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Abstract

Background: Existing highly active antiretroviral therapy (HAART) effectively controls viral replication in human
immunodeficiency virus type 1 (HIV-1) infected individuals but cannot completely eradicate the infection, at least in
part due to the persistence of latently infected cells. One strategy that is being actively pursued to eliminate the
latent aspect of HIV-1 infection involves therapies combining latency antagonists with HAART. However, discordant
pharmacokinetics between these types of drugs can potentially create sites of active viral replication within certain
tissues that might be impervious to HAART.

Results: A preliminary reverse genetic screen indicated that the proteasome might be involved in the maintenance
of the latent state. This prompted testing to determine the effects of proteasome inhibitors (Pls) on latently infected
cells. Experiments demonstrated that Pls effectively activated latent HIV-1 in several model systems, including primary
T cell models, thereby defining Pls as a new class of HIV-1 latency antagonists. Expanding upon experiments from
previous reports, it was also confirmed that Pls inhibit viral replication. Moreover, it was possible to show that Pls act
as bifunctional antagonists of HIV-1. The data indicate that Pls activate latent provirus and subsequently decrease viral
titers and promote the production of defective virions from activated cells.

Conclusions: These results represent a proof-of-concept that bifunctional antagonists of HIV-1 can be developed and
have the capacity to ensure precise tissue overlap of anti-latency and anti-replication functions, which is of significant

importance in the consideration of future drug therapies aimed at viral clearance.
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Background

Human immunodeficiency virus type 1 (HIV-1) infection
is presently incurable necessitating life-long drug treat-
ment [1]. HIV-1 is able to persist within its cellular host
by entering a reversible dormant state, termed latency,
which provides protection from the immune system and
antiviral pharmaceuticals. Consequently, latent HIV-1 is
able to persist indefinitely awaiting activation, upon
which it can reestablish a productive infection in the
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absence of highly active antiretroviral therapy (HAART)
(Latency Reviewed in [2]).

Currently, one strategy to abolish latent infection in-
volves treating patients with a latency antagonist con-
comitantly with HAART to prevent new infections and
the reestablishment of the latent reservoir upon the acti-
vation of latent virus [2-8]. A major reservoir of latent
infection in vivo is within memory CD4" T cells, [9] al-
though other cell types have been reported to harbor
latent HIV-1, including cells of myeloid origin. Import-
antly, latently infected cells can be found in tissues that
are resistant to effective penetration of at least some
HAART drugs [10-17]. For instance, the brain was re-
ported to house latently infected cells [10,17-21] yet the
blood—brain barrier (BBB) can restrict the penetrance of
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some antiretroviral drugs into the brain [22-28]. In light of
this, it may be important to not only treat patients with
both latency activators and HAART simultaneously, but
to ensure their concurrent delivery to the same tissue and
cellular compartments.

The 26S proteasome is composed of two regulatory
19S subunits that abut a catalytic 20S core subunit and
as a whole is responsible for the degradation of ubiquiti-
nated proteins in the cell [29]. Interestingly, the prote-
asome is involved in promoting HIV-1 replication via its
specific degradation of the APOBEC3 family of HIV-1
restriction factors in the presence of the viral protein Vif
(Reviewed in [30,31]). Surprisingly, as delineated in this
study, it was also found that the proteasome is involved
in maintaining HIV-1 latency. The fact that the prote-
asome positively influences both HIV-1 replication and
latency makes it a unique drug target whose inhibition
has the potential to elicit dual antiviral effects. The de-
velopment of a drug that exhibits bifunctional antagon-
ism of both aspects of the viral life cycle would help to
address concerns regarding the insufficient penetration
of HAART into some tissues harboring latently infected
cells.

In this report, evidence that proteasome inhibitors
(PIs) hinder both HIV-1 latency and replication is pre-
sented. Here, it is shown that PIs activate latent HIV-1
in several in vitro model systems, including two primary
human CD4" T cell model systems. Consequently, Pls
represent a new class of HIV-1 latency antagonists. Add-
itionally, this study confirms that PIs inhibit HIV-1 in-
fectivity. Finally, it is demonstrated that PIs antagonize
both HIV-1 latency and replication in a sequential man-
ner in virus-producing cells. These results introduce a
novel proof-of-concept that effective bifunctional HIV-1
antagonists can be developed.

Results

Pls activate latent HIV-1 transcription, gene expression,
and virus production

A preliminary reverse genetic screen in a HeLa cell
model of HIV-1 latency implicated the 26S proteasome
as a novel cellular regulator of the maintenance of HIV-
1 latency (unpublished data). As the involvement of the
proteasome in the maintenance of latency was unex-
pected, we chose to further validate its role through the
use of PIs. Latently infected cells were treated with Pls to
analyze the activation of proviral transcription. OM-10.1
cells, which are a clonal population of HL-60 promyelo-
cytes that are latently infected with the replication-
competent HIV-1; 5y strain [32-36], were treated with the
PI Velcade. Velcade is an inhibitor of the chymotrypsin-
like activity of the 20S proteasome core particle [37,38]
and is also FDA approved for the treatment of multiple
myelomas, leukemias, and lymphomas [37,39-42]. Velcade

Page 2 of 15

inhibited proteasome function within two hours (Figure 1A),
and resulted in a significant increase in the level of nef-
containing viral RNAs in OM-10.1 cells as early as 12
hours post-treatment (Figure 1B). To confirm the activa-
tion of latent viral transcription, two additional inhibitors
of the chymotrypsin-like activity of the proteasome
(clasto-Lactacystin -lactone (CLBL) and MG-132 [37,38])
were used to assess the accumulation of both nef- and
env-containing viral RNAs. CLBL and MG-132 also inhib-
ited proteasome function within two hours (Figure 1A)
and significantly induced the expression of viral RNAs
(Figure 1C and D). Of note, concentration dependence is
shown for Velcade due to its clinical relevance. Otherwise,
optimal PI concentrations were selected and utilized based
on knowledge of IC5o concentrations as well as cytotox-
icity and dose response profiles (data not shown).

Next, OM-10.1 cells and additional tissue culture-
based latency model systems (HeLa#14 cells [43] and
24ST1INLESG cells [44]) were treated with PIs to analyze
the activation of proviral gene expression and virus pro-
duction. HeLa#14 cells are a clonal population of HeLa
cells that are latently infected with an HIV-1yy 4 3-based
reporter construct RLUC/REP. Briefly, the vector is ren-
dered replication-incompetent via deletions in pol and
env while red fluorescence protein (RFP) is expressed as
an early gene product from the nef position and Renilla
luciferase (RLUC) is expressed as a late gene product
from the env position (Figure 2A) [43]. 24STINLESG
cells are a clonal population of SupT1 cells, a human
CD4" T cell line, latently infected with an HIV-1yp4 3-
based reporter construct SEAP/GEFP. Briefly, the vector
is rendered replication-incompetent via deletions in pol
and env while green fluorescence protein (GFP) is
expressed as an early gene product from the nef position
and secreted alkaline phosphatase (SEAP) is expressed
as a late gene product from the env position (Figure 2B)
[44]. All three PIs were able to significantly induce
HeLa#14 cell RLUC expression (Figure 2C), 24STINLESG
cell SEAP expression (Figure 2D), as well as induce viral
particle production from OM-10.1 cells, as evidenced by a
significant increase in HIV-1 capsid protein (p24) concen-
tration in the supernatant (Figure 2E). Again, PI concen-
trations and treatment durations were selected and
utilized based on knowledge of IC5, concentrations as well
as cytotoxicity and dose response profiles (data not
shown). It should be noted that although the expression
of RLUC in HeLa#14 cells treated with DMSO appears to
be high, it does not indicate that DMSO activates latent
HIV-1 gene expression, as the magnitude of RLUC ex-
pression is equivalent in untreated HeLa#14 cells cultured
for 48 hours in a small-well format (data not shown). Des-
pite this relatively high background, PIs significantly in-
duce RLUC expression in these cells (greater than 5-fold)
over DMSO.
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Figure 1 Pls activate latent HIV-1 transcription. A. OM-10.1 cells were treated with Pls as indicated and proteasome activity was assessed two
hours post-treatment. The values shown specify the percent proteasome function compared to untreated cells, whose function was set to 100%.
B. OM-10.1 cells were treated with 15nM Velcade for the indicated time course. At each time point, nef RNA levels were analyzed via reverse
transcription-quantitative PCR. RNA expression values were calculated via AAC(t) method with the values normalized to the expression level of
GAPDH in each sample. C. OM-10.1 cells were treated with Pls as indicated and nef RNA and D. env RNA levels were analyzed 72 hours post-
treatment via reverse transcription-quantitative PCR (values calculated as above). Error bars indicate SEM. Asterisks indicate a significant difference
(* p<0.05; ** p<0.01; *** p<0.001) in RNA expression levels between drug-treated cells and DMSO-treated (negative control) cells. P-values calculated
using one-tailed Student’s t test. Cells were treated with SAHA as a positive control. Velcade was used in three different concentrations where
indicated to illustrate concentration dependence. The figure represents average values from three independent experiments.
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The effects of proteasome inhibition on proviral gene
expression in two latent HIV-1 primary human CD4" T
cell models were also studied. To start, HIV-1 virions were
produced using a replication-incompetent HIV-1y14.3-
based reporter construct gGnA in which Gaussia lucifer-
ase (GLUC) and GFP are expressed as early gene products
from the nef position (Figure 3A). This reporter virus was
then used to establish a latent HIV-1 infection in primary
human CD4" T cells, isolated from peripheral blood
mononuclear cells (PBMCs) collected from healthy
donors, via two distinct methods. The first involved the
infection of non-polar CD4" T cells, which are considered
to be the in vitro counterparts of latently infected central
memory T cells in vivo [45]. Naive human CD4" T cells
were isolated, activated in a non-polarizing environment,
infected with the gGnA virus, and then cultured for seven

days to establish a latent infection. These cells are referred
to as Tey-like cells [45]. The second method involved the
use of primary human CD4" T cells transduced with a
BCL2 expression vector, which mimic both central
memory and effector memory T cells [46]. The BCL2-
transduced cells were activated, infected with the gGnA
virus, and cultured for seven days to permit the estab-
lishment of viral latency [46]. The latently infected Tcy-
like primary and BCL2-transduced human CD4" T cells
were treated with PIs and analyzed for latent viral gene
expression 48 hours later. Despite the expected donor-
to-donor variability, MG-132 and Velcade treatments
significantly induced the expression of GFP (Figure 3B
and C) in both latent, primary human CD4" T cell
models. It should be noted that CLBL caused significant
cytoxicity in both of these primary cell model systems,
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Figure 2 PlIs activate latent HIV-1 gene expression in tissue culture model systems. A. Schematic of the RLUC/RFP construct used to
establish latently infected Hela#14 cells. The vpu gene start codon is mutated for robust reporter gene expression. The black box represents a
deletion and the patterned boxes represent RLUC and RFP reporter gene insertions. Together, the deletion in pol and the insertion in env render
the vector replication-incompetent. B. Schematic of the SEAP/GFP construct used to establish latently infected 24STTNLESG cells. The vpu gene
start codon is mutated for robust reporter gene expression. The black box represents a deletion and the patterned boxes represent SEAP and
GFP reporter gene insertions. Together, the deletion in pol and the insertion in env render the vector replication-incompetent. C. Hela#14 cells
were treated for 48 hours with Pls as indicated and RLUC activity was measured. The values shown indicate RLUs normalized to protein
concentrations. D. 24STINLESG cells were treated with CLBL for 48 hours and MG-132 and Velcade for 72 hours at the indicated concentrations,
and SEAP activity was analyzed. The values shown indicate RLUs normalized to the number of live cells. E. OM-10.1 cells were treated for

72 hours with Pls as indicated and p24 levels in the supernatant were analyzed via p24 ELISA. p24 levels (ng/mL) were calculated using standard
curve values. Error bars indicate SEM. Asterisks indicate significant differences (** p<0.01; *** p<0.001) between drug-treated cells and DMSO-
treated (negative control) cells. P-values were calculated using one-tailed Student’s t test. Cells treated with SAHA served as positive controls. The
figure represents average values from three independent experiments.

which made it difficult to assess the latency antagonist previous studies, which indicated that PIs do not acti-
effect of CLBL here. However, the cytotoxic effects of vate primary human T cells [47,48].
CLBL were much less pronounced in the tissue cul-
ture model systems tested in which CLBL significantly  Pls decrease viral titers and inhibit HIV-1 infectivity
activated latent virus. Overall, two of the three PIs  Previous reports indicate that proteasomal inhibition in
clearly activated latent virus in the two primary cell  producer cells decreases HIV-1 titers and virion infectivity
models tested, and all three PIs activated latent virus  [49-53]. To confirm the findings, virions were generated
in the three tissue culture model systems tested. via transfection of the replication-competent HIV-1yy4.3-
These results strongly suggest that PIs act as latency  based reporter construct Gn, in which GFP is expressed as
antagonists. an early gene product from the nef position, (Figure 4A)
We also examined the activation status of uninfected into HEK293T cells. The reporter virus was used to infect
primary human resting CD4" T cells following exposure  activated primary human CD4" T cells isolated from
to MG-132 and Velcade. Resting human CD4" T cells PBMCs collected from healthy donors. Six hours post-
cultured in the presence of Velcade or MG-132 for 48 infection, cells were either treated with 10 nM Velcade or
hours did not become activated, as evidenced by a left untreated for 72 hours. The resultant virus-containing
lack of expression of the T cell activation marker supernatants were collected and p24 concentrations were
CD25 (Figure 3D). These results are in concert with measured. As shown in Figure 4B, supernatant collected
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Figure 3 Pls activate latent HIV-1 gene expression in primary CD4" T cell models. A. Schematic of gGnA construct used to establish latently
infected Teylike and BCL2-transduced cells. Black box represents a deletion in env, which renders this construct replication-incompetent. Patterned
boxes indicate GLUC and GFP reporter gene insertions. The yellow box specifies a T2A sequence, which directs bicistronic expression [88,89]. B. Tey-
like cells and C. BCL2-transduced primary CD4" T cells were treated for 48 hours with Pls as indicated. Flow cytometry was performed and the values
shown indicate GFP mean channel fluorescence (MCF). All cells treated with Pls were simultaneously treated with Raltegravir to prevent the integration
of as yet unintegrated viral genomes. MG-132 and Velcade treatments significantly activated latent virus in both Teplike cells (p<0.05; p<0.001,
respectively) and in BCL2-transduced cells (p<0.01; p<0.001, respectively) in comparison to untreated (negative control) cells. P-values calculated using
one-tailed Student’s t-test. D. Resting CD4™ T cells isolated from healthy donor PBMCs were treated with 10 nM Velcade or 500 nM MG-132 for 48
hours and then incubated with FITC-conjugated CD25 antibody. The percentage of CD25" cells in each sample was determined via flow cytometry. In
all experiments, the vertical open bars represent average values from all healthy donors while symbols represent individual donor results; each donor

result represents a singlicate experiment. Cells treated with CD3/CD28 activating beads served as positive controls.

from untreated virus-producing cells contained approxi-
mately 30% more p24 than supernatant collected from
Velcade-treated virus-producing cells indicating that Pls
reduce viral output. To analyze infectivity, the viral super-
natants were used to infect HeLaT4 cells. As a control for
potential effects on viral infectivity arising from residual
PI in the inoculums collected from Pl-treated virus-
producing cells, 10 nM Velcade was added to some
HeLaT4 cells as they were infected with inoculums col-
lected from untreated virus-producing cells. Forty-eight
hours post-infection, the number of infected (GFP")
HeLaT4 cells were counted and normalized to the p24
concentrations of inoculating viral supernatants. In a sin-
gle round of infection, virus collected from infected,
Velcade-treated primary CD4" T cells [PI (virus)] was only
able to infect approximately one fourth the number of
HeLaT4 cells as virus collected from infected, untreated
primary CD4" T cells (Figure 4C). The addition of Velcade
to HeLaT4 cells at the time of infection [PI (target)] did
not have an effect on viral infectivity suggesting that
residual PI in the inoculum collected from PI-treated
virus-producing cells is not responsible for the reduction
in infectivity observed. These results also suggest that Pls
reduce viral output and virion infectivity when added to
virus-producing cells but do not inhibit the infection of
PI-treated target cells. This is in agreement with previous
findings [51-54].

Pls are bifunctional antagonists of HIV-1

The results demonstrating that PIs can activate latent
HIV-1, reduce viral output, and inhibit HIV-1 infectivity
suggested the feasibility of antagonizing both latency
and replication using a single pharmaceutical. To test
this, OM-10.1 cells were treated with the PI CLBL to
analyze the infectivity of virions following the activation
of latent HIV-1. OM-10.1 cells were treated with either
TNFa, to stimulate the production of positive control
virus, or with CLBL, to stimulate the production of virus
under the influence of proteasome inhibition (CLBL was
chosen as it is the most potent activator of virus produc-
tion in OM-10.1 cells and is therefore more comparable
to TNFa than the other PIs). Seventy-two hours post-
treatment, virus-containing supernatants were collected
and p24 concentrations were measured. Figure 5A illus-
trates the magnitude of the induction of p24 production
observed following the treatment of OM-10.1 cells with
these two activators. Due to the fact that TNFa induces
a significantly higher titer of virus than CLBL, viral su-
pernatants were diluted to equal p24 concentrations and
then used to infect U373-MAGI-CXCR4cgy cells to
analyze viral infectivity. U373-MAGI-CXCR4 gy cells
are human glioblastoma cells that have been transduced
to constitutively express CD4 and CXCR4. Additionally,
they express PB-Galactosidase (B-Gal) from an HIV-1
LTR promoter (Tat-inducible expression) and as such,
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Figure 4 Primary CD4" T cells treated with Velcade produce fewer, less infectious virions. A. Schematic of Gn construct used to produce
replication-competent virus for this experiment. The patterned box indicates GFP reporter gene insertion and the yellow box specifies a T2A
sequence, which directs bicistronic expression [88,89]. B. CD4" T cells isolated from healthy donor PBMCs were activated and infected with Gn
virus. Six hours post-infection, cells were either treated with 10 nM Velcade or left untreated as a positive control. Seventy-two hours post-
infection, virus-containing supernatants were collected and p24 levels were analyzed via p24 ELISA. Values shown represent p24 levels (pg/mL)
calculated using standard curve values. C. Untreated and Velcade-treated virus containing supernatants were used to infect Hel.aT4 cells.
Untreated supernatants were also used to infect HeLaT4 cells in the presence of 10nM Velcade [PI (target)] to control for effects that may arise
from residual Velcade in the inoculum collected from Velcade-treated virus producing cells [Pl (virus)]. Forty-eight hours post-infection, GFP* cell
numbers were analyzed via flow cytometry. Values shown indicate percent GFP™ cells normalized to the p24 (ng/ml) concentration of the
inoculating viral supernatant. Error bars indicate SEM. Asterisks indicate significant differences (** p<0.01; *** p<0.001) between Velcade treatments and
untreated (positive control) cells. P-values calculated using one-tailed Student'’s t test. The figure represents average values from three independent

experiments, each of which utilized primary cells isolated from different healthy donors.

are regularly used to obtain HIV-1 titers [55]. Forty-
eight hours post-infection, we analyzed p-Gal activity in
infected cell lysates. As shown in Figure 5B, cells in-
fected with virions produced from CLBL-stimulated
OM-10.1 cells expressed five times less -Gal than cells
infected with the same amount of virions produced from
TNFa-stimulated cells, indicating that virus produced
from Pl-treated cells exhibit reduced infectivity. Add-
itionally, these results corroborate the data presented in
Figure 4. These experiments delineate the ability of Pls
to both activate latent virus in a population of cells and
inhibit the replication of resulting virus from that popu-
lation of cells within a treatment duration of only three
days. Therefore, it is expected that continuous PI treat-
ment over several rounds of infection would result in an
exponential decline in both latent and replicating HIV-1.

Discussion

This report demonstrates that PIs have the ability to ac-
tivate latent HIV-1 in three tissue culture model systems
and two primary cell model systems, and thereby identi-
fies PIs as a new class of HIV-1 latency antagonists. We

have also confirmed that proteasome inhibition in pro-
ducer cells results in reduced viral titers and the produc-
tion of virions that exhibit reduced infectivity. Taken
together, our results represent a novel proof-of-concept
that a single pharmaceutical drug can antagonize both
HIV-1 latency and replication simultaneously.

The identification of the proteasome as a potential cel-
lular regulator of the maintenance of HIV-1 latency,
from our preliminary genetic screen (unpublished data),
was initially surprising considering that proteasome activ-
ity is involved in the activation of NF«B, a transcription
factor known to potently activate HIV-1 transcription
(Reviewed in [56]). However, a review of the literature re-
vealed two gene expression profile studies that supported
this finding. One study analyzed the gene expression pro-
file in latently infected ACH-2 cells and found that 15 pro-
teasome genes were upregulated in the latent state prior
to viral reactivation [57]. The other study, which analyzed
gene expression profiles in productively infected and la-
tently infected cells, found that seven proteasome genes
were downregulated in productively infected H9 cells in
comparison to uninfected cells [58]. This information, in
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Figure 5 HIV-1 virions produced via Pl-mediated activation of
latent virus exhibit reduced infectivity. A. OM-10.1 cells were
treated with 50 ng/ml TNFa to stimulate the production of positive
control viral particles, with 5 uM CLBL to stimulate the production of
viral particles under the influence of proteasome inhibition or with
DMSO as a negative control. Seventy-two hours post-treatment, viral
supernatants were collected and p24 levels were analyzed via p24
ELISA. Values shown represent p24 levels (ng/mL) calculated using
standard curve values. B. CLBL and TNFa treated virus-containing
supernatants were diluted to a p24 concentration of 200 ng/ml and
used to infect U373-MAGI-CXCR4 g, cells. Forty-eight hours post-
infection, 3-Gal expression was quantified using the 3-Gal Enzyme
Assay System (Promega, Madison, WI) and standard curve values.
Numbers depict 3-Gal expression normalized to protein concentrations.
Error bars indicate SEM. Asterisks indicate a significant difference
(p<0.01) in 3-Gal expression between cells infected with TNFa treated
virus and CLBL treated virus. P-value was calculated using one-tailed
Student’s t test. Results represent average values from three
independent experiments.

accordance with our preliminary results, led us to formu-
late the hypothesis that the proteasome is involved in
maintaining HIV-1 latency. Indeed, as shown in Figures 1,
2, and 3, inhibiting the proteasome significantly activated
latent viral transcription in OM-10.1 cells as well as latent
viral gene expression in all tissue culture and primary cell-
based HIV-1 latency models tested. There is one study
that seemingly contradicts our findings that PIs activate
latent proviral transcription in which it was reported that
PIs downregulate HIV-1 LTR-dependent gene expression
[52]. However, their results were obtained from experi-
ments in which luciferase expression was analyzed in cells
that had been transiently co-transfected with pLTR-LUC
and a p65 overexpression plasmid (to induce LUC expres-
sion) 32 hours prior to the addition of Pls. In that sce-
nario, luciferase transcription was initiated prior to the
addition of PIs and therefore, their results do not reflect a
PI-mediated effect on transcriptional initiation. Our stud-
ies indicate that PIs induce the initiation of latent proviral
transcription, which then results in an upregulation of
gene expression. Also, our results were obtained from ex-
periments utilizing fully integrated, latent HIV-1, which is
a more relevant system for analyzing the regulation of
LTR-driven gene expression.

The variability in the degree of activation of viral tran-
scription and gene expression between all inhibitors and
all model systems in the current study could be attrib-
uted to differences in toxicities and pharmacokinetics as-
sociated with each drug within each model system.
Variability might also be affected by the specific model
system and mode of reporter gene analysis. For example,
late gene products were analyzed in the tissue culture
model systems (RLUC and SEAP) while an early gene
product was analyzed in the primary cell model systems
(GFP). In addition, a degree of variability is expected
when comparing results in primary cells obtained from
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different donors [59,60]. Nevertheless, PIs significantly
activated latent virus in all five model systems tested and
therefore, the results identify PIs as a new, potent class
of HIV-1 latency antagonists. The primary latent cell
models in this study were utilized instead of cells dir-
ectly isolated from HIV-1 infected patients for a specific
reason. Generally, when using patient samples for la-
tency activation studies, the addition of allogeneic, MHC
mismatched CD4" T cells is required to allow viral out-
growth upon latent viral reactivation [4,61-64]. The
addition of allogeneic cells themselves might contribute
to the activation of latent virus in patient sample systems
and therefore, the latently infected primary cell models,
described in the results section, were chosen for testing
the antagonist activity of PIs.

It is of note that we were able to confirm previous
findings [47,48] that PIs do not activate primary human
resting CD4" T cells in vitro (Figure 3D). This is an im-
portant consideration with any potential latency antag-
onist in order to avoid promoting a “cytokine storm”
during treatment. In corroboration, studies have indi-
cated that PIs are not prohibitively toxic in vivo, as the
PI Velcade is FDA approved for the treatment of mul-
tiple myelomas, leukemias, and lymphomas [37,39-42].

There are potential explanations for PI-mediated acti-
vation of latent HIV-1. First, there is increasing evidence
that the 26S proteasome and/or individual 19S and 20S
proteasome subparticles can regulate transcription both
proteolytically and non-proteolytically [65]. Interestingly,
a study found that the 26S proteasome is associated with
the HIV-1 LTR and controls basal transcription proteo-
Iytically in the absence of Tat in HeLa-LTR-Luc cells
[66,67]. Therefore, it is possible that PIs facilitate the ac-
tivation of latent HIV-1 by inhibiting the degradation of
factors that are involved in promoting viral transcription.
For example, it was recently shown that the proteasome
partially downregulates the expression of Cyclin T1, a
subunit of the P-TEFb complex, in resting memory hu-
man CD4" T cells [68]. The P-TEFb complex is essential
for HIV-1 transcriptional elongation as a cofactor of Tat
(Reviewed in [56]). It is theorized that low levels of Cyc-
lin T1 contribute to the establishment of latency in rest-
ing memory CD4" T cells because they are less capable
of supporting processive viral transcription [68]. Hence,
PIs might promote the activation of latent HIV-1 tran-
scription by stabilizing the Cyclin T1 component of the
P-TEFb complex. It will be of interest to explore the
mechanism(s) of PIl-induced activation of latent HIV-1
in more detail.

Experiments were also performed indicating that PIs
inhibit HIV-1 replication by reducing viral output and
virion infectivity (Figures 4 and 5). These findings cor-
roborate previous reports. One report found that the PI
Lactacystin reduced viral release from cells transfected
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with HIV-1y14.3 by approximately 3-fold. Moreover, they
found that MG-132 decreased the infectivity of virions
released from treated, HIV-1y 4.5 infected human A3.01
T cells by 50-fold. It should be noted that the concentra-
tion of MG-132 used in that study was 100 times higher
(40-50 pM) than the concentration used here, which
could explain the fact that they observed a much higher-
fold reduction in infectivity [51]. Another report found
that activated PBMCs (collected from healthy donors)
infected with HIV-1p,y in the presence of Velcade and/
or MG-132 exhibited an approximate 10-fold reduction
in both viral supernatant reverse transcriptase and pro-
viral copy number in target cells [52]. Finally, three
genome-wide knock-down screens, performed to identify
cellular modulators of HIV-1 replication, identified the
proteasome complex as an enriched gene ontology func-
tional group whose downregulation inhibited HIV-1
replication [69].

The bulk of evidence suggests that the APOBEC3 fam-
ily of cellular viral restriction factors, among which
APOBEC3G and 3F (A3G/F) are the most potent, might
explain the PI-induced reduction in virion infectivity
observed, especially considering our data indicating that
PIs exert their effects only when added to virus-
producing cells. A3G/F are cytidine deaminases that
have been shown to inhibit HIV-1 infectivity by inducing
viral genome hypermutation as well as by causing de-
fects in the efficiency of reverse transcription and inte-
gration. In order to inhibit viral infectivity, A3G/F must
be expressed in virus-producing cells and packaged into
nascent virions. From there, they are able to inhibit viral
replication in subsequent target cells (Reviewed in [31]).
A3G causes viral genome hypermutation during reverse
transcription by deaminating cytidine residues in the
minus strand of viral DNA, which results in G—A mu-
tations in the plus strand of the viral DNA [70-73]. Add-
itionally, A3G was shown to impair primer tRNA
processing during reverse transcription, which not only
affects the progression of reverse transcription but also
results in the creation of viral DNA ends that are unfit
for integration into cellular DNA ([74-76]. However,
under normal conditions, HIV-1 is protected from the
effects of A3G/F by the viral protein Vif, which binds to
and targets A3G/F for proteasomal degradation preclud-
ing its incorporation into HIV-1 virions [53,77-81].

Numerous studies have shown that PIs increase intra-
cellular levels of A3G in infected cells by inhibiting its
degradation even in the presence of Vif [53,77-79,81].
One study found that A3G was incorporated into virions
produced from MG-132 treated virus-producing 293T
cells and those virions exhibited an approximate 5-fold
reduction in infectivity [53]. A3G/F are expressed in pri-
mary CD4" T cells and OM-10.1 cells [31], both of
which were used to produce virus during treatment with



Miller et al. Retrovirology 2013, 10:120
http://www.retrovirology.com/content/10/1/120

PIs in this study. Therefore, it is a strong possibility that
the PI-mediated inhibition of HIV-1 infectivity observed
here was in large measure mediated by A3G/F. Explana-
tions for the mechanism through which PIs reduce viral
titers might involve the stabilization of TETHERIN, an
extracytosolic membrane protein known to inhibit viral
release (Reviewed in [30]) or the dysregulation of HIV-1
p6°%, known to promote viral budding and to be regu-
lated via monoubiquitination [51]. It will be interesting
to delineate these mechanisms, as well as potential alter-
native mechanism(s) of PI-mediated inhibition of HIV-1
replication in future studies.

Overall, the data presented in this report validate the
concept that effective inhibition of both HIV-1 latency
and replication is attainable through the use of a single
drug. The importance of this is underlined by evidence
of differential antiretroviral drug efficacy within viral
pools in secondary lymphoid tissue compartments in
patients. For instance, a study observed only mild viral
inhibition in the secondary lymphoid tissues of patients
on ART regimens made up of two or three reverse tran-
scriptase inhibitors [82]. Also, macrophages have been
shown to require the highest therapeutic concentrations
of protease inhibitors attainable in vivo to inhibit virus
production in humans [83]. Moreover, macrophages
have been shown to harbor latent HIV-1 in sanctuary
tissues, such as the brain [10,17-21], that can be imper-
vious to at least some antiretroviral drugs. For instance,
differences in the development of drug resistance be-
tween viral isolates from the blood and isolates from the
cerebrospinal fluid in patients on HAART indicate that
antiretroviral drug penetration into the CNS is not suffi-
cient [22]. Many antiretroviral drugs do not effectively
penetrate the BBB [22-28]. The testes represent another
potential sanctuary site from which latently infected cells
have been isolated [83,84] but in which the blood-testes
barrier restricts the entry of some antiretroviral drugs
[83,85]. Therefore, tissues that are poorly penetrated by
antiretroviral drugs represent potential sites in which re-
activated latent virus might infect new cells and re-seed
the latent reservoir. In fact, viral replication in patients
resulting in more than 50 HIV-1 RNA copies/ml of
blood plasma has been shown to decrease the decay rate
of the latent reservoir [86,87]. Consequently, in the
effort to eliminate latent infection in patients, it is im-
perative to not only deliver latency antagonists and anti-
retroviral drugs simultaneously, but to deliver them to
the same tissue and cellular compartments. Hence, the
development of a single, bifunctional antagonist of both
HIV-1 latency and replication is ideal.

Fundamentally, this concept can be applied to the
future development of innovative anti-HIV-1 pharma-
ceuticals capable of clearing latent virus. It is not limited
to the use of PIs, as one can imagine employing
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combinatorial chemistry between different HIV-1 latency
activators and replication inhibitors to create novel clas-
ses of bifunctional HIV-1 antagonists. However, a PI
may very well be a viable option for evaluating the effi-
cacy of an HIV-1 bifunctional antagonist in patients. As
previously mentioned, Velcade is already approved by
the FDA for the treatment of multiple myeloma and an-
other PI, Marizomib, is currently being evaluated in clin-
ical trials for the treatment of patients with lymphomas,
leukemias, and multiple myeloma [37,39]. The most
common adverse effects associated with Velcade include
gastrointestinal effects, fatigue, thrombocytopenia, and
peripheral neuropathy, with the latter two being the most
clinically significant [41,42]. However, thrombocytopenia
was found to wane between cycles of treatment with
Velcade [42] and peripheral neuropathy was found to be
effectively managed with dose changes [40]. Perhaps even
more promising, early phase I clinical trial results with
Marizomib have revealed that at less than half the dose of
Velcade, Marizomib is more effective and far less toxic.
Importantly, Marizomib is characterized by a very small
size that allows it to pass the BBB [37], which could be
quite important in purging the latent reservoir in patients.
Thus, PIs have exhibited substantial efficacies and man-
ageable toxicities in patients with multiple myeloma and
therefore, PIs could be considered feasible candidates for
an assessment of the efficacy of HIV-1 bifunctional antag-
onists in infected patients. Also, Pls target a cellular factor,
which significantly increases the genetic threshold for the
development of drug resistance.

Conclusions

In this study, PIs are shown to represent a new class of
HIV-1 latency antagonists. Additionally, by confirming
their anti-replication activity, it is determined that Pls
can act as bifunctional antagonists of HIV-1 latency and
replication. Therefore, the findings demonstrate the
feasibility of developing effective dual-acting inhibitors
of HIV-1. This is a novel concept that can be applied to
the development of pioneering anti-HIV-1 pharmaceuti-
cals with the potential to substantially impact the goal of
purging HIV-1 from infected individuals.

Methods

Plasmid constructs

The construct present in HeLa#14 cells (RLUC/RFP) is an
HIV-1y14.3-based construct harboring Renilla luciferase
(RLUCQ) in the env position and red fluorescence protein
(RFP) in the nef position [43]. The construct present in
24STINLESG cells (SEAP/GFP) is an HIV-1y4.3-based
construct harboring secreted alkaline phosphatase (SEAP)
in the env position and green fluorescence protein (GFP)
in the nef position [44]. Both the RLUC/RFP and the
SEAP/GFP constructs have a 2.5-kb deletion in pol and a
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1.0-kb deletion in env to render the vectors replication-
incompetent. Additionally, the vpu start codon in both
constructs is mutated for robust marker gene expression
[43,44]. The BCL2 expression vector pEB-FLV [46] was a
kind gift from Dr. Robert F. Siliciano. The gGnA construct
is an HIV-1y14.3.based construct that is replication-
incompetent. PCR fragments containing the 3" region of
env, the complete coding sequence for Gaussia luciferase
(GLUC), the T2A sequence, the complete coding se-
quence for enhanced green fluorescence protein (EGFP),
and the 5’ region of nef were fused together by SOEing
PCR. The T2A sequence directs bicistronic expression
[88,89]. The fused PCR fragment was inserted into the
HIV-1n14-3 construct via BamHI-Xhol restriction sites. A
903-bp deletion in env was made by inserting a PCR frag-
ment, containing the 3" region of vpr including a muta-
tion in the start codon of env (ATG — ACG) and the 5’
region of env up to position 6344, into the HIV-1y14.3
construct via EcoRI-Nhel restriction sites. The Gn con-
struct is an HIV-1yy 4.3-based construct that is replication-
competent. PCR fragments containing the 3’ region of
env, the complete coding sequence for EGFP, the T2A
sequence, and the 5’ region of nef were fused together by
SOEing PCR. The T2A sequence directs bicistronic
expression [88,89]. The fused PCR fragment was inserted
into the HIV-1yy 4.3 construct via BamH1-Xhol restriction
sites.

Cells and culture media

The following cell lines were obtained through the AIDS
Research and Reference Reagent Program, Division of
AIDS, NIAID, NIH: OM-10.1 from Dr. Salvatore Butera
[32-36], and U373-MAGI-CXCR4cgp from Dr. Michael
Emerman [55]. OM-10.1 cells, primary human activated
CD4" T cells, primary human resting CD4" T cells, pri-
mary human CD4" Tcy-like cells, and primary human
CD4" BCL2-transduced cells were cultured in RPMI
1640 GlutaMAX, HEPES medium (Life Technologies,
Grand Island, NY) supplemented with 10% FBS (Thermo
Scientific Hyclone, Logan, UT), 2X MEM Non-essential
amino acids solution (Life Technologies, Grand Island,
NY), and 100 U/ml penicillin-100 pg/ml streptomycin so-
lution (Life Technologies, Grand Island, NY). HeLa#14
cells were cultured in MEM GlutaMAX medium (Life
Technologies, Grand Island, NY) supplemented with 10%
FetalClone III Serum (Thermo Scientific Hyclone, Logan,
UT), 2X MEM Non-essential amino acids solution, and
100 U/ml penicillin-100 pg/ml streptomycin solution.
U373-MAGI-CXCR4 gy cells were cultured in DMEM,
high glucose GlutaMAX medium (Life Technologies,
Grand Island, NY) supplemented with 10% FBS, 2X MEM
Non-essential amino acids solution, 0.2 mg/ml G418
(Sigma-Aldrich, St. Louis, MO), 0.1 mg/ml hygromycin B
(Sigma-Aldrich, St. Louis, MO), and 1.0 pg/ml puromycin

Page 10 of 15

(Sigma-Aldrich, St. Louis, MO). HeLaT4 cells and
HEK293T cells were cultured in DMEM, high glucose
GlutaMAX medium supplemented with 10% FetalClone
III Serum, 2X MEM Non-essential amino acids solution,
and 100 U/ml penicillin-100 pg/ml streptomycin solution.

Development of latently infected primary human CD4*

T cell models: Tey-like cells and BCL2-transduced cells
Leukocyte enriched blood samples from healthy adult
human donors were purchased from the New York
Blood Center. To obtain a purified population of periph-
eral blood mononuclear cells (PBMCs), buffy coats were
isolated from the blood by a Ficoll gradient using
Histopaque-1077 (Sigma-Aldrich, St. Louis, MO). Also,
red blood cells were lysed using ACK lysing buffer
(Lonza, Inc., Allendale, NJ). Primary human CD4" Tcy—
like cells were prepared as previously described [45] with
the modification that naive CD4" T cells were separated
from PBMCs using the Dynabeads Untouched™ Human
CD4" T Cells kit (Life Technologies, Grand Island, NY)
according to the manufacturer’s instructions with the
additional antibodies mouse IgG anti-human CD25 (BD
Biosciences, Franklin Lakes, NJ) and mouse IgG anti-
human CD45RO (BD Biosciences, Franklin Lakes, NJ)
for the specific removal of activated and memory CD4"
T cells, respectively. Primary human BCL2-transduced
CD4" T cells were prepared as previously described [46]
with the modification that cells were activated using the
Dynabeads Human T-Activator CD3/CD28 kit (Life Tech-
nologies, Grand Island, NY). Vesicular stomatitis virus
envelope pseudotyped virions used to establish a latent
viral infection in Tcy—like cells or in BCL2-transduced
cells were produced in HEK293T cells transfected with the
gGnA construct and the packaging plasmid pMD.G [90]
using polyethyleneimine linear (molecular weight of
25 kDa) (Polysciences Inc., Warrington, PA). Forty-eight
hours post-transfection, viral supernatants were collected
and concentrated 50X using Retro-Concentin (System
Biosciences, Mountain View, CA) according to the manu-
facturer’s instructions. Tcy—like cells or BCL2-transduced
cells were infected via spinoculation as previously de-
scribed [91] with the modifications that infections were
carried out in 24-well plates and in the presence of 8 g/
ml polybrene (Sigma-Aldrich, St. Louis, MO). Infected
cells were cultured for seven days to establish a latent
infection [45,46].

Proteasome function assay

OM-10.1 cells were plated in 12-well plates at 1x10°
cells per well. Immediately, cells were treated in dupli-
cate with 1 nM, 15 nM, and 30 nM Velcade (concentra-
tion dependence) (Selleckchem, Houston, TX), 5 uM
clasto-Lactacystin p-lactone (CLBL) (Sigma-Aldrich, St.
Louis, MO), 500 nM MG-132 (Cayman Chemicals, Ann
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Arbor, MI), or 0.25% DMSO or were left untreated
(negative controls). Two hours post-treatment, 1x10*
cells from each treatment were collected and prote-
asome function was measured using the Proteasome-Glo
Chymotrypsin-Like Cell-Based Assay (Promega, Madison,
WI) according to the manufacturer’s instructions. Lumi-
nescence was measured on the Turner Biosystems 20/20"
Luminometer using default settings.

Pl treatment to analyze activation of latent HIV-1
transcription

For the time course experiment, OM-10.1 cells were
plated in 12-well plates at 1x10° cells per well. Immedi-
ately, cells were treated with 15 nM Velcade, 2 uM sub-
eroylanilide hydroxamic acid (SAHA) (Selleckchem,
Houston, TX) (positive control), or 0.25% DMSO (nega-
tive control). At the indicated time points, total RNA
was isolated from cells using TRIzol Reagent (Life Tech-
nologies, Grand Island, NY) according to the manufac-
turer’s instructions. RNA samples were then treated with
RQ1 DNase (Promega, Madison, WI) according to the
manufacturer’s instructions. Reverse transcription PCR
was performed to convert RNA to cDNA using the
High-Capacity cDNA Reverse Transcription Kit employ-
ing random primers (Applied Biosystems (ABI), Foster
City, CA) according to the manufacturer’s instructions.
The cDNA was then used as a template for quantitative
PCR (qPCR) to determine HIV-1; oy nef RNA expression
levels. The qPCR reactions contained Power Sybergreen
PCR Master Mix (ABI, Foster City, CA) and one of the
following primer sets: the nef primer set (Forward 5'-
AAGGGAAAGAATGAGACGAGC-3’ and Reverse 5'-
GCTACTTGTGATTGCTCCATG-3'), or the GAPDH
(reference gene) primer set (Forward 5'-AATCCCAT
CACCATCTTCCAG-3" and Reverse 5'-CTTCTCCATG
GTGGTGAAGAC-3"). qPCR was performed using the
BioRad CFX 96 Real-Time System C1000 Thermal
Cycler with the following program settings: 95°C for 10
minutes, followed by 40 cycles of 95°C for 15 seconds,
60°C for 30 seconds, followed by a melt curve. RNA ex-
pression was calculated via AAC(t) method with the
values normalized to the expression level of GAPDH in
each sample.

For the other RNA experiments, OM-10.1 cells were
plated in 12-well plates at 1x10° cells per well. Immedi-
ately, cells were treated in duplicate with 1 nM, 15 nM,
and 30 nM Velcade (concentration dependence), 5 pM
CLBL, 500 nM MG-132, 2 uM SAHA (positive control),
or 0.25% DMSO (negative control). Seventy-two hours
post-treatment, total RNA was isolated, treated with
DNase, and reverse transcribed as described above. The
c¢DNA was then used as a template for qPCR to deter-
mine HIV-1; .y nef and env RNA expression levels.
qPCR was performed as described above with the
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addition of the env primer set (Forward 5'-GCTTTG
TTCCTTGGGTTCTTG-3" and Reverse 5 -ATAATTGT
CTGGCCTGTACCG-3').

Pl treatment to analyze activation of latent HIV-1 gene
expression

Twenty-four hours prior to treatment, HeLa#14 cells
were seeded in 24-well plates at 5x10* cells per well.
Cells were then treated in triplicate with 4.5 uM CLBL,
450 nM MG-132, 7 nM Velcade, 2 uM SAHA (positive
control), or 0.25% DMSO (negative control). Forty-eight
hours post-treatment, the cells were lysed, protein con-
centration was measured via standard Bradford assay
(Bio-Rad Laboratories, Hercules, CA) and RLUC activity
was measured using the Renilla luciferase Assay System
(Promega, Madison, WI) according to the manufac-
turer’s instructions. Luminescence was measured on the
Turner Biosystems 20/20" Luminometer with a 10 sec-
ond integration setting.

24STINLESG cells were plated in 24-well plates at
5x10° cells per well. Immediately, cells were treated in
triplicate with 4.5 pM CLBL, 450 nM MG-132, 7 nM
Velcade, 2 pM SAHA (positive control), or 0.25% DMSO
(negative control). CLBL and SAHA treated cells were
analyzed 48 hours post-treatment while MG-132,
Velcade, and DMSO treated cells were analyzed 72
hours post-treatment. The number of live cells in each
sample was determined via standard trypan blue exclu-
sion test and quantification using a hemocytometer.
SEAP activity in the culture supernatant was measured
using the Phospha-Light Secreted Alkaline Phosphatase
Reporter Gene Assay System (ABI, Foster City, CA) ac-
cording to the manufacturer’s instructions. Lumines-
cence was measured on the Turner Biosystems 20/20"
Luminometer using default settings.

OM-10.1 cells were plated in 6-well plates at 2.5x10°
cells per well. Immediately, cells were treated in dupli-
cate with 5 uM CLBL, 500 nM MG-132, 1 nM, 15 nM,
and 30 nM Velcade (concentration dependence), 2 uM
SAHA (positive control), or 0.25% DMSO (negative con-
trol). Seventy-two hours post-treatment, HIV-1 capsid
protein (p24) concentration in the culture supernatant
was analyzed via p24 ELISA using the HIV-1 p24
Antigen Capture Kit (AIDS & Cancer Virus Program,
NCI-Frederick, MD) according to their instructions. Sec-
ondary antibody peroxidase activity was determined via
colorimetric analysis using the Coulter Microplate
Reader set to read at 450 nm with a reference reading at
650 nm.

Tcm-like cells and BCL2-transduced cells, latently
infected with the gGnA construct, were plated in 96-well
plates at 1x10° cells per well. Immediately, cells were
treated in singlicate with 5 uM CLBL, 250 nM MG-132,
10 nM Velcade, Dynabeads Human T-Activator CD3/
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CD28 beads according to the manufacturer’s instructions
in the presence of 30 U/ml IL-2 (positive control), or were
left untreated (negative control). All cells were simultan-
eously treated with 10 uM Raltegravir to prevent the inte-
gration of as yet unintegrated viral genomes. Forty-eight
hours post-treatment, cells were fixed with a 1% formalde-
hyde solution for 5 minutes and then GFP mean channel
fluorescence values were determined using the BD Biosci-
ences Accuri C6 Flow Cytometer set to count 2x10% cells
per sample.

Pl treatment to analyze T cell activation status

Human PBMCs were isolated from healthy donor leuko-
cyte enriched blood samples as described above. CD4" T
cells were isolated using the Dynabeads Untouched™
Human CD4" T Cells kit according to the manufacturer’s
instructions. The cells were plated in a 96-well plate at
1x10° cells per well and then, in singlicate, left untreated
(negative control), treated with 10 nM Velcade, treated
with 500 nM MG-132, or activated using the Dynabeads
Human T-Activator CD3/CD28 kit according to the man-
ufacturer’s instructions in the presence of 30 U/ml IL-2
(positive control). Forty-eight hours post-treatment, cells
were incubated with 20 pl of mouse IgG FITC-conjugated
anti-human CD25 antibody (BD Biosciences, Franklin
Lakes, NJ) for 30 minutes at 4°C. The percentage of CD25"
cells in each of the samples was then determined using
the BD Biosciences Accuri C6 Flow Cytometer set to
count 2x10° cells per sample.

PI treatment to analyze antagonism of HIV-1 infectivity

Human PBMCs were isolated from healthy donor leuko-
cyte enriched blood samples as described above. CD4" T
cells were isolated using the Dynabeads Untouched™
Human CD4" T Cells kit according to the manufac-
turer’s instructions. The CD4" T cells were then acti-
vated using the Dynabeads Human T-Activator CD3/
CD28 kit according to the manufacturer’s instructions in
the presence of 30 U/ml IL-2 and were cultured an add-
itional 3 days in the presence of IL-2. The cells were
then plated in 24-well plates at 2x10° cells per well. Im-
mediately, 0.5 ml of Gn virus stock was added to each
well and the cells were spinoculated as previously de-
scribed [91] in the presence of 8 pg/ml polybrene. Six
hours post-spinoculation, the infections were terminated
and either 10 nM Velcade was added to the cultures im-
mediately, or the cultures were left untreated as a posi-
tive control. Seventy-two hours post-treatment, viral
supernatants were collected and p24 concentrations
were measured via p24 ELISA using the HIV-1 p24
Antigen Capture Kit according to their instructions. Sec-
ondary antibody peroxidase activity was determined via
colorimetric analysis using the Coulter Microplate
Reader set to read at 450 nm with a reference reading at
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650 nm. HeLaT4 cells were seeded in 24-well plates at
2x10° cells per well 24 hours prior to infection. Viral
supernatants were diluted 2.5-fold and then 0.5 ml of
diluted supernatants were added to each well in dupli-
cate. As a control for the potential effects arising from
residual PI in the inoculums collected from PI-treated
CD4" T cells, 10 nM Velcade was added to some
HeLaT4 cells as they were infected with viral super-
natant collected from untreated CD4" T cells. The
HeLaT4 cells were then spinoculated in the presence of
polybrene as described above. Infections were termi-
nated 6 hours post-spinoculation. Forty-eight hours
post-infection, cells were trypsinized and fixed with a 1%
formaldehyde solution for 5 minutes and the percentage
of GFP" cells were analyzed using the BD Biosciences
Accuri C6 Flow Cytometer set to count 2x10° cells per
sample.

Pl treatment to analyze dual antagonism of HIV-1 latency
and replication

OM-10.1 cells were treated with either 50 ng/ml TNFa
(Sigma-Aldrich, St. Louis, MO), to stimulate the produc-
tion of positive control viral particles, or with 5 pM
CLBL, to stimulate the production of viral particles
under the influence of proteasomal inhibition. Seventy-
two hours post-treatment, virus-containing supernatants
were collected and p24 concentrations were measured
via p24 ELISA using the HIV-1 p24 Antigen Capture Kit
according to their instructions. Secondary antibody per-
oxidase activity was determined via colorimetric analysis
using the Coulter Microplate Reader set to read at 450
nm with a reference reading at 650 nm. Twenty-four
hours prior to infection, U373-MAGI-CXCR4 gy cells
were seeded in 12-well plates at 1x10° cells per well.
Viral supernatants were diluted to a p24 concentration
of 200 ng/ml and then 300 pl of the diluted viral super-
natants were used to infect U373-MAGI-CXCR4cgm
cells in duplicate in the presence of 8 pg/ml polybrene
at 37°C. Infections were terminated within 5 hours.
Forty-eight hours post-infection, cells were lysed, protein
concentration was measured via standard Bradford assay
and B-galactosidase activity was measured using the B-
Galactosidase Enzyme Assay System with Reporter Lysis
Buffer (Promega, Madison, WI) according to the manu-
facturer’s instructions. Colorimetric analysis was per-
formed using the Nanodrop 2000 Spectrophotometer set
to read at 420 nm.
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