six residues,
however, appeared to be less conserved, although some
strong tendencies were found (for example a preference
for Q>E>L>K is identified at position 8). It was as-
sumed that the six core residues are essential for specific
gpl20 binding, while the other six variable positions
allowed some room for further “adjustment” of the bind-
ing interaction in terms of strength and conformation
modulation. The existence of a definite consensus motif
and variable positions which might afford improvement of
binding justified the production of a third library for fur-
ther optimization. Hence we constructed the “X6 NNK”
m2-based library in which the six consensus residues were
left unchanged, while the other six positions were allowed
to assume all possible amino acid residues (see Figure 8B,
upper logo).

The “X6 NNK” library (complexity = 10°® variants) was
screened against both monomeric gp120 BaL and tri-
meric R2 gp140 under various conditions designed to se-
lect for improved binders (see Methods). A total of over
3500 clones were selected for BaL/trimeric R2 binding
or directly for CG10 induction, of which over 70 clones
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Figure 2 Semi-quantitative dot blot analyses of m2-phage binding to gp120. Equal amounts of 5 different phages were applied to
nitrocellulose filters (two fold serial dilutions) and reacted with rabbit anti-M13 polyclonal sera, or gp120 CDC451 followed by HIVIg or CG10 mAb
as indicated. As is illustrated in the top filter, the amount of phages at each dilution for each of the five different phages is similar and the ECL
signal drops as the phages are diluted (see densitometric quantification in the histogram on the right and Methods). The binding of gp120 and
detection with CG10 is enhanced for phage 2A6 (obtained in standard biopanning) and markedly improved for m2-phage (obtained in stringent
biopanning) compared to phage m1, as is detected in the filters and their subsequent densitometric scans (histograms on the right) which were
performed for both HIVIg and CG10 at dilution 1:4. Peptide sequences: m1 — C-DRRDLPQWAKRE-C; 2A6 — C-DRRDLPQWAIRE-C; m?2- C-DRRDLPDWAIRA-C;
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were further characterized and sequenced (see Table 2).
The structural tendencies derived from this analysis are
given in the motif in Figure 8B, lower logo.

Clearly, irrespective of whether the screening was per-
formed using monomeric or trimeric envelope, and strin-
gent or relaxed conditions one unique peptide was isolated
at a preferred frequency as compared to the other peptides
selected. This peptide, C-SRSDLPEWAVRT-C (designated
m3), was tested for binding and compared to m1 and m2.
Semi-quantitative dot blot analyses (see Methods) indicate

preferred binding of gp120 by m3 vs. m2 and higher ability
to induce CG10 binding (not shown).

In order to further quantify and compare binding ac-
tivities and inductive potentials for m1, m2 and m3 pep-
tides, we conducted biophysical analyses using surface
plasmon resonance (SPR) as is shown in Figure 9.

Binding assays for m1, m2 and m3 (Figure 9) demon-
strate that all three phage displayed peptides have no af-
finity for CG10, that they bind gp120 CDC451 and that
this binding induces CG10 binding as well. Comparing
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Figure 3 The m2-phage binds monomeric and trimeric envelope proteins of different HIV-1 isolates. Equal amounts of phages and CD4
were applied to nitrocellulose filters and incubated with gp120 CDC451, gp120 Bal, trimeric R2 gp140 or without any envelope as indicated (no
signals developed in the absence of envelope, not shown). Captured envelope proteins were detected using HIVIg or the CD4i mAb CG10.
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the sensorgrams clearly illustrates m3 > m2 > m1 binding
of the three peptides tested. We then attempted to con-
duct kinetic measurements of the binding for the three
peptides. Generally, the classical OneToOne model fit
poorly with the data in these experiments (see for ex-
ample Figure 9A). Therefore, we tested an alternative
model of binding, the OneToOne TwoState model, used
in cases where conformational change might be involved
[62,63], and found that this model fits the data very well
(Figure 9B). Thus, for example, the Chi® values for m1
were 2.91 and 0.94 for the OneToOne compared to the
OneToOne TwoState models respectively. This same
better fit was measured for m2-phage as well (Chi* 4.25
compared to 0.32, compare Figure 9A with Figure 9B).
From these data, affinity constants for m1 and m2 of
199.0 nM and 109.0 nM respectively can be calculated.
The fit for m3, however, although improved (Chi* 158
compared to 10.08) using the OneToOne TwoState
model, was not as good. Therefore, the calculated affin-
ity (8.75 nM) must be regarded with caution.

Thus, we have been able to sequentially screen and
optimize the lead ml-peptide to generate m2 and m3
through the production of targeted phage display libraries.

Comparison of the m1, m2 and m3 peptides for their
binding to gp120 and CD4i induction illustrates that the
major improvement is in the transition from ml to m2,
while moving on to m3-peptide had a less dramatic ef-
fect. Thus, the m2 and m3 peptides seem to closely ap-
proach the ultimate level of optimization obtainable
using functional screening of mutant libraries.

Discussion
The use of random or customized peptide libraries for
the isolation of gpl20 binders has been reported in a
number of previous studies, all of which with the pur-
pose to isolate viral entry antagonists for therapeutic ap-
plications [64-66].

The goal in this study, however, is completely different.
The objective was not to identify novel peptides that
broadly cross react with a diversity of HIV isolates and

CD4i mAbs CD4bs mAbs
NIH 3BNC
CG10 19e NI12-il5 bl2 45-46 60 2G12
m2
fth-1
CD4 4

Figure 4 The CD4 binding site is not compromised by m2-phage binding. The m2 and fth-1 phages were applied to nitrocellulose filters
along with CD4. The filters were incubated with gp120 Bal or without gp120 (no signals developed in the absence of gp120, not shown) and
probed with three stringent CD4i mAbs and three CD4bs mAbs as indicated. Binding is also illustrated for mAb 2G12 which recognizes a
mannose-rich epitope on gp120. Note that m2-phage induces binding for all three of the CD4i mAbs and does not interfere with the binding of
the CD4bs mAbs. The binding of the CD4bs mAbs is sensitive to the capture of gp120 by CD4 as expected.

+ BaLL
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Figure 5 The binding sites for CD4 and m2-phage are different.
CD4 was applied to ELISA wells and used to capture gp120 Bal.
Subsequently m2-phage was added and detection of phage and
gp120 was achieved with anti-M13 mAb, HIVIg or b12 mAb as
indicated. Note that whereas CD4 capture inhibits b12 binding as
expected, occupation of the CD4bs does not interfere with m2
binding. The experiment was carried out in duplicate.

inhibit their entry. Quite the contrary, our intent was to
discover peptide modulators that better expose critical
epitopes of HIV. In fact, our first lead peptide, ml-
peptide, had very restricted binding and, for the most
part, was specific for the HIV strain used as bait.

The criterion for selection of m1-peptide was the abil-
ity of gpl20 to acquire recognition by stringent CD4i
antibodies (i.e., CG10) following peptide binding. In ac-
cordance, upon binding to gp120, the m1-phage induced
the epitopes recognized by the mAb CG10 in the ab-
sence of CD4 and was further pursued because of this
intriguing characteristic. Whereas initially it might have
been expected that the m1-phage functioned as a CD4
mimetic, we discovered that m1-phage is able to elicit
the CG10 epitopes allosterically by binding to a distinct,
and as yet unknown, surface on gp120. In doing so, m1
and its optimized derivatives cause changes in the orien-
tation of the core backbone so as to stabilize the CD4i
epitopes associated with the bridging sheet and V2 loop,
as indicated by the acquired binding of three stringent
CD4i mAbs CG10, 19e and N12-i15 respectively, as well
as by the binding of relaxed CD4i mAbs 17b [9,11] and
48d [8] (not shown).

Optimization and production of next generation pep-
tides were conducted so to improve the ml-peptide,
viz. to bind additional HIV envelopes at higher affinity
and ability to induce CG10 binding. For this, two cus-
tom tailored libraries were constructed and screened
using various panning conditions leading to the isola-
tion of peptides m2 and m3. Whereas m2 is dramatic-
ally more efficient than was ml-phage, m3-phage
seems to be only marginally improved, indicating that
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Figure 6 Comparative capture of gp120 with two defining
mAbs. gp120 Bal was captured on ELISA wells using immobilized
b12 mAb (A) compared with immobilized 186 mAb (B) and
incubated with different phages as indicated. Bound phages were
detected with rabbit anti-M13 polyclonal sera while detection of
gp120 was accomplished using the LG4 mAb. Note that both b12
and 1B6 are efficient in capturing gp120 Bal yet distinct regarding
overlap with the m2 binding epitope. The b12 epitope overlaps the
CD4bs (see for example Figure 5) and does not interfere with m2
binding. The 1B6 epitope is different and distinct, competes for m2
binding and does not interfere with binding of either CD4 or b12

(see Figure 7). The experiment was carried out in duplicate.

we reached a limit in our ability to improve this peptide
using the methods described.

These peptides were intended to alter the conform-
ation of a given envelope with the strategic goal of devel-
oping an immunogen. Hence, in the transition from
ml-peptide to its derivatives, we aimed to optimize pep-
tide binding to a recognized vaccine candidate, in this
case gpl20 BaL (which has been used in a number of
immunization studies [36,37,46]) as well as the trimeric
gp140 from the R2 isolate proposed for vaccine develop-
ment by Zhang et al. [48]. Other immunogens are being
considered such as JR-FL [67,68], an HIV-1 global con-
sensus envelope CON-S [69,70] and gp140 from clade C
[71]. Preliminary binding studies found that m2 and m3
(but not m1-peptide) bind these alternative vaccine can-
didates to various degrees (data not shown).
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Figure 7 Mutagenesis of the CD4 binding site does not alter the m2 binding site. Wild type gp120 BaL or the gp120 BaL D368R mutant
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mAb. Note the 1B6 mAb which competes with m2 binding (Figure 6) does not interfere with anti-gp120 mAbs or CD4. The experiment was

Therefore, peptides m2 and m3 represent an add-
itional reagent in the tool box of ligands designed so as
to stabilize gp120 into a preferred CD4i conformation.

Generally, a number of approaches have been taken in
the past so to stabilize gp120 in a CD4i conformation,
the first based on production of stable complexes of
gpl120 and CD4 [35-37,46,72-75]. Fouts et al. reported
that chemically cross-linked gp120:CD4 complexes
raised antibodies which could neutralize primary viruses
regardless of co-receptor usage and subtype in primates,
while anti-gp120 sera only neutralized T-cell lab adapted
strains [36]. The implementation of the gp120:CD4 com-
plex culminated in the development of the FLSC com-
plex comprised of gp120 BalL and CD4 (D1D2) linked
via a flexible linker [46]. Following SHIV-challenge,
FLSC-vaccinated monkeys showed a stronger anti-CD4i
response that correlated with an enhanced decline and
clearance of plasma viremia and absence of tissue
viremia compared to unvaccinated controls, thus estab-
lishing a connection between CD4i antibodies and pro-
tection from disease [37]. The second approach towards
stabilization of CD4i epitopes is exemplified by studies
in which the CDR2-like domain of CD4 was reproduced
on a stable and permissive scaffold in the form of scylla-
toxin thus yielding a CD4-mimetic [10,76-78]. Several
generations of such CD4-mimetics were evaluated to
define the optimal molecule for use in complex with
the HIV-lenvelope as a vaccine, the latest “miniCD4”
(M64U1-SH) being incorporated in a stable cross-linked
complex with oligomeric gp140 [79]. Immunization of
rabbits with this complex resulted in antibodies that
neutralized heterologous Tier 1 viruses and HIV-2 (in
the presence of sub-inhibitory concentrations of CD4) as
compared to antibodies from gpl40-vaccinated rabbits,
indicating the selective elicitation of CD4i antibodies,

whereas rabbits immunized with gp140 developed mostly
anti-V1V2/V3 and anti-CD4bs antibodies.

Alternatively, a partial CD4-bound state of gp120
might be stabilized by limiting the conformational flexi-
bility of gp120 through strategically placed cavity-filling
mutations and addition of inter-domain disulfide bonds
[41]. For example, Xiang et al. introduced the S375W
mutation to the gp120 YU2 core so as to fill-in the
“Phe43” cavity of gp120 and showed that this single mu-
tation partially stabilized a CD4-bound conformation of
gp120 [12]. Since this mutant was impaired in b12 rec-
ognition, a second mutation, T257S, was required in
order to restore b12 binding [80]. Rabbits immunized
with the double mutant completed with a number of
stabilizing inter-domain disulfides developed strong
anti-CD4i responses [81].

Exposure of the CD4i epitopes, using the actual CD4
molecule or a CD4-mimetic, targets the vicinity of the
CD4bs per se and so the resulting antigens are devoid of a
functional CD4bs. Though stabilization of a partial CD4-
bound conformation through alteration of the amino acid
composition of the gp120 does not physically obscure the
CD4bs, demonstrating it to be functional to some degree,
these stabilized cores elicit anti-CD4bs antibodies less effi-
ciently than unmodified cores [81]. Obviously, the CD4bs
is of great immunological importance as demonstrated by
mAb b12 [41,49] and the recently isolated anti-CD4bs
BCN antibodies such as VRCO1 [82,83], VRC-PG04 [84],
NIH45-46 [50].

The peptides reported here are distinct in the sense
that whereas they induce the exposure of the CD4i epi-
topes, they do so allosterically, thus creating an unmodi-
fied gp120 (devoid of mutations) stabilized in a CD4i
conformation, as indicated by its ability to bind the most
stringent CD4i mAbs (CG10, 19¢ and N12-i15) as well
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ml: C D R RDUILPOQTWATZ KT REC

2A6: C

m2: C D R RDILPDWATITRAC

m3: ¢ S R S DL PETWHA AVU RTC

Figure 8 Analysis of gp120 CDC451-binding peptides affinity selected from the biased random mutagenesis library and analysis of the
“X6 NNK” m2-based phage display library. A. Analysis of the biased random mutagenesis library. 24 randomly selected phages from the
biased random mutagenesis m1-based library and 23 affinity selected phages obtained after screening of the biased random mutagenesis
m1-based library against gp120 CDC451 were sequenced. The sequences were used as input for the MEME Suite motif analysis software [60,61]
and two logos were produced (random peptides top and affinity-selected peptides bottom). The sequences of the m1, 2A6 (standard screening)
and m2 (stringent biopaning) peptides are provided for comparison. B. Analysis of the “X6 NNK” m2-based library. | ogos were prepared from
the sequences of 20 randomly sampled phages of the “X6 NNK" m2-based library (upper logo) and those of 41 affinity selected phages obtained
by screening the library with envelope as described in the text (lower logo). The sequence of m3-peptide is provided for comparison.
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Table 2 Sequences of peptides isolated by screening the
“X6 NNK"” m2-based library against gp120 BaL and
trimeric R2 gp140

sequence monomer trimer
CSRSDLPEWAVRTC 15 13
CARVDLPLWAVKTC 1 2
CERSDLPAWAIKTC 3 0
CSRADLPAWAVKTC 1 1
CSRKDLPSWAVKTC 2 0

The “X6 NNK” library was screened using standard conditions, stringent
conditions or the complexed bait method, see Methods. Thousands of
potential gp120 BaL binding clones and trimeric R2 gp140-binding clones
were obtained of which more than a hundred were confirmed as envelope
binders. A total of 75 clones were sequenced and the sequences of peptides
which were isolated against both envelopes or isolated more than once are
shown (the number of times each sequence was isolated for each envelope is
given in the table). For convenience, the constant first and last cysteine resi-
dues, as well as residues of the X6 common motif, (xRxDLPXWAxxx) are shown
in bold. Moreover, note the common Threonine at position 13.

as a more relaxed panel of CD4i antibodies (such as
mAbs 17b and 48d).

Evidence that the m2 sequence per se binds gp120 (inde-
pendently of residues that might be contributed by the
phage major-coat Protein 8 scaffold) was provided by fus-
ing m2 to the N-terminus of the minor phage Protein 3.
Here m2-Protein 3 bound to gp120, and induced CG10
recognition well. In light of these data, one might argue
that production of soluble synthetic versions of m2 would
be useful. Indeed, production of such synthetic peptides
was attempted for both m1 and m2 peptides, yet with little
success. The main problem encountered was that these
synthetic peptides were rather insoluble, and only low af-
finity binding could be measured after solubilization in or-
ganic solvents. Nonetheless, the m2 synthetic peptide
could be shown to compete for m2-phage, albeit only at
micro molar concentrations (data not shown).

Although the binding site for the m2-peptide remains
a mystery, it does not seem to overlap with critical neu-
tralizing surfaces of gp120. Efforts to map the m2 bind-
ing site or that of mAb 1B6 are ongoing. However, what
is clear is that the induced conformational rearrange-
ments typical of the CD4-bound state can be achieved
while retaining a fully exposed and accessible CD4bs.
This has been demonstrated not only by CD4 binding to
m2-complexed envelope but also by binding of a panel
of defining neutralizing CD4bs mAbs including 3BNC60,
NIH45-46 and b12 [41,49,50]. The capacity to bind the
mAb b12 simultaneously with m2 would indicate that in
addition to exclusion of the CD4bs from the m2 epitope,
one can argue that the proximal aspect of the hairpin
20B21 of the bridging sheet is also not necessary for
m2 recognition. The unique requirements for mAb b12
binding, as compared to other CD4bs mAbs, have been
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clearly illustrated by Duenas-Decamp et al. [51]. The
binding of mAb b12 demands access to the pocket that
complements the W100 residue of its extended CDR3
loop, a pocket of HIV-1gp120 bordered by residues
416-423 just preceding [320.

Ultimately, one would like to produce a single chain
peptide:gp120 complex to be used as a vaccine as was
developed for gp120:CD4 complex by Fouts et al. [46].
For this, it would be advantageous to rationally design a
functional linker that would effectively orient the fused
peptide such that it can bind its epitope on the gp120
surface. In the absence of a definition of the m2 binding
site and an atomic structure for full length unliganded
gp120, such linkers can only be derived empirically.
Once this is achieved, one can propose that gp120 com-
plexed with m2 or m3-peptide may thus provide a new
vaccine modality which benefits from both worlds: the
ability to display the desired highly conserved CD4i epi-
topes without having to forfeit the CD4bs. Moreover,
peptide-bound gp120 avoids complications of potential
CD4 autoimmunity.

Conclusions

Two types of vaccine relevant surfaces of HIV-1 gp120
have been recognized, the CD4bs and the neo-epitopes
generated or revealed when gpl20 associates with its
primary receptor CD4 (i.e., CD4i epitopes). Here we de-
scribe phage-displayed peptides m1, m2 and m3 that in-
duce the CD4i epitopes albeit without occluding the
CD4bs. Three lines of evidence have been provided to
prove the allosteric nature of this effect. Hence, binding
of m2-peptide to HIV-1 envelope is accomplished inde-
pendent of the CD4bs. This provides a new modality for
vaccine development, viz. a mechanism to lock the enve-
lope into a CD4 bound state yet enable a vacant CD4bs
for immunological interrogation.

Methods

Antibodies, CD4 and envelope proteins

The murine anti-gp120 mAb CG10, which stringently rec-
ognizes the CD4i conformation of gp120 [14,17,38,39], the
murine anti-gp120 mAbs LG4 (targets a conserved epi-
tope at the carboxy-terminus of gp120), 9G3 and 1B6 [85],
the murine anti-CD4 mAb CG9 [14], the murine anti-
M13 Y2D mADb [86] and the rabbit polyclonal anti-M13
serum were produced at Tel Aviv University. The human
anti-gp120 mAb N12-i15, which stringently recognizes
the CD4i conformation of gpl20, was produced at the
Institute of Human Virology, University of Maryland
School of Medicine, Baltimore, MA, USA [15,25,40]. The
b12 mAb is a human anti-gp120 IgG kindly provided
by D.R. Burton of Scripps Institute, La Jolla, CA, USA
[49,55,87,88]. The human anti-gp120 mAb 2GI12 was
kindly provided by H. Katinger, Plant Biotechnology Unit,
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Figure 9 SPR analyses of gp120 CDC451 binding to peptides. Biotinylated phages displaying peptides m1, m2 and m3 were immobilized on
CMS5 sensor chips coated with streptavidin and reacted with either gp120 (red), mAb CG10 (blue) or with the mixture gp120 + CG10 (black). Y-
axes (Signal) were adjusted according to baseline. As can be seen, the binding to m2-phage is markedly improved as compared to m1. The m3
peptide binds marginally better than m2. A scrambled peptide which was also tested in this setting did not show any binding to gp120 or CG10
(not shown). The two right-hand panels depict binding kinetics of two fold serial dilutions of gp120 (3.9-250nM) to the immobilized m2 displaying
phage. The experimental data (colored curves) were fitted (black curves) using TraceDrawer 1.5 software (Ridgeview Instruments AB Uppsala,
Sweden). As can be seen in A the OneToOne model does not fit the data very well (Chi® 4.25). Using the OneToOne TwoState model the fit is
markedly improved (Chi” 0.32) supporting the conclusion that binding of m2-phage to gp120 is associated with conformational rearrangements.

Department of Biotechnology, BOKU, Vienna, Austria
[89,90]. The human anti-gp120 mAb 19e was a kind gift
from J. Robinson, Tulane University Medical Center,
New Orleans, LA, USA [8,9,11] . The human anti-gp120
PVL mAbs NIH45-46 and 3BNC60 were a kind gift from
M.C. Nussenzweig, Laboratory of Molecular Immunology,
The Rockefeller University, New York, NY, USA [50].
HIVIg, a pool of anti-HIV Igs from 30 HIV-1 infected in-
dividuals, was obtained from Nabi, Inc. Rockville, MD,
USA. The murine anti-M13 mAb was purchased from
GE Healthcare Bio-Sciences AB, Uppsala, Sweden. Re-
combinant gp120 BaL protein was produced in HEK
293 T cells and affinity-purified by as previously de-
scribed [46] at the Institute of Human Virology, Uni-
versity of Maryland School of Medicine, Baltimore,
MA, USA. The CD4bs-deficient D368R mutation in
gp120 BaL [53-58] was prepared using overlap PCR as

described in [91]. The oligonucleotides used in the
overlap PCR were as follows: N-terminal-FOR 5'-cgcc
gccageggtegtcagaagettatgeccatggggtctctg-3'; middle-REV
5'-gccgecegetgetgtgettg-3'; middle-FOR 5'-caagcacagcage
ggcggecgececgagategtgacccac-3'; C-terminal-REV 5'-ttata
atatctagattatcttttttctctttgcaccac-3" (Hy Laboratories Ltd.,
Israel). The resulting mutated PCR product was cloned
into the pCDNA3 expression vector (Invitrogen, CA,
USA) and produced in HEK 293 T cells as previously
described [46]. Recombinant trimeric R2 gpl40 was
kindly provided by G.V. Quinnan and C.C. Broder,
Uniformed Services University of the Health Sciences,
Bethesda, MD, USA [47]. Recombinant gp120 CDC451
protein was purchased from Advanced BioScience Labs,
MA, USA. Soluble recombinant CD4 protein (D1-D4
domains) was a gift from GlaxoSmithKline, King of
Prussia, PA.
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Design and construction of phage display libraries

The phage display peptide libraries used in this study were
constructed at Tel Aviv University as previously described
based on the fth-1 vector [92,93] and consisted of 12-mer,
cysteine-looped phage displayed random peptides. The
biased random mutagenesis library was constructed
implementing “biased random mutagenesis” [45] where
every position in the original DNA sequence of ml-
peptide was laced with a 10% mixture of the other three
phosphoramidites (3.33% of each). The “X6 NNK” m2-
based library was designed so as to fix six core residues
while allowing all possible amino acids to be incorporated
at the remaining six positions, thus yielding a library with
the pattern C-X;RX,DLPX3WAX,X5X¢-C. Briefly, for the
construction of the libraries, two 5" biotinylated oligonu-
cleotides were used. The first contained the “library” se-
quence flanked by Bgl! sites compatible with the two Sfil
cloning sites of the vector. The second oligonucleotide
complemented the 3" end of the first and was extended to
“fill-in” the complementary strand using Klenow polymer-
ase. The product was digested with Bgl, the short biotinyl-
ated segments were removed with streptavidin-conjugated
beads, and the insert in the flow through was collected
and cloned into Sfil digested fth-1 vector. This ligation
mix was used to electroporate MC1061 cells; for details
see [92].

Screening of phage-display peptide libraries - biopanning
The biopanning and amplification procedures were car-
ried out as previously described [92]. For standard bio-
panning, 6-well or 96-well cell culture plates (Corning
Inc. Life Sciences, Tewksbury, MA) were coated with
20 pg/ml of monomeric gp120 or trimeric R2 gp140 in
Tris-buffered saline; 50 mM Tris—HCI pH 7.5, 150 mM
NaCl (TBS). The wells were blocked with 0.25% gelatin
in TBS (TBSG), washed briefly twice with TBS, then in-
cubated overnight at 4°C with 10"" phages of the rele-
vant phage display peptide library suspended in TBSG.
Subsequently, the plate was washed and the bound
phages were eluted with glycine-HCI pH 2.2 and neu-
tralized with Tris—HCl pH 9.1. For high stringency
screening, wells of a 96-well cell culture plate were
coated overnight at 4°C with 5 pg/ml of monomeric
gp120 BaL or 1 pg/ml of trimeric R2 gp140 suspended
in TBS. All washes were carried out with TBS/0.05%
Tween 20. For complexed-bait screening: 5 pg/ml of
gp120 BaL pre-mixed with 2.5 pg/ml CD4 (ca. 1:1 molar
ratio, 1 hr at room temperature) or 2.5 pg/ml of trimeric
R2 gp140 pre-mixed with 1.25 pg/ml CD4 (ca. 1:1 molar
ratio, 1 hr at room temperature) in TBS were used to
coat the wells of a 96-well cell culture plate (Corning
Inc. Life Sciences, Tewksbury, MA) overnight at 4°C. All
washes were carried out with TBS/0.05% Tween 20.
Three additional rounds of amplification and biopanning
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were carried out for each screen. In order to confirm en-
velope binding to affinity-selected phages, E. coli DH5aF’
were infected with the eluted affinity-selected phages
and the bacteria were plated on LB with 20 pg/ml of
tetracycline. Single colonies were picked and grown as
mini-cultures in U-bottom 96-well cell culture plates
(Corning Inc. Life Sciences, Tewksbury, MA). The
plates were centrifuged to pellet the bacteria and super-
natants were transferred to 96-well flat bottom plates
(Greiner Bio-One GmbH, Germany) containing poly-
ethylene glycol/NaCl solution; 33% PEG, 3.3 M NaCl
(PEG/NacCl) to precipitate phages followed by another
centrifugation step to pellet the phages. Phages were
re-suspended in TBS, quantified and used in confirma-
tory dot blot analyses.

Dot blot analyses
Dot blots were used in this study for qualitative and
semi-quantitative solid phase immunoassays [94,95].

Qualitative dot blots

Phages or proteins as specified were applied to nitrocellu-
lose membrane filters using a vacuum manifold (2x10'°
phages/dot or 1 pg/dot of protein). The filters were
blocked using 5% skim milk in TBS for 1 hr at room
temperature. Incubations with envelope proteins were per-
formed overnight at 4°C at a concentration of 2.5-5 pug/ml
in 5% skim milk/TBS. Incubations with antibodies were
carried out for 90 min at room temperature with 1-
5 pg/ml of the antibody of interest dissolved in 5% skim
milk/TBS. Incubations with HRP-conjugated antibodies
1:5000 dilution (0.2 pg/ml) (Jackson, West Grove, PA)
were carried out for 45 min at room temperature in 5%
skim milk/TBS. Between incubations, the filters were
washed 5 times with TBS/0.1% Tween 20. Signals were
developed using the enhanced chemo-luminescence
(ECL) reaction (Rhenium, Israel).

Semi-quantitative dot-blots

For quantification of the binding of envelope proteins
and selected mAbs, it was first necessary to calibrate
and normalize the application of equal amounts of
phages used in the dot blot. The titer of various phages
was determined using a plaque assay [92]. Then similar
amounts of phages were two fold serially diluted in TBS
and applied via a vacuum manifold onto nitrocellulose
membrane filters. The dot blots were processed as de-
scribed above using rabbit anti-M13 polyclonal antibody.
Signals were generated using HRP-conjugates and ECL.
For quantification, the filters were processed using the
ImageQuant TL image analysis software (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden), and the concentra-
tions of each phage type at each dilution were measured.
Replica filters were used to react the calibrated phages
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with HIV envelope, followed by incubation with either
HIVIg or CG10 mAb, as indicated. The signals were de-
termined using the ImageQuant TL image analysis soft-
ware after ECL.

All dot blot experiments were repeated at least 2-3
times. The qualitative analyses were typically performed
using duplicate dots.

Enzyme-Linked Immuno-Sorbent Assay (ELISA)

The wells of EIA/RIA 8-well strips or 96-well EIA/RIA
plates (Corning Inc. Life Sciences, Tewksbury, MA) were
typically coated overnight at 4°C with 10 pg/ml of mAb of
interest in TBS. The wells were blocked for 1 hr at room
temperature with 5% skim milk/TBS. Incubations with
phages were carried out for 1-2 hrs at room temperature
with 2 x 10'° phages/well. Incubations with gp120, CD4 or
pre-formed gp120:CD4 complex (ca. 1:1 molar ratio, 1 hr
incubation, room temperature) were performed for 1 hr
at room temperature, at a concentration of 5-10 pg/ml
in 5% skim milk/TBS. Incubations with various Abs
were carried out in 5% skim milk/TBS at a concentra-
tion of 2.5 pg/ml for 1 hr at room temperature. Incuba-
tions with 1:2500-1:5000 (0.2-0.4 pg/ml) of secondary
HRP-conjugated antibodies (Jackson, West Grove, PA)
were carried out for 45 min at room temperature in
5% skim milk/TBS. Between incubations; wells were
washed 3 times with TBS/0.05% Tween 20. Finally, the
wells were reacted with TMB/E ELISA substrate (Merck
Millipore, Billerica, MA). Absorbance was measured at
650 nm using a micro-plate reader (BioTek, Winooski,
VT, USA). All ELISA experiments were repeated at least
2—4 times and typically performed in duplicates (unless
specified otherwise).

Surface Plasmon Resonance (SPR) analyses of phage-
displayed peptides

The binding of phage-displayed peptides to gp120 CDC451
was compared using a BIACORE T-200 (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden). Series S sensor CM5
chips (GE Healthcare Bio-Sciences AB, Uppsala, Sweden)
were used to immobilize 1300 response units of streptavi-
din (Ornat Biochemicals & Laboratory Equipment Itd.,
Israel) by standard amine coupling in 10 mM sodium acet-
ate pH 5.0 and then loaded with 300 response units of p3-
biotinylated phages displaying different peptides (produc-
tion of p3-biotinylated phages is described in detail in [96]).
Flow cells with immobilized streptavidin were used as a
blank. Experiments were carried out at 25°C in 20 mM so-
dium phosphate pH 7.0 (PBS) and the sensor chips were re-
generated using 10 mM glycine-HCl pH 2.5 after each
injection cycle. Typically, 1 uM of each analyte (CG10,
gp120 or a mixture of gp120 + CG10) was injected over the
immobilized phages for 2 min at a flow rate of 50 pl/min
followed by a 15 min dissociation period.
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Kinetic analyses of the affinity of gp120 CDC451 to
each of the phage-displayed peptides were performed at
a concentrations ranging between 3.9-250 nM, including
blank cycles of zero concentration samples and duplicate
non-zero concentrations. gpl20 CDC451 was injected
over the immobilized phages for 2 min at a flow rate of
30 pl/min followed by a 15 min dissociation period. Re-
generation using 10 mM glycine-HCI pH 2.5 was per-
formed between the cycles. The experimental data were
globally fitted to either the OneToOne model or the
OneToOne TwoState model in TraceDrawer 1.5 soft-
ware (Ridgeview Instruments AB Uppsala, Sweden)
[62,63]. The latter model is described in principle by the
following equation: A + B =AB = AB*. In this model, the
analyte (A) binds to the ligand (B) to form an initial
complex (AB) and then undergoes subsequent binding
or conformational change to form a more stable com-
plex (AB*). Interaction measurements with different
lengths of association (injection times of 30, 180 and
600 sec) were used to validate the applicability of the
OneToOne TwoState model (see [62,63]). The dissoci-
ation phase observed was clearly dependent on the injec-
tion time, where an increase in the contact time between
gpl120 CDC451 and the ligand led to a decrease in the
dissociation rate as expected.
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