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Abstract

Background: Following mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons
(IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the
role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is
not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of
infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses
replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis,
the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to
control by type 1 IFNs was analysed.

Results: The replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly
cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean ICs, value for
IFNa2 (22 U/ml) was lower than that for IFNB (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes
inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNa2
and IFN, likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates
from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNa than virus
isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined
rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones
were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses.

Conclusions: The establishment of systemic HIV-1 infection by relatively IFNa-resistant founder viruses lends strong
support to the hypothesis that IFNa plays an important role in the control of HIV-1 replication during the earliest stages
of infection, prior to systemic viral spread. These findings suggest that it may be possible to harness the antiviral activity
of type 1 IFNs in prophylactic and potentially also therapeutic strategies to combat HIV-1 infection.
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Background

Events in the acute phase of human immunodeficiency
virus type 1 (HIV-1) infection play a critical role in de-
termining the subsequent disease course, and are there-
fore important to characterise in order to facilitate the
rational development of strategies for HIV prophylaxis
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or therapy. Initial HIV-immune system interactions at
mucosal exposure sites dictate whether the transmitted
virus is eliminated or undergoes sufficient local expan-
sion to enable dissemination to local lymphoid tissues
[1]. The observations that a high number of exposures
are typically required for heterosexual HIV transmission
and that disseminated infection is frequently initiated by
a single founder virus [2,3] suggest that rapidly-activated
local responses may extinguish the initial foci of replica-
tion established by the majority of virions before wide-
spread dissemination occurs. If infection does spread,
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systemic immune responses impact the magnitude of
the acute viremic burst and associated CD4 T cell de-
struction, and influence the subsequent efficiency of
control of viremia [4]. Adaptive responses start to be
induced as widespread HIV replication occurs and are
known to contribute to containment of the acute
viremic burst and influence the persisting viral load
established thereafter [4]. By contrast innate responses,
which are activated much more rapidly, have the cap-
acity to impact viral replication from the earliest stages
of infection and may have an even greater effect on the
outcome of infection [5]. However the contribution of
innate responses to early control of HIV replication is
much less well understood.

Type 1 interferons (IFNs) are a family of innate cyto-
kines that includes IFNB and 13 subtypes of IFNa in
humans. They are constitutively produced at very low
levels, but can be rapidly up-regulated in response to
pathogen exposure or infection and play important ef-
fector and immunoregulatory roles in the early host
immune response. Type 1 IFNs mediate their activity
by binding to the IFNa/p receptor, which is expressed
on all nucleated cells. This, in turn, induces the up-
regulation of interferon-stimulated genes (ISGs) [6].
There are hundreds of IFN-responsive genes, the func-
tions of many of which remain to be elucidated, whilst
others are known to exert direct antiviral activity or
regulate the activation state, functions, proliferation or
survival of host cells [7]. Type 1 IFNs are therefore
highly pleiotropic innate cytokines that can contribute
to viral containment by both direct and indirect mech-
anisms [8]. Their importance in early viral control is
indicated by the plethora of strategies that viruses have
evolved to impair the production or activity of type 1
IFNs [9-11] and has been demonstrated experimentally
using IFN-blocking antibodies and IFNa/f receptor-
deficient mice [12,13]. However, chronic production of
type 1 IENs during persistent viral infections can have det-
rimental effects, driving hyperimmune activation and
impairing control of ongoing viral replication [14,15].

Up-regulation of type 1 IFN production is one of the
earliest innate responses observed in HIV-1 infection.
The innate responses activated at mucosal sites of HIV
exposure are difficult to analyse in humans, but studies
performed in macaques infected intravaginally with sim-
ian immunodeficiency virus (SIV) suggest that plasmacy-
toid dendritic cells (pDCs) can be recruited to mucosal
sites and become activated to produce high levels of
IFNa and  within 24 hours of virus exposure [16]. Sub-
sequent SIV spread to lymphoid tissues is likewise ac-
companied by up-regulation of IFNa and B production
at these sites [17]. In humans, systemic virus dissemin-
ation is also associated with rapid type 1 IFN produc-
tion: as plasma virus titres increase during acute HIV
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infection there is a transient elevation in circulating
levels of IFNa that peaks prior to the peak in viremia
[18]. The concomitant drop in circulating pDC numbers
[19], reflecting pDC activation and recruitment into
lymphoid tissues [20], suggests that pDCs probably con-
stitute the major cellular source of type 1 IFN in tissues
and plasma.

Type 1 IENs are known to mediate control of HIV rep-
lication in both CD4 T cells and macrophages in vitro
[21,22]. They act to inhibit HIV replication at multiple
stages in the viral lifecycle [23,24], suggesting that an array
of ISGs acting via different mechanisms is involved in me-
diating antiviral activity against HIV. Consistent with this,
multiple ISGs that restrict HIV-1 replication by diverse
mechanisms have been identified, including apolipopro-
tein B mRNA-editing, enzyme-catalytic, polypeptide-like
(APOBEC)3G/3F [25-27], tripartite motif-containing pro-
tein (TRIM) 5a [28,29], tetherin [30,31], schlafen 11 [32]
and more broadly-acting antiviral ISGs such as protein
kinase R (PKR) [33,34], interferon-induced transmem-
brane (IFITM) proteins [35,36], and ISG15 [37].

The potential for type 1 IFNs to restrict HIV replica-
tion is indicated by the fact that HIV has evolved strat-
egies for limiting type 1 IFN induction during infection
and for counteracting the activities of ISGs. Most cells
express cytosolic nucleic acid receptors that detect viral
DNA or RNA that, if the cell becomes infected, trigger
interferon-responsive factor (IRF)3 activation, which up-
regulates type 1 IFN production. Notably, HIV infection
of T cells and macrophages does not elicit type 1 IFN
production by these cells [38,39]. Several complementary
mechanisms may account for this: the host exonuclease
three prime repair exonuclease 1 (TREX1) degrades HIV
DNA, avoiding HIV detection by cytosolic DNA sensors
[40]; the HIV protease targets the cytosolic RNA recep-
tor retinoic acid-inducible gene 1 (RIG-1), which is cap-
able of sensing HIV-1 RNA, to lysosomes where it is
degraded [41]; and Vpu impairs triggering of NFkB acti-
vation via cytosolic RNA and DNA receptors [42-44].
Although these mechanisms limit type 1 IFN production
by infected cells, high levels of type 1 IEN production
still occur after HIV-1 infection in vivo. This is because
specialised cells such as pDCs that can produce type 1
IENs following exposure to virus without themselves be-
coming infected are triggered to produce high levels of
type 1 IFNs by HIV or HIV-infected cells [45,46]: pDCs
likely constitute a major source of type 1 IFN production
during acute HIV-1 infection. HIV-1 has also evolved
multiple mechanisms for evading control by antiviral
ISGs, for example Vif antagonises APOBEC3G/F activity
[25,47], the HIV-1 capsid gives the virus a low sensitivity
to human TRIM5a [28,29], Vpu counteracts the effects of
tetherin [30,31,48-50] and binding of Tat to the HIV-1
transactivation response (TAR) element inhibits the
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intrinsic ability of TAR to stimulate activation of PKR
and 2’,5-oligoadenylate synthase (2',5-OAS) [33,51,52].

Although these IFN evasion strategies implicate type 1
IFN-mediated antiviral activity as a major selective force
during HIV-1 evolution, the importance of type 1 IFN-
mediated antiviral activity in in vivo control of the virus
remains unclear. Administration of IFN« to individuals
chronically infected with HIV has been associated with
some improvement in viral control [53-58], although the
effects were generally modest, and the roles of direct
IFN-mediated antiviral activity versus IFN-induced en-
hancement of HIV control via stimulation of other immune
responses have not been dissected. Most importantly, the
contribution of type 1 IFNs to HIV-1 control in the earliest
stages of infection has not been addressed. Mucosal admin-
istration of toll-like receptor (TLR) agonists prior to intra-
vaginal or intrarectal SIV challenge in macaques did not
result in a significant decrease in (and in one study in fact
enhanced) early virus replication [59,60]; however these
studies are difficult to interpret as TLR ligands do not solely
up-regulate type 1 IFNs, but also have other activities in-
cluding induction of proinflammatory cytokines.

We previously demonstrated that HIV-1-specific CD8
T cell and neutralizing antibody responses can exert bio-
logically significant pressure on in vivo viral replication
by demonstrating rapid emergence of viruses with en-
hanced resistance to control by these adaptive responses
in infected individuals [61,62]. Here, we used a similar
approach to determine whether type 1 IFNs exert select-
ive pressure on HIV-1 replication during the initial
stages of infection. We hypothesised that if the direct
antiviral activity of type 1 IFNs plays a significant role in
control of HIV-1 replication during the establishment of
infection, viruses with a relatively high sensitivity to
IFN-mediated antiviral activity would have a reduced
capacity to establish a productive infection. In contrast,
the founder viruses that succeeded in undergoing ampli-
fication in the presence of high levels of type 1 IFN
would tend to be relatively resistant to IFN-mediated
antiviral activity; and would be expected to be more
IFN-resistant than viruses present during chronic infec-
tion, when type 1 IFNs are produced at much lower
levels and ongoing virus replication is not subject to
similarly-strong IFN-mediated pressure. To test this hy-
pothesis, we established an in vitro assay for assessing
the sensitivity of HIV-1 isolates to control by type 1
IFN-mediated antiviral activity, and used this to compare
the relative IFN-sensitivity of viruses isolated from HIV-
1-infected individuals at different stages of infection.
Virus isolates from acutely-infected patients were found
to be significantly more resistant to in vitro control by
IFNa than virus isolates generated from the same pa-
tients during chronic, asymptomatic infection, support-
ing an important role for type 1 IFN-mediated antiviral
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activity in control of HIV-1 replication during the estab-
lishment of infection.

Results and discussion
Establishment of an experimental system for evaluation
of HIV-1 sensitivity to the antiviral activity of type 1 IFNs
To quantitate the relative sensitivity of different HIV-1
isolates to type 1 IFN-mediated antiviral activity, we
established an in vitro assay to evaluate the extent to
which virus replication in activated CD4+ cells derived
from the peripheral blood of HIV-seronegative donors
(chosen to mimic the cellular substrate in which the ma-
jority of productive virus replication occurs in vivo) was
reduced by exposure of the cells to a range of concentra-
tions of exogenously-added recombinant IFNa2 or IEN.
Activated, CD8-depleted peripheral blood mononuclear
cells (PBMCs) (a mixture of cells from 3 different do-
nors, to reduce inter-assay variability) were pre-treated
with IFN for 4 hours (to allow up-regulation of ISG ex-
pression), infected with HIV-1 at a low multiplicity of in-
fection (moi) (0.001 50% tissue culture infectious doses
(TCID)sp/cell), then viral replication was assessed 7 days
later by measurement of supernatant p24 levels. The day
7 time-point was chosen because in pilot experiments
addressing the kinetics of growth of a panel of primary
HIV-1 isolates, supernatant p24 levels reached maximal
levels between 7 and 10 days post-infection. Addition of
blocking antibodies to IFN« and f to the culture medium
of non-IFN-treated cells did not alter viral replication, in-
dicating that HIV-1 was not eliciting significant levels of
type 1 IEN production from infected cells (data not
shown). However, exogenously-added IFNa and IFNP
inhibited viral replication in a dose-dependent fashion
(Figure 1A and B). Replicate assays performed with the
same virus using mixed cells derived from different groups
of donors gave very similar results (Figure 1B).
Comparison of the inhibition of HIV replication ob-
served when cells were treated with IFN for 4 hours
prior to infection only, to that observed when cells were
pre-treated with IFN and IFN was also included in the
culture medium throughout the 7-day viral replication
period, showed that IFNa needed to be present through-
out the course of infection to mediate its full inhibitory
effects. By contrast, pre-treatment of cells with IFNf
was sufficient to induce near-maximal inhibition of virus
replication (Figure 1A). IFNfB is known to bind with
higher affinity to both the IFNAR2 and IFNAR1 chains
of the IFNa/p receptor than IFNa subtypes including
[FNa2 [63,64], which likely explains why IFNa needed
to be present throughout the assay. In subsequent exper-
iments, IFNa and IFNP were thus included throughout
the entire course of the assay to enable viral sensitivity
to the full antiviral activity of each cytokine to be
evaluated.
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Figure 1 In vitro analysis of the inhibition of HIV-1 replication by IFNa and IFN. (A) Comparison of the inhibition of HIV (W6BC) replication
when cells were treated with IFNa or IFN@ for 4 hours prior to infection (open bars) or were treated with IFNa or IFN@ both prior to infection and
throughout the subsequent viral replication period (filled bars). Viral replication was assessed by measurement of supernatant p24 levels on day 7
post-infection. The results shown are the mean p24 values from 5 replicate wells treated with the indicated concentrations of IFN, expressed as a % of
p24 values from cells that were not IFN-treated. Error bars represent 1 standard deviation above the mean. (B) Example of data from assays performed
to assess the inhibition of a representative primary HIV-1 isolate (generated from plasma cryopreserved during acute infection from subject MM38) by
IFNa and IFNB. Inhibition of virus replication by each IFN subtype was assessed in two independent assays using mixed PBMCs derived from different
groups of donors (black and grey bars). The results shown are the mean p24 values from 4 replicate wells treated with the indicated concentrations of
IFN, expressed as a % of p24 values from cells that were not IFN-treated. Error bars represent 1 standard deviation above the mean. (C) Calculation of
Vrres and ICsq values from a representative IFN inhibition assay (the first IFNB assay performed on the acute time-point virus isolate from subject
MM38 in B). The level of viral replication in the presence of IFN (mean supernatant p24 concentration, expressed as a percentage of the
mean p24 concentration in the absence of IFN) is plotted against the IFNf concentration and a curve fitted to the data by non-linear regression
using a least squares method. The Vres value (level of virus replication observed in the presence of maximally-suppressive IFN concentrations) is
indicated by the dotted line. The ICs value (IFN concentration required to produce half-maximal inhibition of viral replication i.e. midway
between 100% replication and Vres) is read off from the inhibition curve as indicated by the dashed line.
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Use of IFNa and P at a range of concentrations up to
5000 U/ml was found to be sufficient to achieve max-
imal suppression (indicated by a plateau in inhibitory ac-
tivity) of most viruses, although the extent to which
HIV-1 replication was suppressed at maximally-inhibitory
IFN concentrations differed for different strains, as illus-
trated by the examples in Figures 1A and B. The level of

viral replication at maximal IFNa and B concentrations
(expressed as a percentage of viral replication in the ab-
sence of IFN) was termed Vres (Viral resistance to inhib-
ition by maximal IEN concentrations). Higher Vres values
reflect a higher level of resistance to IFN-mediated anti-
viral activity. The concentration of IFNa and B required to
achieve 50% of the inhibition of virus replication observed
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at maximal IFN concentrations (ICsp) could also be calcu-
lated for each virus (Figure 1C).

Analysis of the sensitivity of virus isolates from patients
acutely-infected with HIV to in vitro control by IFNa and
IFNB

Virus isolates were generated from 11 patients present-
ing with symptomatic primary HIV-1 infection, all of
whom were infected with clade B viruses (patients
MM23, MM24, MM25, MM26, MM27, MM28, MM33,
MM34, MM38, MM39 and CHO077, Table 1), by co-
culture of plasma cryopreserved during acute infection
with activated CD4+ cells derived from the peripheral
blood of HIV-seronegative donors. The primary virus
isolates were expanded by further growth in activated
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CD4+ T cells, and the infectious titres of the resulting
stocks were determined by TCIDs, assay. Viruses were
subjected to a minimum number of in vitro passages to
ensure that the isolates generated were as representative
as possible of the in vivo plasma virus.

The sensitivity of each virus isolate to in vitro control
by IFNa and IFNp was determined using the method de-
scribed above: the ICs, and Vres values for the 11 vi-
ruses tested are shown in Figure 2A and B, respectively.
The replication of all virus isolates could be inhibited to
some extent by type 1 IFNs, but virus isolates from dif-
ferent patients exhibited differences in their 1Csy and
Vres values. Although there was overlap in the ICs
values for [FNa and IFNP of this group of viruses, the
mean ICsy value for IFNa (27 U/ml) was significantly

Table 1 Patients from whom virus isolates and/or infectious molecular clones were generated

Patient ID Transmission risk group' Clade® Setpoint VL (copies/ml)? Virus isolation time-points IMCs generated®
(DFOSx)*

CHO40 MSM B 13,224 None Founder’

CHO58 MSM B 260 28° Founder, 6-month’

CHo77 MSM B 3,631 21°,592° Founder, 6-month’

CH162 HSX C 114,815 None Founder®

CH164 HSX C 575,440 None Founder®

CH185 HSX C 40,738 None Founder®

CH236 HSX C 134,896 None Founder, 6-month®

CH264 HSX C 74,131 None Founder’

CH470 MSM B 23,442 33° Founder, 6-month'®

CH850 HSX C 15,488 None Founder, 6-month’

MM23 MSM B 82,958 14, 204, 631, 1535 None

MM24 MSM B 128,021 16,1322 None

MM25 MSM B 72,600 10 None

MM26 MSM B 34,493 69 None

MM27 MSM B 48,360 28,1516 None

MM28 MSM B 12,322 6, 1995 None

MM33 MSM B 73,958 12,1912 None

MM34 MSM B 8522 25,2227 None

MM38 MSM B ND 29 None

MM39 MSM B 8,546 11,1206 None

SUMA MSM B 17,245 None Founder’

"Transmission risk group: MSM = men who have sex with men; HSX = heterosexual.

2Clade of infecting virus: all clade B virus infected patients were recruited from clinical sites in the UK or USA, whilst clade C virus infected patients were recruited
from clinical sites in Africa.

3Setpoint persisting viral load established, calculated as described by Fellay et al. [65].

“Time-points during infection when plasma from which virus isolates were subsequently derived was cryopreserved, expressed as days following onset of

symptoms of the acute retroviral syndrome (DFOSXx); or >for those patients where the time of onset of symptoms was not known, expressed as days post Fiebig
stage /Il of acute infection [66].
SHIV-1 IMCs generated: founder = IMC corresponding to the deduced sequence of the founder virus that established systemic infection; 6-month = IMC

corresponding to the 6-month consensus virus sequence.

’SGA and viral sequence analysis reported in [67]; construction of the founder IMC described in [68]; construction of the 6-month IMC described in [69].

8SGA, viral sequence analysis and construction of the founder IMC described in [70].

9SGA and viral sequence analysis, unpublished data of G.M. Shaw and B.H. Hahn; founder and 6-month IMC construction, unpublished data of C. Ochsenbauer

and J.C. Kappes.

195GA, viral sequence analysis and construction of the founder IMC described in [70]; 6-month IMC construction, unpublished data of C. Ochsenbauer and

J.C. Kappes.
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Figure 2 Resistance of plasma virus isolates generated from subjects acutely infected with HIV-1 to in vitro control by IFN-a and IFN-p.
(A) IFNa (filled circles) and IFN@ (open triangles) ICsq values of virus isolates generated from different subjects during acute HIV infection; and

(B) IFNa (filled circles) and IFNB (open triangles) Vres values of these virus isolates. Each datapoint represents the mean (of results obtained in a
minimum of 2 independent IFN inhibition assays) ICso or Vres value calculated for a given virus isolate. The horizontal lines show the group mean
ICso or Vres values, plus and minus one standard error. (C) Inhibition of the replication of individual HIV-1 isolates at different IFN concentrations.
The level of replication of each virus isolate in the presence of different concentrations of IFNa or IFNB (mean supernatant p24 concentration,
expressed as a percentage of the mean p24 concentration in the absence of IFN) was evaluated in a minimum of two independent assays, the
mean of results from which is plotted against the IFN concentration, expressed on a linear scale to illustrate viral replication in the presence of
high IFN concentrations. Clusters of virus isolates that exhibit shared patterns of relative resistance to control by IFNa and IFN are indicated by
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lower than that for IENf (259 U/ml) (p = 0.0008, Mann—
Whitney test), indicating that IFN« is capable of inhibit-
ing HIV-1 replication at lower concentrations than IFN.
However the range of Vres values observed for IFNa
and IFNpB was very similar (13 - 72% for IFNa and 7 -
61% for IFNP), showing that at high concentrations,
IFNa and IFNP are capable of suppressing virus replica-
tion to similar extents. During acute HIV-1 infection cir-
culating levels of IFN« can reach several hundred U/ml
[18,71], and it is likely that local concentrations of type 1
IFNs in tissues (where IFN exerts the majority of its ac-
tivity) are higher still. This suggests that type 1 IFNs are

up-regulated to levels sufficient to induce maximal
suppression of HIV replication during acute infection.
Nonetheless, it is likely that type 1 IFN concentrations
rapidly become limiting during acute infection, as
high-level type 1 IFN production occurs only transi-
ently [18,71]. Thus, effective IFN-mediated control of
HIV-1 replication may only be short-lived.
Interestingly, although viral Vres values for IFN«
followed a Gaussian distribution, two clusters of viruses
with relatively high and very low Vres values could be
distinguished for IFNP, indicating that there are a subset
of viruses whose replication can be almost completely
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suppressed by IFNP, although they are not controlled
equally well by IFNa. Although IFNB and IFN«a subtypes
bind to a common receptor, they signal differential pat-
terns of ISG induction [7], which is thought to be due at
least in part to differences in their receptor binding
properties [63]. The group of highly IFNp-sensitive vi-
ruses may be susceptible to control by one or more anti-
viral genes that is preferentially up-regulated by IFN
compared to IFNa2. Likewise, as illustrated in Figure 2C,
virus isolates sharing common patterns of resistance/
sensitivity to IFNa versus IFNP could be identified, likely
reflecting a shared ability/lack of ability to resist control
by differentially up-regulated antiviral ISGs.

Investigation of the relationship between the IFN-sensitivity
of acute virus isolates and the setpoint persisting viral load
established in early infection

We reasoned that if type 1 IFN-mediated antiviral activ-
ity constitutes a major determinant of the magnitude of
the acute burst of viral replication in primary HIV-1 in-
fection and/or the efficiency of subsequent viral control,
better HIV control and establishment of a lower viral
setpoint may be observed in those patients in whom in-
fection was established by more IFN-sensitive viruses.
Ten of the 11 patients from whom virus isolates were
generated during acute HIV-1 infection declined early
antiretroviral therapy (ART), thus enabling calculation of
their setpoint viral loads. As shown in Figure 3, there
was no significant relationship between the Vres or ICs,
values for either IFNa or IENp of the virus isolates gen-
erated from these subjects in acute infection and the set-
point viral loads they went on to establish. However, this
analysis was limited by the relatively low number of sub-
jects studied and the fact that the majority established
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moderate-high persisting viral loads, which is commonly
observed in patients recruited on the basis of clinical
presentation with symptomatic primary HIV-1 infection.
Setpoint viremia is known to be determined by a com-
bination of host and viral factors, including host genes
in the chemokine receptor cluster (that affect viral entry)
[72-76] and major histocompatibility region (that act at
least in part by determining the efficiency of CD8+ T
cell-mediated control of HIV replication) [65,73,77] and
the replicative fitness of the infecting virus [78-80].
Given the multiplicity of factors involved in determining
the viral setpoint, detection of any effects of viral IFN-
resistance on setpoint viremia would likely require ana-
lysis of a much larger number of subjects. The results in
Figure 3 therefore do not preclude a possible role for
type 1 IFNs in restricting the magnitude of the acute
viral burst and reducing the setpoint persisting viral
load.

Comparison of the in vitro IFN sensitivity of viruses
isolated from patients acutely-infected with HIV and virus
isolates generated from the same individuals during
chronic infection

To examine whether HIV-1 IFN resistance declines after
the acute phase of infection as replication proceeds in
the presence of low levels of on-going type 1 IEN pro-
duction, the IFN-resistance of viruses derived at a time-
point during chronic, asymptomatic infection from 8
non-ART-treated HIV-infected individuals (patients CH077,
MM23, MM24, MM27, MM28, MM33, MM34 and MM39,
Table 1) was compared to that of matched virus isolates
generated from the same subjects during acute infection. As
shown in Figure 4A, the IFNa Vres values of acute-infection
virus isolates were significantly higher than those of the virus
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isolates generated from plasma cryopreserved from the
same subjects after 2—7 years of chronic, untreated in-
fection (p =0.024, paired t-test). In patients infected
with viruses that were relatively resistant to control by
IFN(, the IFNP Vres values of the viruses isolated from
plasma during chronic infection were also lower than
those of the matched virus isolated during acute infection,

although as the virus isolates generated from some sub-
jects during acute infection were very sensitive to control
by IENp, the IFNP Vres values of the acute and chronic
time-point-derived virus isolates did not differ signifi-
cantly. Interestingly, although acute time-point-derived
virus isolates were able to replicate significantly better in
the presence of maximally-suppressive concentrations of
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IFN« than viruses isolated from the same patients during
chronic infection, there was no significant difference in
the IFN« (or IFENP) ICsq values of the two groups of virus
isolates (Figure 4A). These results are consistent with the
hypothesis that IFN«a plays an important role in control of
HIV replication during the establishment of infection, and
furthermore suggest that high concentrations of IFN«
may be present at sites of early virus replication.

Virus isolates were generated from different subjects
at chronic infection time-points ranging from approx. 2
to 7 years post-infection. Analysis of the relationship be-
tween the time-point during chronic infection at which
virus isolates were generated and their IFNa or IFN
Vres values revealed a trend for virus isolates generated
earlier in chronic infection to exhibit lower levels of
IFNa resistance than those generated at late time-points.
Moreover, there was a significant correlation (Spearman
r=0.7857, p=0.0279) between the number of days fol-
lowing the onset of symptoms (DFOSx) of the acute
retroviral syndrome at which chronic virus isolates were
generated and their IFNf Vres values (not shown). This
suggests that viral resistance to control by type 1 IFNs
does not decline continuously throughout chronic infec-
tion, but rather that the initial decline in IFN resistance
occurs within the first 2 years post-infection, and that
IFN resistance may begin to increase as disease progres-
sion occurs. Consistent with this idea, prior studies have
shown that virus isolates derived from chronically-
infected subjects who had progressed to AIDS were
more resistant to IFNa2 than viruses isolated from
chronic donors without AIDS, a finding attributed to the
presence of higher serum IFNa levels in the former
group [81,82]. It is notable that the virus isolate generated
from patient MM34 during chronic infection, which ex-
hibited the highest IFNa and IFNB Vres values of all the
chronic time-point viruses tested, was derived from
plasma cryopreserved at > 6 years post-infection, by which
time the patients CD4 T cell count had fallen to <350
cells/mm?, leading to subsequent initiation of ART.

To provide further insight into the kinetics with which
viral IFN resistance declines following acute infection,
additional virus isolates were generated from plasma
samples cryopreserved from subject MM23 at approx. 7
and 21 months post-infection, and their IFN resistance
was evaluated and compared to that of the virus isolates
generated from this subject during acute infection and
at approx. 51 months post-infection. As shown in
Figure 4B, the decline in viral type 1 IFN resistance
in this subject occurred within the first few months
of infection, as the IFN«a and IFNf Vres values of the
virus isolates generated at approx. 7, 21 and 51 months
post-infection were all comparable.

Previous studies in which the viral quasispecies present
in plasma during acute HIV-1 infection has been analysed
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by single genome amplification (SGA) and sequencing has
shown that systemic infection in subjects infected via a
mucosal route is frequently initiated by just one or a very
limited number of founder viruses [2,3]: in cohorts of men
who have sex with men (MSM) such as the one from
which our virus isolates were derived, systemic virus infec-
tion was initiated by a single founder virus in approx. 60%
of subjects [83]. The data in Figure 4 showing that viruses
isolated from plasma during acute infection have a higher
level of IFNa resistance than matched virus isolates de-
rived from the same subjects during early chronic infec-
tion could therefore reflect establishment of infection by a
single founder virus that subsequently acquired mutation(s)
that increased sensitivity to IFN-mediated control; and/or
establishment of infection by several founder viruses, with
the quasispecies present in plasma during acute infection
being dominated by a relatively IFN-resistant virus that was
subsequently out-grown by a more IFN-sensitive virus
(or recombinant). As a decline in viral IFNa resistance
from acute to chronic infection was observed in all 8 MSM
subjects studied, it seems likely that both mechanisms may
operate in vivo. To explore this further, additional experi-
ments were conducted using viruses derived from subjects
in whom systemic infection was known to be established
by a single founder virus.

Comparison of the type 1 IFN resistance of molecularly
cloned founder viruses and 6-month consensus molecular
clones

To determine whether founder viruses derived from
subjects in whom systemic infection was known to be
established by a single variant exhibited a similar level of
type 1 IFN resistance to virus isolates generated from
the plasma of MSM subjects during acute HIV infection,
and explore whether these single founder viruses ac-
quired mutations during the first few months of infec-
tion that resulted in a decline in viral IFN resistance,
further experiments were conducted using viruses de-
rived from infectious molecular clones (IMCs) of in-
ferred founder virus sequences and 6-month consensus
(6-mo) virus sequences.

First, to address the IFN resistance of viruses that had
been subject to a stringent transmission bottleneck, we
studied founder IMC viruses from 11 subjects in each of
whom systemic HIV infection had previously been
shown to be established by a single founder virus (patients
CHO040, CH058, CH077, CH162, CH164, CH185, CH236,
CH264, CH470, CH850 and SUMA, Table 1). The IFNa
and IFNP ICs and Vres values of these viruses are shown
in Figure 5A and B, respectively. As had been observed
with acute time-point virus isolates, the mean ICs, value
for IFNa (19 U/ml) was significantly lower than that
for IFNpB (366 U/ml) (p=0.015, Mann—Whitney test)
indicating that IFNa is capable of inhibiting founder
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virus replication at lower concentrations than IFNf;
but the mean Vres values for IFNa (30%) and IFN
(23%) did not differ significantly, suggesting that at
high concentrations IFNa and IFN(B are capable of
suppressing virus replication to similar extents (although
there was a trend for the founder viruses to be suppressed
somewhat more efficiently by maximally-inhibitory con-
centrations of [FN than IFN«). The founder viruses com-
prised a mixture of clade B viruses derived from MSM
subjects recruited from clinical sites in the US and clade C
viruses derived from female heterosexual subjects re-
cruited from clinical sites in Africa; however no differ-
ences were observed in the IFNa and IFNp ICs, and Vres
values of the two sets of viruses (not shown). Importantly,
the IFNa and IFNp ICso and Vres values of the founder
IMC-derived viruses (Figure 5A and B) did not differ sig-
nificantly from those of the virus isolates generated from
MSM subjects acutely infected with HIV (Figure 2A and
B), indicating that viruses isolated from the plasma during
acute HIV infection and viruses generated from IMCs of
inferred founder virus genomes both exhibit similar levels
of IFN resistance. This was further supported by the find-
ing that the type 1 IFN resistance of virus isolates derived
from acute infection plasma samples from 3 of the
subjects from whom founder IMCs had been generated
(patients CHO058, CH077 and CH470, Table 1) closely
matched that of the subjects’ founder IMC-derived
viruses (data not shown). Combining the data from all
virus isolates and IMC-derived viruses tested, the
mean ICs, values for IFNa and IFNB were 22 U/ml
and 346 U/ml respectively; and the mean Vres values
for IFNa and IFNP were 33% and 26%.

Following establishment of systemic HIV infection by
a single founder virus, the plasma viral quasispecies
starts to diversify and selection for viruses bearing se-
quence changes that confer a fitness advantage in the
conditions under which virus replication is currently oc-
curring begins. Longitudinal analysis of the plasma viral

quasispecies in subjects CH058, CH077, CH236, CH470
and CH850 by SGA and sequencing ([67,84] and unpub-
lished data) revealed that by 6 months post-infection
there were 11, 19, 27, 17 and 12 nucleotide positions, re-
spectively, at which 50% or more of the viral sequences
amplified exhibited nucleotide substitutions compared to
the corresponding founder virus (Figure 6A). Most of
these were non-synonymous changes, some of which
were shown to confer escape from recognition by epitope-
specific T cell responses or antibody responses in the
newly-infected recipient, whilst others were hypothesised
to represent loss of fitness-impairing mutations selected
to confer escape from adaptive immune responses in the
virus donor [84-86]. Other changes may have been se-
lected by other immune responses, may have been com-
pensatory changes selected to reduce the fitness costs of
immune escape mutations [87], may have enhanced viral
replication by other mechanisms, or may have been by-
stander mutations carried along with selected mutations.
To examine whether one or more of these nucleotide
changes resulted in a reduction in the type 1 IFN resist-
ance of the founder virus, a 6-month consensus (6-mo)
IMC was created for each subject by introducing all the
nucleotide substitutions that occurred in 50% or more of
the SGA-derived sequences at the 6-month time-point
into the corresponding founder genome sequence [69].
The type 1 IEN resistance of the founder and 6-mo
IMC-derived viruses was then compared. As shown in
Figure 6B, the IFNa and IENP Vres values of the 6-mo
IMC-derived viruses from all five subjects were all lower
than those of the matched founder IMC-derived viruses.
This difference was statistically significant for both
IFNa (p =0.005, paired t test) and IFNB (p=0.026,
paired t test). As observed with virus isolates generated
during acute and chronic infection, there was no signifi-
cant difference in the ICsy values of founder and 6-mo
IMC-derived viruses (Figure 6B). These findings provide
further strong evidence that viruses that succeed in
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PBMC mixes.

Figure 6 Comparison of the type 1 IFN resistance of viruses generated from IMCs of founder and 6-month consensus virus sequences.
(A) Diagrammatic representation of the nucleotide differences between the founder and 6-month consensus (6-mo) IMC pairs from subjects
CH058, CHO77, CH236, CH470 and CH850. The founder and 6-mo IMC sequences from each subject are represented by horizontal grey lines. The
horizontal axis indicates nucleotide positions in the alignment beginning at the start of the U3 region of the 5" LTR and extending to the end of
the U5 region of the 3’ LTR, based on HXB2 reference sequence numbering (http://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/HXB2.html).
Nucleotide differences between the founder and 6-mo IMC sequences are indicated by tic-marks on the 6-mo sequence, with the colour of the
tic-mark indicating the base present in the 6 mo IMC (A in green, T in red, G in orange and C in light blue). Non-synonymous changes are la-
belled. The total number of nucleotide differences between each founder and 6-mo IMC pair is indicated. (B) IFNa (left panels) and IFN (right
panels) Vres (upper half of figure) and ICsq (lower half of figure) values of viruses generated from the founder and 6-mo IMCs depicted in (A). The
data shown are the mean of results from a minimum of 2 independent IFNa or IFN@ assays performed with each virus using different donor

establishing systemic HIV infection are more resistant
to control by type 1 IFN than viruses representative of
the quasispecies present at later time-points in infec-
tion, and that viral IFN resistance can decline within a
6-month period following acute HIV-1 infection.

In future experiments, it will be important to deter-
mine which of the nucleotide differences between the
founder and 6-month viruses are responsible for their
differential IFN resistance and which antiviral ISG(s)
these changes affect control by. Inspection of the IMC
sequences (Figure 6A) indicates that almost all of the se-
quence changes in the five pairs of viruses occurred at
distinct sites (although the CH058 and CH236 6-month
IMCs each had a (different) amino acid substitution at
position 29 of Tat), suggesting that diverse sequence
changes are inducing differential resistance to one or
more common ISGs and/or that the differential IFN re-
sistance of paired viruses reflects differences in their
capacity to antagonise different ISGs. For example, the
Tat sequences of the CH058, CH077 and CH236 founder
IMCs each differ by 1 or 2 amino acids from their
matched 6-month IMCs, which might result in the latter
activating PKR and 2",5-OAS more efficiently [33,51,52];
and the Vif sequences of the CH236, CH470 and CH850
founder IMCs each differ by between 1 and 3 amino acids
from their matched 6-month IMCs, which might result in
differences in their resistance to APOBEC3G/F activity
[25,47]. Notably, one of the mutations in the CH470 6-mo
IMC is a glutamic acid (E) to aspartic acid (D) change at
position 45 of Vif, and in a previous study where the effect
of natural variation in Vif on its ability to antagonise
APOBEC3F and APOBEC3G activity was assessed, NL4.3
Vif bearing a E45G mutation was shown to display only
weak activity against APOBEC3G [88]. Although a change
from glutamic acid to aspartic acid may have less dramatic
effects on Vif function than a change to a glycine residue
at the same position, this mutation may potentially
contribute to the enhanced IFN sensitivity of the
CH470 6-month virus. Likewise, amino acid changes in
other viral proteins could also affect viral sensitivity to
control by other known or as yet unidentified antiviral
ISGs; and it is also possible that synonymous changes,

or changes in the untranslated regions, may impact on
the efficiency of viral control by antiviral ISGs [89].
However, further work is required to evaluate the con-
tribution of these and/or other changes to the differen-
tial IFN resistance of founder and 6-mo viruses.

The observation that the type 1 IFN resistance of
founder viruses declines within the first 6 months of in-
fection suggests that the sequence changes responsible
for the increase in viral IFN sensitivity must confer a
strong selective advantage on virus replication during
subacute and/or early infection. Given that expression of
a number of ISGs continues to be sustained at higher-
than-normal levels after the acute phase of HIV (and
pathogenic SIV) infection [90-93], it is unlikely that an
increase in viral IFN sensitivity would per se confer an
increase in in vivo viral replicative fitness. It is more
probable that the emergence of sequence changes con-
ferring an increase in viral type 1 IFN sensitivity is
driven by unrelated selective forces, e.g. pressure exerted
by adaptive immune responses, escape from which may
result in an increase in viral IFN sensitivity. Many muta-
tions selected for to confer escape from epitope-specific
T cell responses have been shown to incur a cost to
in vitro viral fitness [79,87,94-97]. As viral replicative fit-
ness is typically assessed in primary CD4+ T cells or
CD4+ T cell lines, which express baseline levels of a
number of antiviral ISGs in the absence of exogenous
IFN stimulation [30,98], the fitness cost associated with
some of these mutations may reflect increase in sensitiv-
ity to these factors, lending support to the idea that the
increase in IFN-sensitivity in early HIV infection may
occur as a side-effect of viral escape from potent adap-
tive responses. Nonetheless, the ability of virus isolates
and IMC-derived viruses to replicate in the absence of
exogenously-added IFN in our assays did not correlate
with their IFN resistance (not shown), indicating that
IEN resistance is not directly related to viral fitness.

Our results showing that the founder viruses that suc-
ceed in establishing systemic HIV infection are signifi-
cantly more resistant to in vitro control by IFNa than
viruses present in the same subjects during chronic, asymp-
tomatic infection lend strong support to the hypothesis that
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IFNa exerts potent selective pressure on HIV replication
during the initial stages of infection, resulting in preferential
establishment of systemic infection by relatively IFN-
resistant viruses. These findings confirm and extend
results from a recent study where the IFNa resistance
of a panel of molecularly-cloned founder HIVs was
compared to that of viruses derived from IMCs gener-
ated from unmatched chronically-infected subjects [70].
This shows that our observations are generalizable to lar-
ger numbers of acutely-infected individuals, and provides
confirmation that HIV-1 infection is commonly estab-
lished by relative IFN-resistant viruses. As the transmis-
sion partners of the acutely-infected individuals in our
cohorts were unknown, we were not able to determine
whether this finding reflects selection during the initial
stages of infection for IFN-resistant viral variants from
within the donor viral quasispecies and/or preferential es-
tablishment of systemic infection following transmission
of virus from donors harbouring IFN-resistant viruses.
This question will need to be addressed in future studies
using samples from acutely-infected subjects with known
transmission partners, or in macaque mucosal SIV trans-
mission models.

The importance of type 1 IFNs in control of HIV-1
replication is supported by the fact that this virus has
evolved multiple strategies for limiting type 1 IFN pro-
duction by the cells it infects [38,39]. However, pDCs
produce high levels of type 1 IEN following exposure to
HIV virions or infected cells [42,43] (and can be repeat-
edly stimulated with HIV, enabling persistent IFN pro-
duction [99]), as a consequence of which a robust type 1
IFN response is triggered following HIV transmission. If,
as our results suggest, type 1 IFN-mediated restriction of
HIV-1 replication at initial sites of infection in the mu-
cosa and potentially also draining lymph nodes limits
the ability of transmitted viruses to undergo sufficient
amplification to establish a systemic infection, this raises
the question of why HIV-1 has not also evolved strat-
egies to limit type 1 IFN production by pDCs. In con-
trast to HIV-1, hepatitis B and C viruses elicit very little
type 1 IEN production by pDCs [100,101] and acute in-
fection with these viruses does not trigger a strong sys-
temic type 1 IEN response [18], a “stealth” strategy that
enables initial viral amplification to occur in the face of
more limited immune control. The explanation for HIV’s
potent pDC-stimulatory activity may lie in the fact that
HIV-exposed pDCs produce not only type 1 IFNs, but
also other soluble factors including beta-chemokines,
which attract CD4+ T cells. CD4+ T cell recruitment to
mucosal sites of HIV transmission may play a critical
role in providing a substrate for initial viral amplification
(particularly in the absence of pre-existing local inflam-
mation), making it essential for HIV to retain a strong
pDC-stimulatory capacity.
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Previous attempts to block mucosal SIV transmission
in macaques by administering TLR agonists to induce
type 1 IFN production at mucosal transmission sites
have not been successful [59,60], likely as a consequence
of the local immune activation also triggered by these
agents. Our observations supporting an important role
for type 1 IENs in restricting viral replication early after
transmission provide a rationale for evaluation of the
ability of local and/or systemic administration of IFNa
to block the establishment of SIV/HIV infection. In
addition to the potential utility of IFN« as part of a micro-
bicide strategy to block HIV transmission, the prospect of
developing vaccines to elicit a sustained or rapidly-
reactivated up-regulation of antiviral ISGs at sites of early
virus replication should also be explored [102].

Conclusions

In summary, the results from this study show that the
replication of plasma virus isolates generated from sub-
jects acutely infected with HIV-1 and viruses produced
from IMCs of founder HIV genomes can be partially
inhibited by type 1 IFNs in vitro. The mean ICs, value
for IFNa2 was lower than that for IFN, although at
maximally-inhibitory concentrations both IFN subtypes
inhibited virus replication to similar extents. Individual
virus isolates exhibited differential susceptibility to in-
hibition by IFNa2 and IFN, likely reflecting differences
in viral resistance to the antiviral activity of differentially
up-regulated ISGs. Plasma virus isolates from subjects
acutely infected with HIV-1 were significantly more re-
sistant to in vitro control by IFN«a than plasma virus iso-
lates generated from the same subjects during chronic,
asymptomatic infection. Following establishment of HIV
infection by relatively IFN-resistant viruses, viral IFN re-
sistance declined rapidly (within the first 6 months of in-
fection), suggesting that this decline may occur as a
side-effect of escape from adaptive responses exerting
potent pressure on viral replication at this time. The es-
tablishment of systemic HIV infection by relatively
[FNa-resistant founder viruses lends strong support to
the hypothesis that IFNa plays an important role in con-
trol of HIV-1 replication in the initial stages of infection,
prior to systemic viral spread. These findings suggest
that the antiviral activity of type 1 IFNs could be
employed in prophylactic and potentially also thera-
peutic strategies to combat HIV-1 infection.

Methods

Study participants

Peripheral blood samples were drawn at serial time-
points during HIV infection from US, UK and African
subjects enrolled in the Centre for HIV and AIDS
Vaccine Immunology (CHAVI) 001 acute HIV infection
study or recruited from clinics at the Mortimer Market
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Centre (London, UK) or the University of Alabama,
Birmingham (Alabama, USA). Ethical approval for these
studies was obtained from local ethics committees and all
study subjects provided written informed consent. Plasma
was separated by centrifugation and cryopreserved prior
to use. If subjects received ART, only samples drawn prior
to the commencement of therapy were employed in this
study. Set-point viral loads were calculated for subjects
not receiving early ART as described [65].

Generation and expansion of virus isolates

Virus isolates were generated from HIV-infected individ-
uals by co-culture of plasma cryopreserved during acute
or chronic infection with activated CD4+ cells derived
from the peripheral blood of HIV-seronegative donors.
PBMCs from three different HIV-seronegative donors
(isolated from leukapheresis cones purchased from the
National Blood Transfusion Service, Oxford, UK) were
mixed and stimulated with 0.5 pg/ml aCD3 antibody
clone UCHT1 (R&D systems), 0.1 pg/ml aCD28 anti-
body clone CD28.2 (eBioscience) and 20 U/ml IL-2
(Sigma-Aldrich) in R20 medium (RPMI containing
300 mg/l L-glutamine (Sigma-Aldrich) supplemented
with 20% fetal calf serum (FCS) (Sigma-Aldrich), 10 U/ml
penicillin (Sigma-Aldrich) and 0.1 mg/ml streptomycin
(Sigma-Aldrich)) for 3 days. Stimulated PBMC were de-
pleted of CD8+ cells using CD8 microbeads (Miltenyi
Biotec) according to the manufacturer’s protocol, then
CD8-depleted PBMC were spinoculated (2 hours,
1200 g) with patient plasma that had been pre-incubated
for 30 min with 50 ul CD44 microbeads (Miltenyi Biotec)
per 1 ml of plasma. The cells were then re-suspended in
R20 +20 U/ml IL-2 and incubated at 37°C in 5% CO,.
After 48 hours the culture was supplemented with fresh
stimulated CD8-depleted PBMC by spinoculation (2 hours,
1200 g) before further culture. Virus-containing superna-
tants were harvested every second day for 7-14 days and
their p24 content was measured using a p24 capture
ELISA (Advanced Bioscience Laboratories) following the
manufacturer’s instructions. ELISA plates were read using
a SpectraMAX 250 plate reader with SoftMaxPro software
(Molecular Devices). The infectious virus titre present in
supernatants containing high levels of p24 antigen was de-
termined by TCIDs, assay as described below. If neces-
sary, a further round of viral expansion was conducted to
generate sufficient quantities of virus for experimental
analysis.

Generation of IMCs

The plasma quasispecies in selected patients was ana-
lysed at sequential time-points during acute and early in-
fection by single genome sequencing (SGS) and IMCs
corresponding to the inferred founder virus sequence
were generated as described [67,68]. In five subjects
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where systemic infection had been established by a sin-
gle founder virus a 6-month consensus (6-mo) IMC was
also generated. SGS-derived sequences from 154—194 days
post-Fiebig I/II were used to determine this consensus se-
quence. At polymorphic positions, the majority nucleotide
was selected. At positions where there was no single nu-
cleotide representing >50% of sequences, the most preva-
lent nucleotide change was selected. IMCs with this 6-mo
sequence were constructed by chemical synthesis of over-
lapping subgenomic fragments (Blue Heron), followed by
ligation and cloning as described [69]. All IMCs were se-
quence confirmed.

To produce viral stocks from IMCs, plasmid DNA was
transfected into 293FT cells using Lipofectamine (Sigma)
and virus-containing supernatants were harvested 3 days
later. Where necessary, viruses were expanded by growth
in CD8-depleted PBMCs for 7-14 days as described
above.

Titration of viral stocks

The infectious titre of viral stocks was determined by
TCIDs, assay. PBMC from three HIV-seronegative
donors were depleted of CD8+ cells using CDS8
microbeads and the CD8-depleted cells were mixed
and stimulated with 2.5 pg/ml phytohaemagglutinin
(PHA) (Sigma-Aldrich) and 10 U/ml IL-2 in R10 (RPMI
containing 300 mg/l L-glutamine supplemented with 10%
ECS, 10 U/ml penicillin and 0.1 mg/ml streptomycin) for
3 days. Cells were infected with serial dilutions of virus by
spinoculation (2 hours, 1200 g) and then washed three
times before re-suspension in R10 plus 10 U/ml IL-2. After
7 days supernatants were collected and assayed for the
presence of virus by p24 ELISA. The TCIDs, was calculated
using the method of Reed and Muench.

Analysis of viral IFN sensitivity
PBMC from three HIV-seronegative donors were de-
pleted of CD8+ cells using CD8 microbeads and the
CD8-depleted cells were mixed and stimulated with
2.5 pg/ml PHA and 10 U/ml IL-2 in R10 for 3 days.
After washing, cells were pre-treated with IFNa2 (Pepro-
tech) or IFNB (Peprotech) at concentrations from 0 —
5000 U/ml in R10 for 4 hours. Cells were then plated
into flat-bottomed 96-well plates at 2 x 10°/well, set-
ting up 4 wells of cells pre-treated with each IFN con-
centration, and were infected with HIV at a moi of
0.001 TCIDsg/cell by spinoculation (2 hours, 1200 g).
Following infection, cells were washed and, unless
otherwise specified, the IFN-containing medium re-
placed, supplemented with 10 U/ml IL-2. After 7 days
supernatants were removed and their p24 content was
assessed by ELISA as a measure of viral replication.
Data was analysed using Excel (Microsoft) and Graph-
Pad Prism v 5.0 (GraphPad software). To calculate the
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ability of the virus to replicate in the presence of max-
imal concentrations of [FNa and  (Vres), p24 produc-
tion in cells treated with maximally-suppressive IFN
concentrations was expressed as a percentage of p24
production from cells that had not been treated with
IFN. The concentration of IFNa and [ required to
achieve 50% of the inhibition of virus replication ob-
served at maximal IFN concentrations (ICs,) was also
calculated (Figure 1C). Each virus was tested at least
twice in assays performed using mixed cells from differ-
ent donors, and the results shown are the mean Vres
and ICs, values from the replicate assays.

Statistical analysis

Datasets were assessed for normality, and the signifi-
cance of differences between groups was determined
using a Mann—Whitney test. Differences in the IFN re-
sistance of virus isolates or IMCs generated from the
same set of subjects at time-points in acute and chronic
infection were analysed using a paired t-test. The rela-
tionship between pairs of variables was assessed using a
Spearman rank correlation test. All statistical analyses
were carried out using GraphPad Prism v5.0.
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